ON INFRA GENERALIZED $\#\alpha$-CLOSED SETS IN INFRA TOPOLOGICAL SPACES

J. CHRISTY JENIFER*, V. KOKILAVANI

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641029, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this paper, the relatively new notions of Infra generalized $\#\alpha$-closed set, Infra generalized $\#\alpha$-continuous functions, Infra generalized $\#\alpha$-irresolute mappings are introduced and explored some of its characteristics.

Keywords: infra generalized $\#\alpha$-closed sets; infra generalized $\#\alpha$-continuous functions; infra generalized $\#\alpha$-irresolute mapping.

2010 AMS Subject Classification: 54A05, 54C05.

1. INTRODUCTION

*Corresponding author
E-mail address: christijeni94@gmail.com
Received August 09, 2021

2. PRELIMINARIES

Throughout this paper, (X, τ_{iX}) (or X) represent a Infra topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, $icp(A)$ and $iip(A)$ denote the Infra closure point of A and the Infra interior point of A and also $icp_\alpha(A)$, $icp_b(A)$ denote $i\alpha cp(A)$, $ibcp(A)$ respectively.

The following recalls requisite definitions in Infra topological spaces that will be necessitated in the sequel of our work.

Definition 2.1. [1] Let X be any arbitrary set. An Infra topological space on X is a collection τ_{iX} subsets of X such that the following axioms are satisfying:

(1) $\phi, X \in \tau_{iX}$.

(2) The intersection of the elements of any sub collection of τ_{iX} in X. Terminology, the ordered pair (X, τ_{iX}) is called Infra-topological space. We simply say X is an Infra space.

Definition 2.2. [1] Let (X, τ_{iX}) be an infra-topological space and $A \subset X$. A is called an infra open set (ios) if $A \subset \tau_{iX}$.

Definition 2.3. [1] Let (X, τ_{iX}) be an infra topological space. A subset $B \subset X$ is called infra-closed set (ics) in X if $X-B$ is infra-open set in X.

Definition 2.4. [1] Let (X, τ_{iX}) be an infra topological space and $A \subset X$. The Infra Closure Point (ICP) of A is a set denoted by $icp(A)$ and given by : $icp(A)= \cap_{i} B_i : A \subset B_i, X - B_i \in \tau_{iX}$. (i.e) $icp(A)$ is the intersection of all infra closed set containing the set A.
Definition 2.5. [1] Let (X, τ_X) be an infra topological space and $A \subseteq X$. The Infra Interior Point (IIP) of A is a set denoted by $\text{iip}(A)$ and given by: $\text{iip}(A) = \cup \{ O_i : O_i \subseteq A, O_i \in \tau_{iX} \}$ (i.e) $\text{iip}(A)$ is the union of all infra open set contained in the set A.

Definition 2.6. [9] Let (X, τ_X) be an infra topological space. A is called infra semi-open if $A \subseteq \text{icp}(\text{iip}(A))$ and infra semi-closed set if $\text{iip}(\text{icp}(A)) \subseteq A$.

Definition 2.7. [9] Let (X, τ_X) be an infra topological space. A is called infra pre-open if $A \subseteq \text{iip}(\text{icp}(A))$ and infra pre-closed set if $\text{icp}(\text{iip}(A)) \subseteq A$.

Definition 2.8. [9] Let (X, τ_X) be an infra topological space. A is called infra α-open if $A \subseteq \text{iip}(\text{icp}(\text{iip}(A)))$ and infra α-closed set if $\text{icp}(\text{iip}(\text{icp}(A))) \subseteq A$.

Definition 2.9. [9] Let (X, τ_X) be an infra topological space. A is called infra β-open if $A \subseteq \text{iip}(\text{icp}(\text{iip}(A)))$ and infra β-closed set if $\text{icp}(\text{iip}(\text{icp}(A))) \subseteq A$.

Definition 2.10. [10] Let (X, τ_X) be an infra topological space. A is called infra b-open if $A \subseteq \text{iip}(\text{icp}(A)) \cup \text{icp}(\text{iip}(A))$ and infra b-closed set if $\text{iip}(\text{icp}(A)) \cup \text{icp}(\text{iip}(A)) \subseteq A$.

