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Abstract. In this paper we propose an impulsive predator-prey model with time delays. By applying the con-

tinuation theorem of coincidence degree theory, we establish a better estimation on the difference between the

supremum and infimum of a differentiable piecewise continuous periodic function.
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1. INTRODUCTION

One of the powerful and effective methods on the existence of periodic solutions to periodic

systems is the continuation method, which gives easily verifiable suffient conditions. In [5]

Bazykin proposed the following Predator-prey system.

u′(t) = u(t)
(

a− εu(t)− bv(t)
1+αu(t)

)
v′(t) = v(t)

(
−c+

du(t)
1+αu(t)

−ηv(t)
)(1)
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where u(t),v(t) represents the densities of prey and predator populution respectively where

a,b,c,d,α,η ,ε are positive parameters. System(1) is called Holling Type II predator system

model. It is investigated in [5] for the stability of equilibrium and condimension two bifurca-

tions.The global behavior of system(1) has been discussed by many authors, for example [3],

[16]. In [2] the effects of the periodicity of eco-logical and environmental parameters and time

delays due to gestation and negative feedbacks on the global dynamics of predator-prey systems

with Holling-type-II functional response.

x′1(t) = x1(t)
[
r1(t)−a11(t)x1(t− τ1(t))−

a12(t)x2(t)
1+mx1(t)

]
x′2(t) = x2(t)

[
− r2(t)+

a21(t)x1(t− τ2(t))
1+mx1(t− τ2(t))

−a22(t)x2(t− τ3(t))
](2)

where a11,a12,a21,a12,τ are continous ω-periodic functions τ1,τ3 ≥ 0 denote the time delays

due to negative feedbacks of the prey and the predator populationτ2 is a time delay due to ges-

tation that is mature adult predators can only contribute to the reproduction of predator biomass

a11(t),a22(t) are the intra-specific rates of the prey and the predator respectively,a1is the cap-

turing rate of predator a22(t)/a12(t) is the conversion rate of nutrients into the reproduction of

the predator.Time delays due to gestation is acommon example, the consumption of prey by the

predator throughtout its past history governs the present birth rate of predator.[1, 2, 5, 7, 13]. It is

well known from the fundamental theory of impulsive differential equations [4, 6, 9, 10, 11, 12]

that the system (2) has a unique solution.

In this paper we shall consider (2)with impulsive effects.Precisely, we consider the following

delayed impulsive system

x′1(t) = x1(t)[r1(t)−a11(t)x1(t− τ1(t))−
a12(t)x2(t)
1+mx1(t)

]

x′2(t) = x2(t)[−r2(t)+
a21(t)x1(t− τ2(t))
1+mx1(t− τ2(t))

−a22(t)x2(t− τ3(t))]

∆x1(t) = x1(t+)− x1(t) = d1kx1(t); t = tk

∆x2(t) = x2(t+)− x2(t) = d2kx1(t); t = tk

(3)

where the assumptions are the same as in (2),d1k,d2k ∈ (−1,0](k ∈ N), tk is a strictly increasing

sequence with t1 > 0 and limk→∞ and assume that d1(k+q) = d1k,d2(k+q) = d2k,tk+q = tk +ω for

k ∈ N.
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In the next section , by using the continuation theorem of coincidence degree theory, we dis-

cuss the existence of positive ω-periodic solutions of system(3)and in section [3] the uniqueness

and global stability of the positive ω-periodic solutions of system(3).

2. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

In this section, we prove the existence of solutions of periodic solution. For the reader’s

convenience, we provide some notations and definitions and also we first prepare the functional

analytic settings:

Let PCω be the space of all functions φ such that φ left continuous at all points, φ is right

continuous at t 6= tk, limt→t+k
φ(t) exists and φ(t +ω) = φ(t),PC′ω the space of all functions

φ ∈ PCω which are continuously differentiable at t 6= tk,, limt→t−k
exists and limt→t+k

φ ′(t) and

limt→t−k
φ(t) exist, k ∈ Z+.

