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Abstract. In this article, the concept of weakly weighted sharing is used to prove the uniqueness results of a

meromorphic function and an L-function described in Selberg class S. Our result will improve the result due to

D.C. Pramanik and Ja. Roy [4].
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1. INTRODUCTION

We use the basic notations of Nevanilinna theory as described in [1, 8, 9, 10]. We define,

F = {h1 : h1is a non-constant meromorphic function}, where meromorphic function is always

defined in the complex plane. A meromorphic function a is a small function with respect to

h1 ∈ F , if either a ≡ ∞ or T (r,a) = S(r,h1). S(h1) is the set of all small functions with respect

to h1 that are specified in the complex plane.

In 19th century, A. Selberg introduced a class known as Selberg Class in order to understand

the value distribution of L-functions, since then Selberg Class has been an important field of

research. For the concept of L-function, we encourage the reader to refer [6].
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Definition 1. [9] For a ∈ C∪{∞}, the quantity

δ (a,h1) = 1− limsup
r→∞

N(r,a;h1)

T (r,h1)
,

is called the deficiency of ‘a’ for the function h1.

Definition 2. [9] The quantity

Θ(a,h1) = 1− limsup
r→∞

N(r,a;h1)

T (r,h1)
,

for a ∈ C∪{∞} is the ramification index of a for the function h1.

The first comprehensive review of the principle of weighted sharing to prove the uniqueness

of meromorphic functions was proposed by Indrajit Lahiri in 2001. We steer the reader to

[2](see p.195, Definition 7) for a discussion on weighted sharing.

The argument of Shanhua Lin and Weichuan Lin in 2006 touched upon the principle of

weakly weighted sharing. For the definition, reader can refer [3](see p.274, Definition 4).

We denote with the notation NL(r,1;H1), the reduced counting function which are 1−points

of H1 whose multiplicities are greater than 1−points of L when H1 and L share 1 “IM”.

NL(r,1;L) is described similarly. We denote the reduced counting function for the poles for

the function h1 by N1(r,h1) = N(r,∞;h1). Similarly, N1

(
r, 1

h1

)
= N(r,0;h1), N1(r,L) = N(r,L),

N1
(
r, 1

L

)
= N(r,0;L).

In 2006, S. Lin and W. Lin (see [3], p. 272, Theorem 1−3) defined and used the concept of

weakly weighted sharing of functions to prove the uniqueness of a meromorphic functions and

its derivatives for the first time. By contributing three theorems, they proved the uniqueness of

h1 and h(n)1 when they both share “(a,m)”, “(a,1)”, “(a,0)” with some relative conditions.

Later in 2011, H-Y. Xu and Y. Hu (see [7], p. 104, Theorem 1−3) generalized the theorems

proved by S. Lin and W. Lin by proving the uniqueness of a non-constant meromorphic function

h1 and L(h1) = h(n1)
1 + an1−1h(n1−1)

1 + . . .+ a0h1 where ai(6≡ 0, ∞) ∈ S(h1) for 0 ≤ i ≤ n1− 1,

sharing “(a,k1)”, “(a,1)”, “(a,0)” with some conditions of suitability.

Recently, in 2019, D. C. Pramanik and Ja. Roy (see [4], p. 44, Theorem 7) considered the

issue more broadly with consideration of non-constant homogeneous differential polynomials

P[h1] and P[g], where f and g are two functions having non-constant meromorphic properties
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and showed that if P[h1] and P[g] share “(a, l)” with some appropriate conditions, then P[h1] =

P[g].

Inspired by such study, it is normal to inquire that what will be the relation between a non-

constant meromorphic function h1 and an L-function L when they share “(a, l)” and weakly

weighted sharing is taken into account where a ∈ S(h1)∩S(L), a 6≡ 0, ∞. As an answer for this,

we have proved the result as stated in the Section 3 of this paper.

2. PRELIMINARIES

We highlight only those lemmas that are needed to prove our conclusion.

We consider

(2.1) Ψ =

(
H ′′1
H ′1
−2

H ′1
H1−1

)
−
(

H ′′2
H ′2
−2

H ′2
H2−1

)
.

Here, the notations H1 and H2 are used and they are considered to be non-constant meromorphic

functions. For Second Fundamental Theorem (SFT), we redirect the reader to [1].

If suppose h1 ∈ F defined in C and p ∈ Z+, then we have

(2.2) N(r,0;h(p)
1 )≤ N(r,0;h1)+ pN1(r,h1)+O(log(T (r,h1))+ logr),

refer [9].