Definition 2.11. A subset A of a space (X, τ) is called

1. a infra generalized- closed set (briefly ig-closed) [10] if $\text{icp}(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.
2. a infra α generalized- closed set (briefly iαg-closed) if $\text{icp}_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is infra semi-open.
3. a infra generalized semi- closed set (briefly igs-closed) [10] if $\text{iscp}(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.
4. an infra α generalized- closed set (briefly iαg-closed) [10] if i α $\text{cp}(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.
5. an infra generalized α- closed set (briefly igα-closed) [10] if i α $\text{cp}(A) \subseteq U$ whenever $A \subseteq U$ and U is infra α- open.
6. a infra generalized pre- closed set (briefly igp-closed) [10] if $\text{ipcp}(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.
(7) a infra generalized β- closed set (briefly igβ- closed) [10] if $ii\beta cp(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.

(8) a infra generalized b- closed set (briefly igb- closed) [10] if $icp_b(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.

(9) a infra generalized sp- closed set (briefly igsp- closed) [10] if ispcp$(A) \subseteq U$ whenever $A \subseteq U$ and U is infra open.

(10) a infra generalized *b- closed set (briefly ig*b- closed) [10] if icp$_b(A) \subseteq U$ whenever $A \subseteq U$ and U is infra g- open.

Definition 2.12. A subset A of a space (X, τ_{iX}) is called

(1) **Infra generalized- continuous**[11] if $f^{-1}(V)$ is Infra generalized- closed in X, for every Infra closed set V of Y.

(2) **Infra α-generalized- continuous**[11] if $f^{-1}(V)$ is Infra α-generalized- closed in X, for every Infra closed set V of Y.

(3) **Infra generalized b- continuous**[11] if $f^{-1}(V)$ is Infra generalized b- closed in X, for every Infra closed set V of Y.

(4) **Infra generalized p- continuous**[11] if $f^{-1}(V)$ is Infra generalized p- closed in X, for every Infra closed set V of Y.

(5) **Infra generalized s- continuous**[11] if $f^{-1}(V)$ is Infra generalized s- closed in X, for every Infra closed set V of Y.

(6) **Infra generalized β- continuous**[11] if $f^{-1}(V)$ is Infra generalized β- closed in X, for every Infra closed set V of Y.

(7) **Infra generalized sp- continuous**[11] if $f^{-1}(V)$ is Infra generalized sp- closed in X, for every Infra closed set V of Y.

(8) **Infra generalized *b- continuous**[11] if $f^{-1}(V)$ is Infra generalized *b- closed in X, for every Infra closed set V of Y.

Definition 2.13. A subset A of a space (X, τ_{iX}) is called

(1) **Infra generalized- irresolute**[11] if $f^{-1}(V)$ is Infra generalized- closed in X, for every Infra generalized- closed set V of Y.
3. Characteristics of Infra Generalized \(\# \alpha \)-Closed Sets in Infra Topological Spaces

In this section, we introduce the notion of Infra \(\# \alpha \)-closed sets and study some of its basic properties.

Definition 3.1. Let \((X, \tau_X)\) be a Infra topological space. A subset \(A\) of \(X\) is called an Infra generalized \(\# \alpha \)-closed set (briefly ig\(\# \alpha \)-closed) if \(\text{icp}_\alpha(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is Infra g-open.

Theorem 3.2. Every Infra-closed set is Infra g-closed set.

Proof: Let \(A\) be a Infra-closed set in \(X\). Let \(U\) be Infra open set, such that \(A \subseteq U\). Since \(A\) is Infra closed, \(\text{icp}(A) = A \subseteq U\). Therefore \(\text{icp}(A) \subseteq U\). Hence \(A\) is Infra g-closed set in \(X\).

Remark 3.3. The converse of the above theorem need not be true as seen from the following example.
Example 3.4. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{d\}\}$. Let $A = \{b\}$. Here A is Infra g-closed set but not Infra-closed set of (X, τ_X).