Let X ,Z be normed linear spaces, L : Dom L ⊂ X → Z be a linear transformation, and N :

X → Z be a continous functionn. The map L is knows as a Fredholm map of index zero if

dimKer L= codim Im L<+∞ and Im L is closed in Z. If L is a Fredholm mapping of index zero

there exist continuous projectors P : X → X , and Q : Y → Y such that Im P = Ker L,Ker Q =

Im L= Im (I−Q). This implies that the restriction L|p of L to Dom L∩Ker P : (I−P)X→ Im L

is invertible. The inverse of LP is denoted by KP. If Ω is an open bounded subset of X , the

mapping N will be called L-compact on Ω if QN(Ω) is bounded and KP(I−Q)N : Ω→ X is

compact. Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im A→ Ker L.

We will make some notations and defintions which will be used in the proof of the main

theorem

d1 = ∑
n
k=1 log(1+d1k) d2 = ∑

n
k=1 log(1+d2k)

f̄ =
1
ω

∫
ω

0
f (t)dt

f L = supt∈[0,ω] | f (t)| f M = inft∈[0,ω] | f (t)|

Definition 2.1. The set F ⊂ PCω is said to be equicontinuous if for any ε > 0 there exists a δ >

0 such that u ∈F ,k ∈ Z+, t ′andt” ∈ (tk−1, tk]∩ [0,ω] and |t ′− t”|< δ , then |u′(t ′)−u(t”)|< ε.
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Lemma 2.2. [15] The set F ⊂ PCω is relatively compact if and only if

(i) F is bounded, that is, ‖u‖= supt∈[0,ω] ‖u(t)‖ ≤M for each u ∈F ;

(ii) F is quasi-equicontinuous.

Our existence theorem for periodic solution of the equation (2) is proved with the help of the

following theorem of Gaines and Mawhin [8]

Theorem 2.3. Let L be a Fredholm mapping of index zero and N be L-compact on Ω. Suppose

that

(i) for each λ ∈ (0,1),every solution x of Lx 6= λNx is such thatx /∈Ω;

(ii) for each λ ∈ ∂Ω∩KerL,QNx 6= 0;

(iii) deg{JQN,Ω∩KerL,0} 6= 0.

Then Lx = Nx has atleast one solution lying in Dom L∩Ω.

Theorem 2.4. The system (2) has atleast one positive ω-periodic solution provided that

(A1) (r1 +d1)(a21−m(r2 +d2))− (a11)(r2 +d2)e(2(r1ω+d1)) > 0

Proof. Let x1(t) = eu1(t),x2(t) = eu2(t). Then we obtain the following equivalent system:

u′1(t) =

[
r1(t)−a11(t)eu1(t−τ1(t))− a12(t)eu2(t)

1+mu1(t)

]

u′2(t) =

[
−r2(t)+

a21(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))
−a22(t)eu2(t−τ3(t))

]

∆u1(t) = log(1+d1k)

∆u2(t) = log(1+d2k)

(4)

It is easy to see that if system (4) has one ω-Periodic solution (u∗1(t),u
∗
2(t)) then the corre-

sponding x∗(t) = (x∗1(t),x
∗
2(t))

T is a periodic solution of (3). Therefore, to complete proof, it

suffices to show that the system (4) has atleast one ω periodic solution.
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Let

X = {u = (u1,u2)
T ∈ PCω([0,ω],R2) : ui(t +ω) = ui(t), i = 1,2},Z = X×R2(q+1).

Let us define

‖u‖= max
t∈[0,ω]

|u1(t)|+ max
t∈[0,ω]

|u2(t)|,

and for any (u,η) ∈ Z

‖(u,η)‖= ‖u‖+
2(q+1)

∑
j=1
|η j|.

Then X and Z are Banach spaces. Set L :Dom L∩X → Z,L(u) = (u′(t),∆u(tk)
q
k=1),

where

Dom L = {u = (u1,u2)
T ∈ PCω(R,R2) : ui ∈ PCω , i = 1,2}.

and N : X → Z,

N

u1

u2

=


 r1(t)−a11(t)eu1(t−τ1(t))− a12(t)eu2(t)

1+meu1(t)

−r2(t)+
a21(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))
−a22eu2(t−τ3(t))

 ,


log(1+d1k)

log(1+d2k)


q

k=1

 .

P : X → X , P((u1,u2)
T ) = (u1,u2)

T and Q : Z→ Z,

Q

u1

u2

 ,


mk

nk


q

k=1

=




1
ω

ω∫
0

u1(t)dt + 1
ω

q

∑
k=1

mk

1
ω

ω∫
0

u2(t)dt + 1
ω

q

∑
k=1

nk

 ,


0

0


q

k=1

 .

