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Abstract. Let G = (V,E) be a graph. A set S ⊆ E(G) is called an edge hop dominating set if S = E(G) or for

every g ∈ E(G)\S, there exists h ∈ S such that d(g,h) = 1. The minimum cardinality of an edge hop domination

set of G is called the edge hop domination number of G is denoted by γeh(G). The edge hop domination number

of some standard graphs are determined. It is proved that for any two connected graphs H and K of orders n1 and

n2 respectively, γeh(H +K) = 3. Also it is proved that for any two connected graphs of sizes m1 ≥ 3 and m2 ≥ 3

respectively, γeh(H ◦K)≤ m1.
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1. INTRODUCTION

For notation and graph theory terminology we in general,follow [6,8]. Specifically, let

G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|. Let v be

a vertex in V (G). Then the open neighborhood of v is the set N(v) = {u ∈V (G)/uv ∈ E}, and

the closed neighborhood of v is N[v] = {v}∪N(v). The degree of a vertex v is deg(v) = |N(v)|.
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If e = {u,v} is an edge of a graph G with deg(u) = 1 and deg(v)> 1, then e is called a pendant

edge or end edge, u is a leaf or end vertex and v is a support vertex of u. A vertex of degree

n−1 is called a universal vertex.

The distance d(u,v) between two vertices u and v in a connected graph G is the length

of a shortest u-v path in G. A u-v path of length d(u,v) is called a u-v geodesic. A vertex x is said

to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. The eccentricity

e(v) of a vertex v in G is the maximum distance from v and a vertex of G. e(v) = max{d(v,u) :

u ∈V (G)}. The minimum eccentricity among the vertices of G is the radius, radG or r(G) and

the maximum eccentricity is its diameter, diamG. We denote rad(G) by r and diamG by d.

Two vertices u and v of G are antipodal if d(u,v) = diamG or d(G). A double star is a tree with

diameter 3. It is denoted by K2,n,m. The vertex set of K2,n,m, where uv is the internal edge of

K2,n,m. Therefore K2,n,m = K1,n∪K1,m∪{uv}, where the centre vertex of K1,n is u and the centre

vertex of K1,m is v. The distance concepts has applications in social network. For example if

one is locating an emergency facility like police station, fire station, hospital, school, college,

library, ambulance depot, emergency care center, etc., then the primary aim is to minimize the

distance between the facility and the location of a possible emergency. For edges e, f ∈ E(G),

the distance d(e, f ) is defined as d(e, f ) = min{d(x,y) : x is an end edge of e and y is an end

edge of f . A x-y path of length d(e, f ) is called an e- f geodesic joining the edges e and f . If e

and f are adjacent if and only if d(e, f ) = 0 and if e and f has a common edge, then d(e, f ) = 1.

Wn = K1+Cn−1 is called wheel graph. We denote V (Cn−1) = {v1,v2, ...,vn−1}. The helm graph

Hn is a graph obtained from a wheel graph by attaching a pendent edge at each vertex of the

cycle Cn−1. Denote the pendent vertices of Hn by {u1,u2, ...,un−1}. A sunflower graph SFn is

the graph obtained from helm graph by introducing the edges uivi+1 (1≤ i≤ n−2) and un−1v1.

The triangular book with n pages is defined as n copies of cycle C3 sharing a common edge. The

common edge is called the base of the book. A quadrilateral book consists of r quadrilaterals

sharing a common edge uv. That is, it is a cartesian product of a star and a single edge. It is

denoted by Qr,2. A banana tree graph is obtained by connecting one leaf of each of copies of a

star graph with a single root vertex that is distinct from all the stars.
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A set D ⊆ V (G) is a dominating set of G if every vertex v ∈ V (G) \D is adjacent to

some vertex in D. A dominating set D is said to be minimal if no subset of D is a dominating

set of G. The minimum cardinality of a minimal dominating set of G is called the domination

number of G and is denoted by γ(G). The domination number of a graph was studied in [4,5,7,9-