Theorem 3.5. Every Infra-closed set is Infra $g^\#\alpha$-closed set.
Proof: Let A be a Infra-closed set in X. Let U be Infra g-open set, such that $A \subseteq U$. Since A is Infra closed, $icp_\alpha(A) \subseteq icp(A) \subseteq U$. Therefore $icp_\alpha(A) \subseteq U$. Hence A is Infra $g^\#\alpha$-closed set in X.

Remark 3.6. The converse of the above theorem need not be true as seen from the following example.

Example 3.7. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. Let $A = \{b\}$. Here A is Infra $g^\#\alpha$-closed set but not a Infra-closed set of (X, τ_X).

Theorem 3.8. Every Infra α-closed set is Infra $g^\#\alpha$-closed set.
Proof: Let A be a Infra α-closed set in X. Let U be Infra g-open set, such that $A \subseteq U$. Since A is Infra α-closed set. We have, $icp_\alpha(A) = A \subseteq U$. Therefore $icp_\alpha(A) \subseteq U$. Hence A is Infra $g^\#\alpha$-closed set in X.

Remark 3.9. The converse of the above theorem need not be true as seen from the following example.

Example 3.10. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{a, b, d\}\}$. Let $A = \{a, b, c\}$. Here A is Infra $g^\#\alpha$-closed set but not a Infra α-closed set of (X, τ_X).

Theorem 3.11. Every Infra $g^\#\alpha$-closed set is Infra gs-closed set.
Proof: Let A be a Infra $g^\#\alpha$-closed set in X. Let U be Infra open set, such that $A \subseteq U$. Since every Infra open set is Infra g-open and A is Infra $g^\#\alpha$-closed, we have, $iscp_\alpha(A) \subseteq icp_\alpha(A) \subseteq U$. Then $iscp_\alpha(A) \subseteq U$. Hence A is Infra gs-closed set in X.

Remark 3.12. The converse of the above theorem need not be true as seen from the following example.

Example 3.13. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, d\}\}$. Let $A = \{a, b, d\}$. Here A is Infra gs-closed set but not a Infra $g^\#\alpha$-closed set of (X, τ_X).
Theorem 3.14. Every Infra g\(^\#\)\(\alpha\)-closed set is Infra gp-closed set.

Proof: Let A be a Infra g\(^\#\)\(\alpha\)-closed set in X. Let U be Infra open set, such that A \(\subseteq\) U. Since every Infra open set is Infra g-open and A is Infra g\(^\#\)\(\alpha\)-closed, we have, picp(A) \(\subseteq\) icp\(_\alpha\)(A) \(\subseteq\) U. Then picp(A) \(\subseteq\) U. Hence A is Infra gp-closed set in X.

Remark 3.15. The converse of the above theorem need not be true as seen from the following example.

Example 3.16. Let X = \{a, b, c, d\} with the topology \(\tau = \{X, \phi, \{a\}, \{d\}\}\). Let A = \{a, c, d\}. Here A is Infra gp-closed set but not a Infra g\(^\#\)\(\alpha\)-closed set of \((X, \tau_\text{IX})\).

Theorem 3.17. Every Infra g\(^\#\)\(\alpha\)-closed set is Infra \(\alpha\)g-closed set.

Proof: Let A be a Infra g\(^\#\)\(\alpha\)-closed set in X. Let U be Infra open set, such that A \(\subseteq\) U. Since every Infra open set is Infra g-open and A is Infra g\(^\#\)\(\alpha\)-closed, we have, icp\(_\alpha\)(A) = A \(\subseteq\) U. Therefore, icp\(_\alpha\)(A) \(\subseteq\) U. Hence A is Infra \(\alpha\)g-closed set in X.

Remark 3.18. The converse of the above theorem need not be true as seen from the following example.

Example 3.19. Let X = \{a, b, c, d\} with the topology \(\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, d\}\}\). Let A = \{a, b, d\}. Here A is Infra \(\alpha\)g-closed set but not a Infra g\(^\#\)\(\alpha\)-closed set of \((X, \tau_\text{IX})\).

Theorem 3.20. Every Infra g\(^\#\)\(\alpha\)-closed set is Infra g\(\beta\)-closed set.