It is easy to see that

KerL =

{
u = (u1,u2)

T ∈ X : ∃ c ∈ R2, (u1(t),u2(t)) = c, for t ∈ R
}
.

ImL =

{
y = (u,η1,η2, . . .η2q) ∈ Y : ∃ u ∈ DomL,

ω∫
0

u(s)ds+
2q

∑
k=1

ηk = 0
}
.

Since Im L is closed in Y and dimker L = codimIm L = 2,L is a Fredholm mapping of index

zero. Moreover, the generalized inverse (to L) Kp : Im L→ Ker P∩Dom L is

KP(u) =
t∫

0

u(s)ds+ ∑
0<tk<t

ηk−
1
ω

ω∫
0

t∫
0

u(s)dsdt−
2q

∑
k=1

ηk.
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Then direct computation gives us

QN

u1

u2

=


1
ω

ω∫
0

[
(r1(t)−a11(t))eu1(t−τ1(t))− a12(t)eu2(t)

1+meu1(t)

]
dt + 1

ω

q

∑
k=1

log(1+d1k)

1
ω

ω∫
0

[
− r2(t)

a21(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))

]
dt + 1

ω

q

∑
k=1

log(1+d2k)

 ,


0

0


q

k=1

and

Kp(I−Q)N

u1

u2



=


t∫

0

[
r1(s)−a11(s)eu1(s−τ1(s))− a11(s)eu2(s)

1+meu1(s)

]
ds+ ∑

o<tk<t
log(1+d1k)

t∫
0

[
− r2(s)+

a12(s)eu1(s−τ2(s))

1+meu1(s−τ2(s))
−a22eu2(s−τ3(s))

]
ds+

n

∑
k=1

log(1+d2k)



−


1
ω

ω∫
0

t∫
0

[
r1(s)−a11(s)eu1(s−τ1(s))− a12(s)eu2(s)

1+meu1(s)

]
dt +

n

∑
k=1

log(1+d1k)

1
ω

ω∫
0

t∫
0

[
− r2(s)+

a12(s)eu1(s−τ2(s))

1+meu1(s−τ2(s))
−a22eu2(s−τ3(s))

]
dsdt +

n

∑
k=1

log(1+d2k)



−


(

t
ω
− 1

2
)

ω∫
0

[
r1(t)−a11(t)eu1(t−τ1(t))− a11(t)eu2(t)

1+meu1(t)

]
dt +

n

∑
k=1

log(1+d1k)

(
t
ω
− 1

2
)

ω∫
0

[
− r2(t)+

a21(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))
−a22eu

2(t− τ3(t))
]
dt +

n

∑
k=1

log(1+d2k)

 .

Clearly, QN and Kp(I−Q)N are continuous. Furthermore, it follows from Lemma 2.2 that

QN(Ω) and Kp(I−Q)N(Ω) are relatively compact for any open bounded set Ω⊂ X . Therefore,

N is L- compact on Ω for any open bounded set Ω ⊂ X . In the following, we consider the

operator equation Lu = λNu, λ ∈ (0,1), that is,

u′1(t) = λ

[
r1(t)−a11(t)eu1(t−τ1(t))− a12(t)eu2(t)

1+meu1(t)

]
, t 6= tk,

u′2(t) = λ

[
− r2(t)+

a21(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))
−a22(t)eu2(t−τ3(t))

]
, t 6= tk,

∆u1(t) = λ [log(1+d1k)],

∆u2(t) = λ [log(1+d2k)].

(5)
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Integration of both sides of the system (5) from 0 to ω gives

ω(r1)+d1 =

ω∫
0

[
a11eu1(t−τ1(t))+

a12(t)eu2(t)

1+meu1(t)

]
dt.

ω(r2)+d2 =

ω∫
0

[
a21(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))
−a22(t)eu2(t−τ3(t))

]
dt.