11,16-19]. A set S⊆V (G) of a graph G is a hop dominating set of G if for every v ∈V (G)\S,

there exists u ∈ S such that d(u,v) = 2. The minimum cardinality of a hop dominating set of G

is called the hop domination number and is denoted by γh(G). Any hop dominating set of order

γh(G) is called γh-set of G. The hop domination number of a graph was studied in [1-3,12-

14]. The join G+H of two graphs G and H is the graph with V (G+H) = V (G)∪V (H) and

E(G+H) = E(G)∪E(H)∪{uv : u ∈ V (G),v ∈ V (H)}. The corona product K ◦H is defined

as the graph obtained from K and H by taking one copy of K and |V (K)| copies of H and

then joining by an edge, all the vertices from the ith-copy of H to the ith-vertex of K, where

i = 1,2, ..., |V (H)|. The join and corona concept was studied in [15]. In this paper, we introduce

the concept of the edge hop domination number of a graph. Hop dominating concept have

interesting application in social network. If we apply edge hop dominating concept in the social

network then the effectiveness can be increased.

2. THE EDGE HOP DOMINATION NUMBER OF A GRAPH

Definition 2.1. Let G = (V,E) be a graph. A set S⊆ E(G) is called an edge hop dominating set

if S = E(G) or for every g ∈ E(G) \ S, there exists h ∈ S such that d(g,h) = 1. The minimum

cardinality of an edge hop domination set of G is called the edge hop domination number of G

is denoted by γeh(G).

Example 2.2. For the graph G given in Figure 2.1, S = {v1v2,v2v3,v5v6} is a γeh-set of G so

that γeh(G) = 3.
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Remark 2.3. There can be more than one γeh-sets of G. For the graph G given in Figure 2.1, S1

= {v2v4,v2v7,v4v7}, S2 = {v4v5,v4v7,v5v7}, S3 = {v1v2,v2v4,v4v5}, S4 = {v1v2,v2v7,v5v7}, S5

= {v2v3,v2v7,v5v7}, S6 = {v2v3,v2v4,v4v5}, S7 = {v2v7,v5v6,v5v7}, S8 = {v2v4,v4v5,v5v6} are

the γeh-sets of G such that γeh(Si) = 3 for all i (1≤ i≤ 8).

Theorem 2.4. For every connected graph G of size m≥ 2, 2≤ γeh(G)≤ m.

Proof. Since any edge hop dominating set of G contains at least two edges, γeh(G) ≥ 2. Since

E(G) is an edge hop dominating set of G, γeh(G)≤ m. Thus 2≤ γeh(G)≤ m. �

Remark 2.5. The bound in Theorem 2.4 is sharp. For the graph G = P4, γeh(G) = 2 and for

G = K1,m, γeh(G) = m. Also the bound in Theorem 2.4 can be strict. For the graph G given in

Figure 2.1, γeh(G) = 3. Thus 2 < γeh(G)< m.

Theorem 2.6. For the complete graph G = Kn (n≥ 3), γeh(G) = 3.

Proof. Let V = {v1,v2, ...,vn} be the vertex set of G. Let S1 = {v1v2,v2v3,v1v3}. Then S1 is an

edge hop dominating set of G so that γeh(G) ≤ 3. We prove that γeh(G) = 3. On the contrary,

suppose that γeh(G) = 2. Let S
′
= { f ,h} be a γeh-set of G. Since G is complete, g ∈ E \S

′
such

that g is adjacent to both f and h. Then d(g, f ) = d(g,h) = 0, which is a contradiction to S
′

a

γeh-set of G. Therefore γeh(G) = 3. �

Theorem 2.7. For the complete bipartite graph G = Kr,s (1≤ r ≤ s), γeh(G) =


s i f r= 1

r otherwise

Proof. If r = 1, then S = E is the unique γeh-set of G so that γeh(G) = s. So, let 2 ≤ r ≤

s. Let U = {u1,u2, ...,ur} and W = {w1,w2, ...,ws} are the two bipartite sets of G. Let S =