Suppose,

(1) H1 and H2 share “(1, l)” then

(2.3) NL(r,1;H1)≤
1
2

N(r,0;H1)+
1
2

N(r,∞;H1)+S(r,H1),

refer [7], [p. 106, Lemma 4].

(2) H1 and H2 share “(1,0)” then

(2.4) NL(r,1;H1)≤ N(r,0;H1)+N(r,∞;H1)+S(r,H1),

refer [7], [p. 106, Lemma 6].

Also, letting a non-negative integer or ∞ as ‘l’, H1 and H2 sharing “(1, l)”, if Ψ as defined in

(2.1) is not equal to zero then we have the following cases.
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(1) Whenever 2≤ l ≤ ∞,

T (r,H1)≤ N2(r,∞;H1)+N2(r,∞;H2)+N2(r,0;H1)

+N2(r,0;H1)+S(r,H1)+S(r,H2).
(2.5)

(2) Whenever l = 1,

T (r,H1)≤ N2(r,∞;H1)+N2(r,∞;H2)+N2(r,0;H1)+N2(r,0;H2)

+NL(r,1;H1)+S(r,H1)+S(r,H2).
(2.6)

(3) Whenever l = 0,

T (r,H1)≤ N2(r,∞;H1)+N2(r,∞;H2)+N2(r,0;H1)+N2(r,0;H1)

+2NL(r,1;H1)+NL(r,1;H2)+S(r,H1)+S(r,H2).
(2.7)

Similarly, we can define for T (r,H2), refer [3] [p. 273, Lemma 3].

3. MAIN RESULTS

Theorem 1. Considering, h1 ∈ F defined in C and L be an L-function, a ∈ S(h1) ∩ S(L), where

a 6≡ 0, ∞. If h1 and L share “(a, l)” with one of the conditions mentioned below

(i) l ≥ 2 and

(3.1)

min
{

2
p+1

δp+1(0,h1)+
4+2p
p+1

Θ(∞, f ),
2

p+1
δp+1(0,L)+

4+2p
p+1

Θ(∞,L)
}
>

3p+7
p+1

,

(ii) l = 1 and

(3.2)

min
{

5
2p+2

δp+1(0,h1)+
5p+9
2p+2

Θ(∞, f ),
5

2p+2
δp+1(0,L)+

5p+9
2p+2

Θ(∞,L)
}
>

3p+12
2p+2

,

(iii) l = 0 and

(3.3)

min
{

5
p+1

δp+1(0,h1)+
5p+7
p+1

Θ(∞, f ),
5

p+1
δp+1(0,L)+

5p+7
p+1

Θ(∞,L)
}
>

4p+11
p+1

,

then f ≡ L.

Proof. Let

H1 =
h(p)

1
a

, H2 =
L(p)

a
.
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Since h(p)
1 and L(p) share (a, l), it follows that H1, H2 share (1, l) except at the zeros and poles

of a.

Suppose that Ψ 6≡ 0. Now we will consider the cases as below:

Case 1: If 2≤ l ≤ ∞. From (2.5), we obtain

T (r,h(p)
1 )≤ 2N(r,∞;h(p)

1 )+2N(r,∞;L(p))+N(r,0;h(p)
1 )+N(r,0;L(p))(3.4)

+S(r,h1)+S(r,L).

From (2.2) and (3.4), we obtain

(p+1)T (r,h1)≤ (2+ p)N1(r,h1)+(2+ p)N1(r,L)+Np+1

(
r,

1
h1

)
+Np+1

(
r,

1
L

)
+S(r,h1)+S(r,L).

So,

T (r,h1)≤
(

2+ p
p+1

)
N1(r,h1)+

(
2+ p
p+1

)
N1(r,L)+

1
p+1

Np+1

(
r,

1
h1

)
+

1
p+1

Np+1

(
r,

1
L

)
+S(r,h1)+S(r,L).

(3.5)

Similarly,

T (r,L)≤
(

2+ p
p+1

)
N1(r,L)+

(
2+ p
p+1

)
N1(r,h1)+

1
p+1

Np+1

(
r,

1
L

)
+

1
p+1

Np+1

(
r,

1
h1

)
+S(r,L)+S(r,h1).