Proof: Let A be a Infra g\(^\#\)\(\alpha\)-closed set in X. Let U be Infra open set, such that A \(\subseteq\) U. Since every Infra open set is Infra g-open and A is Infra g\(^\#\)\(\alpha\)-closed, we have, \(\beta\)icp(A) \(\subseteq\) icp\(_\alpha\)(A) \(\subseteq\) U. Then \(\beta\)icp(A) \(\subseteq\) U. Hence A is Infra g\(\beta\)-closed set in X.

Remark 3.21. The converse of the above theorem need not be true as seen from the following example.

Example 3.22. Let X = \{a, b, c\} with the topology \(\tau = \{X, \phi, \{a\}, \{b\}\}\). Let A = \{a, b\}. Here A is Infra g\(\beta\)-closed set but not a Infra g\(^\#\)\(\alpha\)-closed set of \((X, \tau_\text{IX})\).

Theorem 3.23. Every Infra g\(^\#\)\(\alpha\)-closed set is Infra gb-closed set.

Proof: Let A be a Infra g\(^\#\)\(\alpha\)-closed set in X. Let U be Infra open set, such that A \(\subseteq\) U. Since
every Infra open set is Infra $g^\#\alpha$-closed, we have, $icp_b(A) \subseteq icp_\alpha \subseteq U$. Then $icp_b(A) \subseteq U$. Hence A is Infra gb-closed set in X.

Remark 3.24. The converse of the above theorem need not be true as seen from the following example.

Example 3.25. Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{b\}, \{c\}, \{a, b\}\}$. Let $A = \{b, c\}$. Here A is Infra gb-closed set but not a Infra $g^\#\alpha$-closed set of (X, τ_X).

Theorem 3.26. Every Infra $g^\#\alpha$-closed set is Infra g^*b-closed set.

Proof: Let A be a Infra $g^\#\alpha$-closed set in X. Let U be Infra open set, such that $A \subseteq U$. Since A is Infra $g^\#\alpha$-closed, we have, $icp_b(A) \subseteq icp_\alpha \subseteq U$. Then $icp_b(A) \subseteq U$. Hence A is Infra g^*b-closed set in X.

Remark 3.27. The converse of the above theorem need not be true as seen from the following example.

Example 3.28. Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{b\}, \{c\}, \{a, c\}\}$. Let $A = \{b\}$. Here A is Infra g^*b-closed set but not a Infra $g^\#\alpha$-closed set of (X, τ_X).

Theorem 3.29. Every Infra $g^\#\alpha$-closed set is Infra gsp-closed set.

Proof: Let A be a Infra $g^\#\alpha$-closed set in X. Let U be Infra open set, such that $A \subseteq U$. Since every Infra open set is Infra g-open and A is Infra $g^\#\alpha$-closed, we have, $\beta icp(A) \subseteq icp_\alpha(A) \subseteq U$. Then $\beta icp(A) \subseteq U$. Hence A is Infra gsp-closed set in X.

Remark 3.30. The converse of the above theorem need not be true as seen from the following example.

Example 3.31. Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{b, c\}\}$. Let $A = \{a, b\}$. Here A is Infra gsp-closed set but not a Infra $g^\#\alpha$-closed set of (X, τ_X).

Theorem 3.32. Let $A \subseteq X$. If A is Infra $g^\#\alpha$-closed in (X, τ_X), then $icp_\alpha(A)$ - A contains no non-empty Infra g-closed set.

Proof: Let F be any Infra g-closed set such that $F \subseteq icp_\alpha(A) - A$. Then $A \subseteq X - F$ and $X - F$
is Infra g-open in \((X, \tau)\). Since \(A\) is Infra \(g^\#\alpha\)-closed in \(X\), \(\text{icp}_\alpha(A) \subseteq X - F\), therefore \(F \subseteq X - \text{icp}_\alpha(A)\). Thus \(F \subseteq (\text{icp}_\alpha(A) - A) \cap (X - \text{icp}_\alpha(A)) = \phi\).