{w1u1,w1u2, ...,w1ur}. Then S is an edge hop dominating set of G and so γeh(G)≤ r. We prove

that γeh(G) = r. On the contrary, suppose that γeh(G)≤ r−1. Then there exists a γeh-set S′ of G

such that |S′| ≤ r−1. Let g∈ E \S
′
. Then g is not adjacent to any edge of S

′
. Let g = uw. where

u ∈U and w ∈W . Then u and w are adjacent to elements of V (S
′
). Let g1 = ux and g2 = wy

such that g1,g2 6∈ S
′
, where x,y ∈ S

′
. Then d(h1,g1) = d(h2,g2) = 0 for h1,h2 ∈ S

′
, which is a

contradiction to S
′
a γeh-set of G. Therefore γeh(G) = r. �
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Theorem 2.8. For the cycle G = Cn (n ≥ 3), γeh(G) =

2 if n = 4, 5

3 if n = 3

2r if n = 6r

2r+1 if n = 6r+1 or 6r+3

2r+2 if n = 6r+2 or 6r+4 or 6r+5 ; r ≥ 1

Proof. Let G =Cn be v1,v2,v3, ...,vn,v1.

Case 1:

Case 1a: n = 4. Then S1 = {v1v2,v2v3}, S2 = {v2v3,v3v4}, S3 = {v3v4,v1v4} and S4 =

{v1v2,v1v4} are the only minimum edge hop dominating sets of G so that γeh(G) = 2.

Case 1b: n = 5. Then S1 = {v1v2,v2v3}, S2 = {v2v3,v3v4}, S3 = {v3v4,v4v5}, S4 = {v1v5,v4v5}

and S5 = {v1v2,v1v5} are the only minimum edge hop dominating sets of G and so γeh(G) = 2.

Case 2: n = 3. Then S1 = {v1v2,v2v3,v1v3} is the unique edge hop dominating set of G and so

γeh(G) = 3.

Case 3: n = 6r. Let S = {v1v2,v4v5, ...,v6r−5v6r−4,v6r−2v6r−1}. Then S is an edge hop domi-

nating set of G so that γeh(G) ≤| S |= 2r. We prove that γeh(G) = 2r. If r = 1, then the result

is obvious. So, let r ≥ 2. On the contrary, suppose that γeh(G) ≤ 2r− 1. Then there exists a

γeh-set S′ of G such that |S′| ≤ 2r−1. Hence there exists g ∈ E \S
′
such that d(g,h)≥ 1, where

h ∈ S
′
. Therefore S

′
is not an edge hop dominating set of G, which is a contradiction.

Case 4:

Case 4a: n = 6r + 1. Let Y = S∪{v6r−1v6r}. Then as in Case 3. We can prove that Y is a

γeh-set of G so that γeh(G) = 2r+1.

Case 4b: n = 6r+ 3. Let T = S∪{v6r+1v6r+2}. Then as in Case 3. We can prove that T is a

γeh-set of G so that γeh(G) = 2r+1.

Case 5:

Case 5a: n = 6r + 2. Let T
′
= T ∪{v1v6r+2}. Then as in Case 3, we can prove that T

′
is a

γeh-set of G so that γeh(G) = 2r+2.



THE EDGE HOP DOMINATION NUMBER OF A GRAPH 7445

Case 5b: n = 6r + 4. Let W = T ∪{v1v6r+4}. Then as in Case 3, we can prove that W is a

γeh-set of G so that γeh(G) = 2r+2.

Case 5b: n = 6r+ 5. Let X = {v1v2,v7v8, ...,v6r+1v6r+2}∪{v2v3,v8v9, ...,v6r+2v6r+3}. Then

as in Case 3, we can prove that X is a γeh-set of G so that γeh(G) = 2r+2. �

Theorem 2.9. For the path G = Pn (n ≥ 3), γeh(G) =

2 if n = 3 or 4 or 5

2r if n = 6r or 6r+1

2r+1 if n = 6r+2

2r+2 if n = 6r+3 or 6r+4 or 6r+5; r ≥ 1

Proof. Let G = Pn be v1,v2,v3, ...,vn.

Case 1:

Case 1a: n = 3. Then S = {v1v2,v2v3} is the unique minimum edge hop dominating set of G

and so γeh(G) = 2.