(3.6)

Now, from (3.5) and (3.6), we obtain

T (r,h1)+T (r,L)≤
(

4+2p
p+1

)
N1(r,h1)+

(
4+2p
p+1

)
N1(r,L)

+
2

p+1
Np+1

(
r,

1
h1

)
+

2
p+1

Np+1

(
r,

1
L

)
+S(r,L)+S(r,h1){

2
p+1

δp+1(0,h1)+

(
4+2p
p+1

)
Θ(∞, f )−

(
3p+7
p+1

)}
T (r,h1)

+

{
2

p+1
δp+1(0,L)+

(
4+2p
p+1

)
Θ(∞,L)−

(
3p+7
p+1

)}
T (r,L)

≤ S(r,h1)+S(r,L),



STUDY OF L-FUNCTION USING WEAKLY WEIGHTED SHARING 7233

which conflicts our assumption (3.1). Therefore Ψ≡ 0 and now from (2.1) we obtain

1
H2−1

=
I1

H1−1
+ I2,

where I1(6= 0) and I2 are constants. This gives

H2 =
(I2 +1)H1 +(I1− I2−1)

I2H1 +(I1− I2)
,(3.7)

H1 =
(I2− I1)H2 +(I1− I2−1)

I2H2 +(I2 +1)
.(3.8)

Next we consider three subcases:

Subcase 1: I2 6= 0,−1. Then from (3.8),

N
(

r,
I2 +1

I2
;H2

)
= N(r,∞;H1).

By using the Second Fundamental Theorem (SFT) of Nevanlinna and (2.2),

T (r,H2)< N(r,∞;H2)+N(r,0;H2)+N
(

r,
I2 +1

I2
;H2

)
+S(r,H2),

T (r,L)≤ 1
(p+1)

N (r,∞; f )+
1

(p+1)
Np+1

(
r,

1
L

)
+N1(r,L)+S(r,h1)(3.9)

+S(r,L).

If I1− I2−1 6= 0, then it follows from (3.7) that

N
(

r,
−I1 + I2 +1

I2 +1
;H1

)
= N(r,0;H2).

Applying SFT of Nevanlinna and (2.2), subsequently we obtain

T (r,H1)< N(r,∞;H1)+N(r,0;H1)+N
(

r,
−I1 + I2 +1

I2 +1
;H1

)
+S(r,H1)

T (r, f )≤ N1(r,h1)+
1

(p+1)
Np+1

(
r,

1
h1

)
+

1
(p+1)

N (r,0;L)(3.10)

+S(r,h1).

From (3.9) and (3.10), we obtain

T (r,h1)+T (r,L)≤ 2
(p+1)

Np+1

(
r,

1
h1

)
+2N1(r,h1)

+
1

(p+1)
Np+1

(
r,

1
L

)
+N1(r,L)+S(r,h1)+S(r,L),
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which again contradicts (3.1).

Therefore I1− I2−1 = 0. Then from (3.7),

N
(

r,0;H1 +
1
I2

)
= N(r,∞;H2).

By applying the SFT of Nevanlinna and (2.2) we have

T (r,H1)< N(r,∞;H1)+N(r,0;H1)+N
(

r,0;H1 +
1
I2

)
+S(r,H1),

(p+1)T (r,h1)≤ N1(r,h1)+ pN1(r,h1)+Np+1

(
r,

1
h1

)
+N1(r,L)

+S(r,h1)+S(r,L).

So

T (r,h1)≤ N1(r,h1)+
1

(p+1)
Np+1

(
r,

1
h1

)
+

1
(p+1)

N1(r,L)(3.11)

+S(r,h1)+S(r,L).

From (3.9) and (3.11) we obtain

T (r,h1)+T (r,L)≤ 1
(p+1)

Np+1

(
r,

1
h1

)
+

(
p+2
p+1

)
N1(r,h1)

+
1

(p+1)
Np+1

(
r,

1
L

)
+

(
2+ p
p+1

)
N1(r,L)

+S(r,h1)+S(r,L),

which violates assumption (3.1).

Subcase 2: I2 =−1. Then from (3.7) and (3.8) we obtain

H2 =
I1

I1 +1−H1
, H1 =

(1+ I1)H2− I1

H2
.

If I1 +1 6= 0, then

N(r, I1 +1;H1) = N(r,∞;H2) , N
(

r,
I1

I1 +1
;H2

)
= N(r,0;H1).

By similar argument as in previous subcase, we arrive at a contradiction. Hence I1 + 1 = 0,

then H1H2 = 1.
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Subcase 3: I2 = 0. Then (3.7) and (3.8) gives H2 = H1+I1−1
I1

and H1 = I1H2 + 1− I1 6=

0, N(r,0; I1− 1+H1) = N(r,0;H2) and N(r, I1−1
I1

;H2) = N(r,0;H1). Proceeding in the same

direction as in Subcase 1 we obtain a paradox. Therefore I1−1 = 0, then H1 = H2.