Theorem 3.33. Let \(A\) be any Infra \(g^\#\alpha\)-closed set in \((X, \tau_X)\). If \(A \subseteq B \subseteq \text{icp}_\alpha(A)\), then \(B\) is also an Infra \(g^\#\alpha\)-closed set.

Proof: Let \(B \subseteq U\) where \(U\) is Infra \(g^\#\alpha\)-open \((X, \tau)\). Then \(A \subseteq U\). Also since \(A\) is Infra \(g^\#\alpha\)-closed, \(\text{icp}_\alpha(A) \subseteq U\). Since \(B \subseteq \text{icp}_\alpha(A)\), \(\text{icp}_\alpha(B) \subseteq \text{icp}_\alpha(A) \subseteq U\). This implies, \(\text{icp}_\alpha(B) \subseteq U\). Thus \(B\) is an Infra \(g^\#\alpha\)-closed set.

Theorem 3.34. If \(A\) and \(B\) are Infra \(g^\#\alpha\)-closed, then \(A \cap B\) is Infra \(g^\#\alpha\)-closed set.

Proof: Given that \(A\) and \(B\) are Infra \(g^\#\alpha\)-closed sets in \(X\). Let \(A \cap B \subseteq U\), \(U\) is Infra \(g^\#\alpha\)-open in \(X\). Since \(A\) is Infra \(g^\#\alpha\)-closed, \(\text{icp}_\alpha(A) \subseteq U\), whenever \(A \subseteq U\), \(U\) is Infra \(g^\#\alpha\)-open in \(X\). Since \(B\) is Infra \(g^\#\alpha\)-closed, \(\text{icp}_\alpha(B) \subseteq U\), whenever \(B \subseteq U\), \(U\) is Infra \(g^\#\alpha\)-open in \(X\). By the fact[9], \(\text{icp}_\alpha(A \cap B) = \text{icp}_\alpha(A) \cap \text{icp}_\alpha(B)\). It follows that \(\text{icp}_\alpha(A \cap B) \subseteq U\), whenever \(A \cap B \subseteq U\), \(U\) is Infra \(g^\#\alpha\)-open in \(X\). Hence \(A \cap B\) is Infra \(g^\#\alpha\)-closed.

Example 3.35. Let \(X = \{a, b, c, d\}\) with the topology \(\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, d\}\}\). Let \(A = \{a, d\}, B = \{c, d\}\) are Infra \(g^\#\alpha\)-closed set. Then \(A \cap B = \{d\}\) is also an Infra \(g^\#\alpha\)-closed set.

Theorem 3.36. If \(A \subseteq Y \subseteq X\) and \(A\) is Infra \(g^\#\alpha\)-closed in \(X\) then \(A\) is Infra \(g^\#\alpha\)-closed relative to \(Y\).

Proof: Given that \(A \subseteq Y \subseteq X\) and \(A\) is a Infra \(g^\#\alpha\)-closed set in \(X\). We have to prove that \(A\) is Infra \(g^\#\alpha\)-closed set relative to \(Y\). Let us assume that \(A \subseteq Y \cap U\), where \(U\) is Infra \(g\)-open in \(X\). Since, \(A\) is Infra \(g^\#\alpha\)-closed set, \(A \subseteq U\), which implies \(\text{icp}_\alpha(A) \subseteq U\). From this, we get \(Y \cap \text{icp}_\alpha(A) \subseteq Y \cap U\). Hence, \(A\) is Infra \(g^\#\alpha\)-closed set relative to \(Y\).

4. Properties of Infra \(g^\#\alpha\)-Continuous Functions

In this section we set forth the concept of Infra \(g^\#\alpha\)-continuous function. The relationship between Infra \(g^\#\alpha\)-continuous function and other defined Infra continuous functions are explored.
Definition 4.1. Let $f: (X, \tau_{iX}) \to (Y, \tau_{iX})$ be a Infra topological space X into a Infra topological space Y is called $g^#\alpha$-continuous, if the inverse image of every Infra closed set in Y is Infra $g^#\alpha$-closed set in X.

Theorem 4.2. If a map $f: (X, \tau_{iX}) \to (Y, \tau_{iX})$ from a Infra topological space X into a Infra topological space Y is Infra continuous, then it is Infra $g^#\alpha$-continuous.