Case 1b: n = 4. Then S1 = {v1v2,v2v3} and S2 = {v2v3,v3v4} are the only minimum edge hop

dominating sets of G and so γeh(G) = 2.

Case 1c: n = 5. Then S1 = {v1v2,v2v3}, S2 = {v2v3,v3v4}, S1 = {v1v2,v4v5} and S4 =

{v3v4,v4v5} are the only minimum edge hop dominating sets of G and so γeh(G) = 2.

Case 2: n = 6r or 6r+ 1. Let S = {v3v4,v9v10, ...,v6r−3v6r−2}∪{v4v5,v10v11, ...,v6r−2v6r−1}.

Then S is an edge hop dominating set of G and so γeh(G) ≤ 2r. We prove that γeh(G) = 2r.

If r = 1, then result is obvious. So, let r ≥ 2. On the contrary, suppose that γeh(G) ≤ 2r− 1.

Then there exists a γeh-set S
′

of G such that |S′| ≤ 2r− 1. Hence there exists g ∈ E \ S
′

such

that d(g,h)≥ 1, where h ∈ S
′
. Therefore S

′
is not an edge hop dominating set of G, which is a

contradiction.

Case 3: n = 6r+2. Let T = {v1v2,v4v5,v7v8, ...,v6r+1v6r+2}. Then as in Case 2, we can prove

that T is a γeh-set of G so that γeh(G) = 2r+1.

Case 4:

Case 4a: n = 6r+ 3 or 6r+ 4. Let T
′
= T ∪{v6r+2v6r+3}. Then as in Case 2. We can prove

that T
′
is a γeh-set of G so that γeh(G) = 2r+2.
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Case 4b: n = 6r+5. Let W = T ∪{v6r+4v6r+5}. Then as in Case 2. We can prove that W is a

γeh-set of G so that γeh(G) = 2r+2. �

Theorem 2.10. For the wheel G =Wn (n≥ 4), γeh(G) = =


2 if n = 7

3 otherwise

Proof. Let V (K1) = {u} and V (Cn−1) = {v1,v2, ...,vn−1}.

Case 1: n = 7. Then S1 = {v1v2,v4v5}, S2 = {v2v3,v5v6} and S3 = {v3v4,v1v6} are the γeh-sets

of G so that γeh(G) = 2.

Case 2:

Case 2a: n = 4. Then G = K4. By Theorem 2.6, γeh(G) = 3.

Case 2b: n = 5 or 6. Then S4 = {uv1,v1v2,uv2} is the γeh-set of G so that γeh(G) = 3.

Case 2c: n≥ 8. Then S5 = {uv1,uv2,v1v2} is an edge hop dominating set of G so that γeh(G)≤

3. We prove that γeh(G) = 3. On the contrary, suppose that γeh(G) = 2. Let S
′
= { f ,g} be

a γeh-set of G. First assume that f and g are adjacent. If f ,g ∈ E(Cn−1) then without loss of

generality, let us assume that f = v1v2 and g = v2v3. Since u is adjacent to each vertex of G,

then d(v1v2,uv2) = d(v2v3,uv2) = 0, which is a contradiction. Next we assume that f and g are

non-adjacent. If f ∈ E(Cn−1) and g 6∈ E(Cn−1), then without loss of generality let us assume

that f = v1v2 and g = uv3. This implies d(uv1,v1v2) = d(uv3,uv1) = 0 which is a contradiction,

S
′
a γeh-set of G. Therefore γeh(G) = 3. �

Theorem 2.11. Let G = K2,m,n be a double star. Then γeh(G) = =


2 if n = 1 or m = 1

3 otherwise

Proof. Let V (G) = {u,v}∪{u1,u2, ...,un}∪{v1,v2, ...,vm}.

Case 1:

Case 1a: n = 1. Then S = {u1u,uv} is the unique minimum edge hop dominating set of G and

so γeh(G) = 2.

Case 1b: m = 1. Then S = {uv,vv1} is the unique minimum edge hop dominating set of G and

so γeh(G) = 2.