(6)

It follows from the first equation of (5) that∫
ω

0
|u′1(t)|dt <

∫
ω

0

[
r1(t)+a11(t)eu1(t−τ1(t))+

a12(t)eu2(t)

1+meu1(t)

]
dt

= 2(r1ω +d1)∫
ω

0
|u′2(t)|dt <

∫
ω

0

[
r2(t)+

a21(t)eu1(t)

1+meu1(t−τ2(t))
−a22(t)eu2(t−τ3(t))

]
dt

Since (u1,u2)
T ∈ X , there exists εi,ηi ∈ [0,ω], i = 1,2 such that

u(ξ1) = min
t∈[0,ω]

u1(t) u(η1) = max
t∈[0,ω]

u1(t)

v(ξ2) = min
t∈[0,ω]

u2(t) u(η2) = max
t∈[0,ω]

u2(t)
(7)

It follow from (5) and (7) that∫
ω

0
a11(t)eu1(t−τ1(t))dt < r1ω +d1(8)

which gives

u1(ε1)< ln
(r1)+d

a11

u1(t)≤ u1(ε1)+
∫

ω

0
|u′1(t)|dt

< ln
r̄1 +d1

a11
+2(r̄1ω +d1)

(9)

It follows from the second equation of (5) and (7) that

∫
ω

0
a22(t)eu2(t−τ3(t))dt ≤

∫
ω

0
a21(t)

eu2(t−τ2(t))

1+meu2(t−τ2(t)
dt ≤ a21ω +d2

m

which implies that

u2(t)≤ u2(ε2)+
∫

ω

0
|u′2(t)|dt < ln

[ ā22

mā23
+d2

]
+2
[ ā21ω

d2

]
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u2(ε2)≤ ln
(ā21)

mā22
+d2.(10)

On the other hand, (5) yields that∫
ω

0
a21(t)eu1(t−τ2(t))dt ≥ r̄2ω +d2,(11)

implying that

u1(η1)≥ ln
r̄2ω +d2

a21
.(12)

We derive from (11) and (12) that

u1(t)≥ u1(η1)−
∫

ω

0
|u′1(t)|dt ≥ ln

r̄2 +d2

a21
−2(r̄1ω +d2)(13)

which together with (9) gives

max
t∈[0,ω]

|u1(t)|< max | ln r̄1 +d1

a11
+2(r̄1ω +d1)|, | ln

r̄2 +d1

a11
+2(r̄1ω +d2)| :

= H1

(14)

Once again from the second equation of (5)∫
ω

0
eu2(t−τ3(t))dt =

∫
ω

0

a22(t)eu1(t−τ2(t))

1+meu1(t−τ2(t))
dt−

∫
ω

0
r2(t)dt−d2

≥ ā21ωeu1(ε1)

1+meu1(ε1)
− r̄2ω−d2

(15)

which implies

ā22(1+meu1(ε1))eu2(η2) ≥ (ā21)−m(r̄2−d2)eu1(ε1)− r̄2−d2.(16)

Therefore

u1(η1)≤ u1(ε1)+
∫

ω

0
|u′1(t)|dt

< u1(ε1)+2(r̄1ω +d1)

r̄1 +
d1

ω
≤ ā11eu1(η1)+ ā12eu2(η2).

(17)

We derive from (16) that

(18) ā22(1+meu1(ε1))eu2(η2) ≥ (ā21−m(r̄2−d2))(r̄1 +d1− ā12eu2(η2))

ā11e2(r1ω+d1)

which together with (2.9) implies
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u2(t)≥ u(η2)≥ ln
(r̄1 +d1)(ā21−m(r̄2−d2))− ā11(r̄2 +d2− e2(r̄1ω+d1))

ā11ā22e2(r̄1ω+d1)(1+m(r̄1 +d1))e(2r̄1ω + d1
ā11

)

+ ā21−m(r̄1−d2)+ ā12(ā21−m(r̄2 +d1))

(19)

Hence, by (19) we obtain the inequality

u2(t)≥ u2(η2)−
∫

ω

0
|u′2(t)|dt

> ln
(r̄1 +d1)(ā21−m(r̄2 +d2))−a11(r̄2 +d2)e2(r̄1ω+d1)

ā11ā22e2(r̄1ω+d1)(1+(m(r̄1 +d1)))e
2(r̄1ω+

d1
ā11

)
− (2

ā21ω

m
+d2)

(20)

which together with (10) leads to

max
t∈[0,ω]

∣∣∣u2(t)
∣∣∣< max

(∣∣∣ ln ā21

mā22

∣∣∣+ 2ā21ω

m
,
∣∣∣

ln
(r̄1 +d1)(ā21−m(r̄2 +d1))− ā11(r̄2 +d2)e2(r̄1ω+d1)