Case 2: For l = 1, from (2.6) we have

T (r,H1)≤ 2N(r,∞;H1)+2N(r,∞;H2)+N(r,0;H1)+N(r,0;H2)

+NL(r,1;H1)+S(r,H1)+S(r,H2).

Now, by using (2.2) and (2.3), we obtain

T (r,H1)≤ 2N(r,∞;H1)+2N(r,∞;H2)+ pN1(r,h1)+Np+1

(
r,

1
h1

)
+ pN1(r,L)+Np+1

(
r,

1
L

)
+

1
2

N(r,0;H1)+
1
2

N(r,∞;H1)

+S(r,H1)+S(r,H2)

T (r,h1)≤
(

3p+5
2p+2

)
N1(r,h1)+

3
2(p+1)

Np+1

(
r,

1
h1

)
(3.12)

+

(
2+ p
p+1

)
N1(r,L)+

1
(p+1)

Np+1

(
r,

1
L

)
+S(r,h1)+S(r,L).

Likewise,

T (r,L)≤
(

3p+5
2p+2

)
N1(r,L)+

3
2(p+1)

Np+1

(
r,

1
L

)
(3.13)

+

(
2+ p
p+1

)
N1(r,h1)+

1
(p+1)

Np+1

(
r,

1
h1

)
+S(r,h1)+S(r,L).

From (3.12) and (3.13), we obtain

T (r,h1)+T (r,L)≤
(

3p+5
2p+2

)
N1(r,h1)+

3
2(p+1)

Np+1

(
r,

1
h1

)
+

(
2+ p
p+1

)
N1(r,L)

+
1

(p+1)
Np+1

(
r,

1
L

)
+

(
3p+5
2p+2

)
N1(r,L)+

3
2(p+1)

Np+1

(
r,

1
L

)
+

(
2+ p
p+1

)
N1(r,h1)+

1
(p+1)

Np+1

(
r,

1
h1

)
+S(r,h1)+S(r,L),
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2p+2
δp+1(0,h1)+

5p+9
2p+2

Θ(∞, f )− 3p+12
2p+2

}
T (r,h1)

+

{
5

2p+2
δp+1(0,L)+

5p+9
2p+2

Θ(∞,L)− 3p+12
2p+2

}
T (r,L)

≤ S(r,h1)+S(r,g),

that conflicts with our assumption (3.2). Following the procedure of case (i), we obtain the

result for this case.

Case 3: l = 0. Now, from (2.7), we have

T (r,H1)≤ 2N(r,∞;H1)+2N(r,∞;H2)+N(r,0;H1)+N(r,0;H2)(3.14)

+2NL(r,1;H1)+NL(r,1;H2)+S(r,H1)+S(r,H2).

Using (2.2), (2.4) and (3.14) we obtain

T (r,h1)≤
4p+5
p+1

N1(r,h1)+
4

p+1
Np+1

(
r,

1
h1

)
+

2+ p
p+1

N1(r,L)(3.15)

+
1

p+1
Np+1

(
r,

1
L

)
+S(r,h1)+S(r,L).

Similarly,

T (r,L)≤ 4p+5
p+1

N1(r,L)+
4

p+1
Np+1

(
r,

1
L

)
+

2+ p
p+1

N1(r,h1)

+
1

p+1
Np+1

(
r,

1
h1

)
+S(r,h1)+S(r,L).

(3.16)

From (3.15) and (3.16), we obtain

T (r,h1)+T (r,L)≤ 4p+5
p+1

N1(r,h1)+
4

p+1
Np+1

(
r,

1
h1

)
+

2+ p
p+1

N1(r,L)

+
1

p+1
Np+1

(
r,

1
L

)
+

4p+5
p+1

N1(r,L)+
4

p+1
Np+1

(
r,

1
L

)
+

2+ p
p+1

N1(r,h1)+
1

p+1
Np+1

(
r,

1
h1

)
+S(r,h1)+S(r,L)
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5

p+1
δp+1(0,h1)+

(
5p+7
p+1

)
Θ(∞, f )− 4p+11

p+1

}
T (r,h1)

+

{
5

p+1
δp+1(0,L)+

(
5p+7
p+1

)
Θ(∞,L)− 4p+11

p+1

}
T (r,L)

≤ S(r,h1)+S(r,L),

that conflicts with our assumption (3.3).

We obtain the requisite inference for this case in the same way as in Case 1. �
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