Case 2: n≥ 2 and m≥ 2. Let S = {uu1,vv1}. Then S is an edge hop dominating set of G so that

γeh(G)≤ 3. We prove that γeh(G) = 3. On the contrary, suppose that γeh(G) = 2. Let S
′
= { f ,g}



THE EDGE HOP DOMINATION NUMBER OF A GRAPH 7447

be a γeh-set of G. First assume that f and g are adjacent. Without loss of generality, let us assume

that f = uu1 and g = uv. This implies d(uv,vv1) = 0, which is a contradiction. Next assume that

f and g are non-adjacent. Without loss of generality, let us assume that f = uu1 and g = vv1.

This implies d(uu1,uv) = d(uv,vv1) = 0 which is a contradiction, S
′

a γeh-set of G. Therefore

γeh(G) = 3. �

Theorem 2.12. For the helm graph G = Hn (n≥ 3), γeh(G) = 3.

Proof. Let x be the central vertex of G and v1,v2, ...,vn−1,v1 be the cycle. Let

{u1v1,u2v2, ...,un−1vn−1} be the set of all end edges of G. Let S = {xv1,v1v2,xv2}. Then S

is an edge hop dominating set of G so that γeh(G) ≤ 3. We prove that γeh(G) = 3. On the

contrary, suppose that γeh(G) = 2. Then there exists a γeh-set S
′

of G such that S
′
= {e, f}.

Suppose that e and f are adjacent. Then there exist at least one edge h ∈ E(G)\S
′

such that h

is incident with exactly one vertex of V (S
′
). Hence it follows that d(e,h) = 0 and d( f ,h) = 0,

which is a contradiction. Suppose that e and h are not adjacent. Then there exists at least one

edge h
′ ∈ E(G) \ S

′
such that either d(e,h

′
) = d(e, f ) = 0 or d(e,h

′
) = d(e, f ) = 2, which is a

contradiction. Therefore γeh(G) = 3. �

Theorem 2.13. For the sunflower graph G = SFn (n≥ 3), γeh(G) = 3.

Proof. Let S = {uu1,u1u2,u2u}. Then S is an edge hop dominating set of G so that γeh(G) ≤

|S| = 3. We prove that γeh(G) = 3. On the contrary, suppose that γeh(G) = 2. Let S
′
= {g,h}

is a γeh-set of G. First assume that g and h are adjacent. Without loss of generality, let us

assume that g = uu1 and h = u1u2. This implies d(uu1,uu2) = d(u1u2,uu2) = 0, which is

a contradiction. Next assume that g and h are not adjacent. Without loss of generality, let us

assume that g = uu1 and h = v1u2. This implies d(uu1,u1v1) = d(uu1,u1u2) = d(v1u2,uu2) = 0,

which is a contradiction. Therefore γeh(G) = 3. �

Theorem 2.14. For the banana graph G = Bm,n (m≤ n), γeh(G) = m.

Proof. Let u be the central vertex and take m copies of a n-star graph with a single root vertex

that is distinct for all stars. Let S = {uu1,uu2, ...,uum}. Then S is an edge hop dominating

set of G so that γeh(G) ≤ |S| = m. We prove that γeh(G) = m. On the contrary, suppose that
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γeh(G) ≤ m− 1. Then there exists a γeh-set S
′

of G such that | S′ |≤ m− 1. Let g ∈ E \ S
′
.

Then g is not adjacent to any edge of S
′
. Let g1 = ux and g2 = wy such that g1,g2 6∈ S where

x,y ∈ S
′
. Then d(h1,g1) = d(h2,g2) = 0 for h1,h2 ∈ S, which is a contradiction. Therefore

γeh(G) = m. �

Theorem 2.15. For the triangular graph G = K2∨Kn−2 (n≥ 3), γeh(G) = 3.