ā11ā22(e2(r̄1ω+d1))(1+m(r̄1 +d1))e2( r̄1ω+d1
ā11

)+ ā22−m(r̄2 +d2)

∣∣∣
+2

ā21ω

m
+d2

)
:= H2

(21)

Clearly,H1,H2 in (14) and (21) are independent ofλ . Denote H = H1 +H2 +H0. whereH0 is

taken sufficiently latge such that each solution (α∗,β ∗) of the following algebraic equations

d̄1

ω
+ r1− ā11eα − ā12eβ

1+meα
= 0

−r̄2 +
d2

ω
+

ā21eα

1+meα
− ā22eβ = 0

(22)

satisfies

||(α∗,β ∗)T || = |α∗|+ |β ∗|< H(23)

if it exits and the following

max

[∣∣∣ ln r̄1 +d1

ā11

∣∣∣, ∣∣∣ ln r̄2 +d2

ā21

∣∣∣]

+max
[∣∣∣ ln ā21

mā22

∣∣∣, ∣∣∣ ln (r̄1 +d1)(ā21−m(r̄2 +d2)− ā11(r̄2 +d2))

ā11ā22(1+m r̄1+d1
ā11

+ ā12(ā21−m(r̄2 +d2)))

∣∣∣]
< H.

(24)
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We now take Ω = (u1(t),u2(t))T ∈ X : ||(u1,u2)
T ||< H. This satifies the condition (a) in

Thoerem 2.3. When (u1(t),u2(t))T ∈ ∂Ω∩KerL = ∂Ω∩R2,(u1,u2)
T is a constant vector inR2

with |u1|+ |u2|= H. If (22) has atleast one solution, then

QN
[u1

u2

 ,


mk

nk


n

k=1

]
=

 d̄1

ω
+ r1− ā11eu1 − ā12eu2

1+meu1

−r̄2 +
d2
ω
+ ā21eu1

1+meu1 − ā22eu2

 ,

0

0


n

k=1

6=

0

0


If (22) does not have a solution, we can directly derive

QN
[u1

u2

] 6=
0

0


This proves that condition (ii) in Theorem 2.3 is satisfied. Finally we prove that condition (iii)

in Theorem 2.3 holds. Now we define φ : Dom L× [0,1]→ X by

φ(ui,u2,µ) =
[r̄1 +d1− ā11eu1

ā21eu1
1+meu1 − ā22eu2

]+µ

[(
ā12eu1

1+meu1 − r̄2−d2

)]
(25)

where µ ∈ [0,1] is a parameter. When (u1(t),u2)
T ∈ ∂Ω∩,KerL φ(u1,u2,µ) 6= 0 otherwise,

ther is a constant vector(u1,u2)
T with|u1 +u2|= H satisfing φ(u1,u2,µ) = 0

r̄1 +d1− ā11eu1−µ
ā21eu1

1+meu1
= 0

ā21eu1

1+meu1
− ā22eu2−µ(r̄2 +d2) = 0

A similar argument in (14) and (21) shows that

|u1| < max
{∣∣ ln r̄1 +d2

ā11

∣∣, ∣∣ ln r̄1 +d2

ā11

∣∣}
|u2| < max

{∣∣ ln ā21

mā22

∣∣, ∣∣ ln (r̄1 +d1)(ā21−m(r̄2 +d2))− ā11(r̄2 +d2)

ā11ā22(1+m r̄1+d1
ā11

)+ ā12(ā21−m(r̄2 +d2))

∣∣}
It follows from (24) that |u1|+ |u2| < H which leads to a contradiction. Using the property of

topological degree and taking J = I : ImQ→ KerL, we have (u1,u2)
T → (u1,u2)

T

deg(JQN((u1,u2)
T ,Ω∩KerL,(0,0)T )) = deg(φ(u1,u2,1),Ω∩KerL,(0,0)T )

= deg(φ(u1,u2,0),Ω∩KerL,(0,0)T )

= deg
(
((r̄1 +d1)−ā11eu1,

ā21eu1

+meu1
− ā22eu2)T ,∂ ∩KerL,(0,0)T

)
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The system of algebraic equations

r̄1 +
d1

ω
− ā11eu1 = 0

ā21eu1

1+meu1
− ā22eu2 = 0

which has a unique solution(u∗1,u
∗
2) which satisfies

u∗1 = ln
r̄1 +d1

ā11
,

u∗2 = ln
ā21(r̄1 +d1)