Proof: Let $f: (X, \tau_{iX}) \to (Y, \tau_{iX})$ be Infra continuous. Let F be any Infra closed set in Y. Then the inverse image $f^{-1}(F)$ is Infra closed in X. Since, every Infra closed set is Infra $g^#\alpha$-closed set, thus $f^{-1}(F)$ is Infra $g^#\alpha$-closed in X. Hence f is Infra $g^#\alpha$-continuous.

Remark 4.3. The converse of the above theorem need not be true as seen from the following example.

Example 4.4. Let $X = Y = \{a, b, c, d\}$ with the Infra topologies $\tau = \{X, \emptyset, \{a\}, \{a,b\}, \{a,d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b,d\}\}$, with the identity mapping. Then for the closed set $F = \{c\}$ in Y, $f^{-1}(\{c\}) = \{c\}$ implies f is not Infra continuous, since $f^{-1}(\{c\})$ is not Infra closed in X.

Theorem 4.5. If a map $f: (X, \tau_{iX}) \to (Y, \tau_{iX})$ from a Infra topological space X into a Infra topological space Y is Infra continuous, then it is Infra g-continuous.

Proof: Let $f: (X, \tau_{iX}) \to (Y, \tau_{iX})$ be Infra continuous. Let F be any Infra closed set in Y. Then the inverse image $f^{-1}(F)$ is Infra closed in X. Since, every Infra closed set is Infra g-closed set, thus $f^{-1}(F)$ is Infra g-closed in X. Hence f is Infra g-continuous.

Remark 4.6. The converse of the above theorem need not be true as seen from the following example.

Example 4.7. Let $X = Y = \{a, b, c, d\}$ with the Infra topologies $\tau = \{X, \emptyset, \{a\}, \{a,b\}, \{a,d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{d\}\}$, with the identity mapping. Then for the closed set $F = \{a,b,c\}$ in Y, $f^{-1}(\{a,b,c\}) = \{a,b,c\}$ implies f is not Infra continuous, since $f^{-1}(\{a,b,c\})$ is not Infra closed in X.

Theorem 4.8. If a map $f: (X, \tau_{iX}) \to (Y, \tau_{iX})$ from a Infra topological space X into a Infra topological space Y is Infra α-continuous, then it is Infra $g^#\alpha$-continuous.
Proof: Let \(f: (X, \tau_X) \to (Y, \tau_Y) \) be Infra \(\alpha \)-continuous. Let \(F \) be any Infra \(\alpha \)-closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is Infra \(\alpha \)-closed in \(X \). Since, every Infra \(\alpha \)-closed set is Infra \(\gamma \# \alpha \)-closed, thus \(f^{-1}(F) \) is Infra \(\gamma \# \alpha \)-closed in \(X \). Hence \(f \) is Infra \(\gamma \# \alpha \)-continuous.

Remark 4.9. The converse of the above theorem need not be true as seen from the following example.

Example 4.10. Let \(X = Y = \{a, b, c, d\} \) with the Infra topologies \(\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,d\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{d\}\} \), with the mapping defined by \(f(a) = a, f(b) = b, f(c) = c, f(d) = d \).

For the closed set \(F = \{a,b,c\} \) in \(Y \), \(f^{-1}(\{a,b,c\}) = \{a,b,c\} \) implies \(f \) is not Infra \(\alpha \)-continuous, since \(f^{-1}(\{a,b,c\}) \) is not Infra \(\alpha \)-closed in \(X \).

Theorem 4.11. If a map \(f:(X, \tau_X) \to (Y, \tau_Y) \) from a Infra topological space \(X \) into a Infra topological space \(Y \) is Infra \(\gamma \# \alpha \)-continuous, then it is Infra \(\gamma \)-gs-continuous.