Proof. Let V (K2) = {x,y} and V (Kn−2) = {v1,v2, ...,vn−2}. Let S = {xy,xv1,yv1}. Then S is an

edge hop dominating set of G so that γeh(G) ≤ 3. We prove that γeh(G) = 3. On the contrary,

suppose that γeh(G) = 2. Then there exists a γeh-set S
′

of G such that | S′ |= 2. Then G[S
′
]

is connected. Hence there exists at least one edge e ∈ E(G) \ S
′

such that d(e, f ) = 0, where

f ∈ S
′
, which is a contradiction. Therefore γeh(G) = 3. �

Theorem 2.16. For the Quadrilateral book graph G = Qn−2,2, γeh(G) = 2.

Proof. Let Pi = ui,vi (1 ≤ i ≤ n− 2) be a copy of path on two vertices. Let V (K2) = {x,y}.

Then the Quadrilateral book graph G = Qn−2,2 is obtained from Pi (1 ≤ i ≤ n− 2) and K2 by

joining x with each ui (1≤ i≤ n−2) and y with each vi (1≤ i≤ n−2). Let S = {xu1,u1v1} be

a γeh-set of G. Then for every e ∈ E(G)\S, there exist f ∈ S such that d(e, f ) = 1. Therefore S

is an edge hop dominating set of G. Hence γeh(G) = 2. �

3. THE EDGE HOP DOMINATION OF JOIN AND CORONA OF GRAPHS

Theorem 3.1. Let H and K be two connected graphs of orders n1 ≥ 2 and n2 ≥ 2 respectively.

Then γeh(H +K) = 3.

Proof. Let V (H +K) = {u1,u2, ...,un1 ,v1,v2, ...,vn2}. Let S = {u1v1,u1u2,u2v1}. Then S is an

edge hop dominating set of H+K so that γeh(H+K)≤ 3. We prove that γeh(H+K) = 3. On the

contrary, suppose that γeh(H +K) = 2. Then there exists a γeh-set S
′
of H +K such that |S′| ≤ 2.

Let S′ = {g,h} be a γeh-set of H +K. Then dH+K(g, f ) = dH+K(h, f ) = 0 for f ∈ E \S′, which

is a contradiction to S′ a γeh-set of H +K. Hence γeh(H +K) = 3. �

Theorem 3.2. Let G = K1,n1 ◦Kn2 n1 ≥ 3 and n2 ≥ 3. Then γeh(G) = n1 +1.



THE EDGE HOP DOMINATION NUMBER OF A GRAPH 7449

Proof. Let V (G) = {x,u1,u2, ...,un1,u1,1,u1,2, ...,u1,n1 ,u2,1,u2,2, ...,u2,n2un1,1,un1,2, ...,

un1,n2,x1,1,x1,2, ...,x1,n2}. Let S = {xu1,xu2, ...,xun,uiui, j}; (1≤ i≤ n1) and (1≤ j≤ n2). Then

S is an edge hop dominating set of G so that γeh(G) ≤ |S| = n1 + 1. We prove that γeh(G) =

n1 + 1. On the contrary, suppose that γeh(G) ≤ n1. Then there exist a γeh-set S
′

of G such that

f ∈ S and f 6∈ S′. First assume that f ∈ {xu1,xu2, ...,xun1}. Without loss of generality, let us

assume f = xu1. Then dG( f ,u ju j+1) = 0 for u ju j+1 ∈ E \S′ (1≤ j≤m−1). Next assume that

f = {uiui, j} for (1 ≤ i ≤ n1) and (1 ≤ j ≤ n2). Without loss of generality, let us assume that

f = u1u1,1. Then dG( f ,xxi, j) = 0 for xxi, j ∈ E \ S′ (1 ≤ i ≤ n1) and (1 ≤ j ≤ n2). Hence S′ is

not a γeh-set of G, which is a contradiction. Therefore γeh(G) = n1 +1. �

Theorem 3.3. Let G = K1,n1 ◦K1 n1 ≥ 3. Then γeh(G) = 2.