ā22(ā11 +m(r̄1 +d1))

Thus a direct calculations shows that

deg(JQN(u1,u2)
T ,Ω∩KerL,(0,0)T ) =

∣∣∣∣∣∣sgn

−ā11eu1 o
ā21eu∗1

(1+meu1)2 −ā22eu∗2

∣∣∣∣∣∣
= sgn{ā11ā22eu∗1+u∗2}

= 1

Finally, it is easy to show that the set kp(I−Q)Nx|x ∈ Ω̄ is equicotinous and uniformly

bounded.By using the Arzela-Ascoli theorem, we see that kp(I−Q)N : Ω̄→ X is compact. Con-

sequently L is compact. By now we have proved that Ω satiesfies the Lemma(1.1). Hence (4)

has has at least one ω periodic solution.As a consequence,system (2) has atleast one positive

ω−periodic solution. �

3. STABILITY OF POSITIVE PERIODIC SOLUTIONS

We consider the nonimpulsive delay differential equationy1′(t) = y1(t)
(
r1(t)−a11(t)y1(t− τ1(t))− a12(t)y2(t)

D1(t)+my1(t)

)
y2′(t) = y2(t)

(
− r2(t)+a21(t)

y1(t−τ2(t))
D2(t)+my1(t−τ2(t))

−a22(t)y2(t− τ3(t))
)
(26)

with the initial conditions

yi(s) = fi(s), fi(0)> 0, fi ∈⊆ ([−τ,0],R+), i = 1,2

τ = max
t∈[0,ω]

τ1(t),τ2(t),τ3(t)(27)
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where

a11(t) = Π0<tk,ta11(1+d1k)

D1(t) = Π0<tk,t(1+d1k)(1+d2k)−1

D2(t) = Π0<tk,t(1+d1k)−1(1+d2k)

Lemma 3.1. Let x(t) = (x1(t),x2(t))T is a solution of (4) with initial conditions. Then ther

eexists a T1 > 0 such that 0 < xi(t)≤ Hi, i = 1,2 fort ≥ T1, where

H1 = H2 > H = max
{ rU

1
a11

,
rL

2
a21

}
(28)

Lemma 3.2. Let x(t) = (x1(t),x2(t))T is a solution of (4) with initial conditions. Then ther

exists a T2 > 0 such that 0 < xi(t)≥ hi, i = 1,2 for t ≥ T2, where

h1 = h2 < H = max
{rL

1 −aU
12H1

aU
11

,e[−(r2)
U ]
}

(29)

Theorem 3.3. Assume that the conditions of Theorem(2.3) hold. In addition, assume∫
ω

0
A(t)dt > 0(30)

where

A(t) = min
{

mina11(t)+a11(t)D1(t)h−mHa22(t)D2(t)
}
,

min
{

a11(t)mh+a11(t)D1(t)h+mha22(t)D2(t)}

Proof. Let x∗(t) = (x′1(t),x
′
2(t))

T be a positive ω-periodic solution (2 ) then y∗(t) =

(y′1(t),y
′
2)

T ,
(
y∗(t) = Π0<tk,t(1+ dik)−1x∗i (t), i = 1,2

)
is a positive ω-periodic solution (26 )

and let (y1(t),y2)
T be any positive solution of system (26 ) with the initial conditions ( 27). It

follows from Lemma 3.1, and Lemma 3.2 that there exists T,Hi and hi such that ∀t ≥ T

hi ≤ y∗i (t)≤ Hi,hi ≤ yi(t)≤ Hi, i = 1,2.(31)

Choose Lypnov function as follows

V (t) =
2

∑
i=1
|logy∗i (t)− logyi(t)|.(32)



IMPULSIVE PREDATOR-PREY MODEL 6695

Since for any impulsive time tk we have

V (t+k ) =
2

∑
i=1
|logdiky∗i (tk1)− logdikyi(tk)|=V (tk).

V(t) is continuous for all t ≥ 0

On the other hand,from( 2. 3 )we can obtain that for any t ∈ RKand t 6= tk

1
H
|y∗i (t)− yi(t)| ≤ |logy∗i (t)− yi(t)| ≤

1
h
|y∗i (t)− yi(t)|.(33)

Calculating the upper -right derivative of V(t) along the solutions of (3.1) it follows that

D+V (t) =
2

∑
i=1

(y∗1(t)
y1(t)

− y∗i (t)
y∗i (t)

)
sgn(y∗i (t)− yi(t))

≤ sgn(y∗1(t)− y1(t))
[
−a11[y∗1(t− τ1(t))− y1(t− τ1(t))

]
−a12(t)

[ y∗2(t)
D1(t)+my∗1(t)

− y2(t)
D1(t)+my1(t)

]
+ sgn(y∗2(t)− y2(t))

[
a21(t)

[ y∗2(t− τ2(t))
D2(t)+my∗1(t− τ2(t))

− y2(t− τ2(t))
D2(t)+my∗1(t− τ2(t))

]
−a22(t)[y∗2(t− τ3(t))− y2(t− τ3(t))]

]

D+V (t)≤−sgn(y∗1(t)− y1(t))[a11(y∗1(t− τ1(t))− y1(t− τ2(t)))](34)

−sgn(y∗2(t)− y2(t))
[
a22(t)[y∗2(t− τ3(t))− y2(t− τ3(t))]

]
+∆1 +∆2

where

∆1 =−sgn(y∗1(t)− y1(t))a12(t)
[ y∗2(t)

D1(t)+my∗1(t)
− y2(t)

D1(t)+my1(t)

]
=−sgn(y∗1− y1)a12(t)

[y∗2(t)(D1(t)+my1(t))− y2(t)(D1(t)+my∗1(t))
(D1(t)+my∗1(t))(D1(t)+my1(t))

]
=−sgn(y∗1− y1)a12(t)[y∗2D1(t)+m(y∗2y1− y∗1y2− y2y1 + y2y1)−D1(t)y2 +D1(t)y2− y2D1(t)

(D1(t)+my∗1(t))(D1(t)+my1(t))

]
≤−a12mh|y∗2− y2|−a12mh|y∗1− y1|−a12D1(t)|y∗2− y2|
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∆2 = −sgn(y∗2(t)− y2(t))a21(t)
[ y∗1(t)

D2(t)+my∗1(t)
− y1(t)

D2(t)+my1(t)

]
= −sgn(y∗2− y2)a21

[D2(t)y∗1 +my1y∗1−D2(t)y1−my∗1y1

(D2(t)+my∗1)(D2(t)+my1)

]
≤ a21(t)D2(t)|y∗1− y1|

It follows from ∆1 and ∆2 that

D+V (t) ≤ −a11(t)|y∗1− y1|−a22(t)|y∗2− y2|+a21(t)D2(t)|y∗1− y1|

−a12mh|y∗2− y2|−a12(t)mh|y∗1− y1|−a12(t)D1(t)|y∗2− y2|

≤ |y∗1− y1|[−a11(t)+a21(t)D2(t)−a12mh]

+|y∗2− y2|[−a22(t)−a12(t)mh−a12(t)D1(t)]

≤ −[a11(t)−a21(t)D2(t)+a12mh]|y∗1− y1|

−[a22(t)+a12(t)mh−a12(t)D1(t)]|y∗2− y2|

≤ −A(t)

From this ,we further have any t ≥ 0;V (t)≤V (0)e(−
∫ t

0 A(u)du).From(26)we can∫ t
0 A(u)du→ ∞ as t→ ∞,Hence, V (t)→ 0 as t→ ∞.Further from (33) we have

lim
t→∞
|y∗i − yi(t)|= lim

t→∞

[
Π0<tk,t(1+dik)−1|x∗i (t)− xi(t)|

]
= 0, i = 1,2

Therefore limt→∞ |x∗i (t)− xi(t)|= 0, i = 1,2 �

4. ILLUSTRATING EXAMPLE

Example 4.1. To illustrate the result obtained, we consider the system

x′1(t) = x1(t)
[
(1+0.1sin t)−0.1x1(t−0.1)− x2(t)

1+ x1(t)

]
x′2(t) = x2(t)

[
− 1

105 (2+ sin t)+
9x1(t−0.3)

1+ x1(t−0.3)
− x2(t−0.1)

]
∆x1(t) = (

1
e
−1)x1(t), t = tk

∆x2(t) = (
1
e
−1)x2(t), t = tk
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It is very simple to verify the conditions of the Theorem 2.4 and the system has atleast one

positive periodic solutions.
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