Proof. Let V (G) = {x,u1,u2, ...,un1,x1,1,u1,1,u2,1, ...,un1,1}. Let S = {xui,uiui,1} for (1 ≤ i ≤

n1). Then dG(xui,ui+1ui+1,1) = 1 for ui+1ui+1,1 ∈ E \S (1≤ i≤ n1−1) and dG(uiui,1,xui+1) =

dG(uiui,1,xx1,1) = 1 for xui+1,xx1,1 ∈ E \ S (1 ≤ i ≤ n1− 1). Hence S is a γeh-set of G so that

γeh(G) = 2. �

Theorem 3.4. Let G = Pn1 ◦Cn2 n1,n2 ≥ 3. γeh(G) =



3 if n1 = 3

3r if n1 = 4r

3r+1 if n1 = 4r+1

3r+2 if n1 = 4r+2

3r+2 if n1 = 4r+3

Proof. Let V (G) = {u1,u2, ...,un1,u1,1,u1,2, ...,u1,n2,u2,1,u2,2, ...,u2,n2, ...,u2,n2, ...,

un1,1,un1,2, ...,un1,n2}.

Case 1: n1 = 3. Then S = {u1u2,u2u3,u1u1,1} is a γeh-set of G so that γeh(G) = 3.

Case 2: n1 = 4r and r = 1,2,3...

Let S = {u1u2,u5u6, ...,u4r−3u4r−2} ∪ {u2u3,u6u7, ...,u4r−2u4r−1} ∪ {u3u4,u7u8, ...,u4r−1u4r}.

Then S is an edge hop dominating set of G so that γeh(G) ≤ |S| = 3r. We have to prove that

γeh(G) = 3r. On the contrary, suppose that γeh(G) ≤ 3r− 1. Let f be an edge of G such

that f ∈ S and f 6∈ S′. First assume that f ∈ {u1u2,u5u6, ...,u4r−3,u4r−2}. Without loss of
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generality, let us assume f = u1u2. Then dG( f ,u1,iu1,i+1) = 0, (1≤ i≤ n2−1) for u1,iu1,i+1 6∈

E \ S′. Next assume that f = {u2u3,u6u7, ...,u4r−2u4r−1}∪{u3u4,u7u8, ...,u4r−1u4r}. Without

loss of generality, let us assume that f = u2u3. Then dG( f ,u2,iu2,i+1) = 0, (1 ≤ i ≤ n2− 1)

for u2,iu2,i+1 ∈ E \ S′. Therefore S′ is not a γeh-set of G, which is a contradiction. Therefore

γeh(G) = 3r.

Case 3: n1 = 4r+1 and r = 1,2,3...

Let S1 = S∪ {u4ru4r+1}. Then as in Case 2, we can prove that S1 is a γeh-set of G so that

γeh(G) = 3r+1.

Case 4: n1 = 4r+2 and r = 1,2,3...

Let T = S1 ∪{u4r+1u4r+2}. Then as in Case 2, we can prove that T is a γeh-set of G so that

γeh(G) = 3r+2.

Case 5: n1 = 4r+3 and r = 1,2,3...

Let W = T ∪{u4r+2u4r+3}. Then as in Case 2, we can prove that W is a γeh-set of G so that

γeh(G) = 3r+3. �

Theorem 3.5. Let H and K be two connected graphs of sizes m1 ≥ 3 and m2 ≥ 3 respectively.

Then γeh(H ◦K)≤ m1.

Proof. Let G = H ◦K and S = E(H). Let e ∈ E(H)\S. If e is incident with a vertex of H, then

there exists an edge f in H, which is independent of e such that dG(e, f ) = 1. If e is not incident

with a vertex of H. Then there exists f ∈ H such that dG(e, f ) = 1. Therefore S is an edge hop

dominating set of G. Hence γeh(H ◦K)≤ m1. �

Remark 3.6. The bound in Figure 3.5 is sharp. For the graph G = K3 ◦K1, γeh(G) = 3. Thus

γeh(G) = m1 = 3. Also the bound in Theorem 3.5 is srict. For the graph G =C4 ◦P3, γeh(G) = 3

and m1 = 4. Thus γeh(G)< m1.

4. CONCLUSION

In this article we introduced the concept of the edge hop domination number of a connected

graphs of size m≥ 2. It can be further investigated to find out under which conditions the lower

and upper bounds of the edge hop domination number are sharp.
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