Proof: Let \(f: (X, \tau_X) \to (Y, \tau_Y) \) be Infra \(\gamma \# \alpha \)-continuous. Let \(F \) be any Infra \(\gamma \# \alpha \)-closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is Infra \(\gamma \# \alpha \)-closed in \(X \). Since, every Infra \(\gamma \# \alpha \)-closed set is Infra \(\gamma \)-gs-closed, thus \(f^{-1}(F) \) is Infra \(\gamma \)-gs-closed in \(X \). Hence \(f \) is Infra \(\gamma \)-gs-continuous.

Remark 4.12. The converse of the above theorem need not be true as seen from the following example.

Example 4.13. Let \(X = Y = \{a, b, c, d\} \) with the Infra topologies \(\tau = \{X, \phi, \{a\}, \{d\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,d\}\} \), with the identity mapping. For the closed set \(F = \{c,d\} \) in \(Y \), \(f^{-1}(\{a,b,c\}) = \{c,d\} \) implies \(f \) is not Infra \(\gamma \# \alpha \)-continuous, since \(f^{-1}(\{c,d\}) \) is not Infra \(\gamma \# \alpha \)-closed in \(X \).

Theorem 4.14. If a map \(f:(X, \tau_X) \to (Y, \tau_Y) \) from a Infra topological space \(X \) into a Infra topological space \(Y \) is Infra \(\gamma \# \alpha \)-continuous, then it is Infra \(\gamma \)-gs-continuous.

Proof: Let \(f: (X, \tau_X) \to (Y, \tau_Y) \) be Infra \(\gamma \# \alpha \)-continuous. Let \(F \) be any Infra \(\gamma \# \alpha \)-closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is Infra \(\gamma \# \alpha \)-closed in \(X \). Since, every Infra \(\gamma \# \alpha \)-closed set is Infra \(\gamma \)-gs-closed, thus \(f^{-1}(F) \) is Infra \(\gamma \)-gs-closed in \(X \). Hence \(f \) is Infra \(\gamma \)-gs-continuous.

Remark 4.15. The converse of the above theorem need not be true as seen from the following example.
Example 4.16. Let $X = Y = \{a, b, c\}$ with the Infra topologies $\tau = \{X, \emptyset, \{a\}, \{b\}, \{b,c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{c\}\}$, with the mapping defined by $f(a) = a, f(b) = b, f(c) = c$. For the Infra closed set $F = \{a,b\}$ in Y, $f^{-1}(\{a,b\}) = \{a,b\}$ implies f is not Infra $g^\#\alpha$-continuous, since $f^{-1}(\{a,b\})$ is not Infra $g^\#\alpha$-closed in X.

Theorem 4.17. If a map $f:(X, \tau_{\alpha}) \to (Y, \tau_{\alpha})$ from a Infra topological space X into a Infra topological space Y is Infra $g^\#\alpha$-continuous, then it is Infra αg-continuous.

Proof: Let $f: (X, \tau_{\alpha}) \to (Y, \tau_{\alpha})$ be Infra $g^\#\alpha$-continuous. Let F be any Infra $g^\#\alpha$-closed set in Y. Then the inverse image $f^{-1}(F)$ is Infra $g^\#\alpha$-closed in X. Since, every Infra $g^\#\alpha$-closed set is Infra αg-closed, thus $f^{-1}(F)$ is Infra αg-closed in X. Hence f is Infra αg-continuous.

Remark 4.18. The converse of the above theorem need not be true as seen from the following example.

Example 4.19. Let $X = Y = \{a, b, c\}$ with the Infra topologies $\tau = \{X, \emptyset, \{a\}, \{c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}\}$, with the mapping defined by $f(a) = a, f(b) = b, f(c) = c$. Then for the closed set $F = \{b,c\}$ in Y, $f^{-1}(\{b,c\}) = \{b,c\}$ implies f is not Infra $g^\#\alpha$-continuous, since $f^{-1}(\{b,c\})$ is not Infra $g^\#\alpha$-closed in X.

Theorem 4.20. If a map $f:(X, \tau_{\alpha}) \to (Y, \tau_{\alpha})$ from a Infra topological space X into a Infra topological space Y is Infra $g^\#\alpha$-continuous, then it is Infra $g^\#\beta$-continuous.

Proof: Let $f: (X, \tau_{\alpha}) \to (Y, \tau_{\alpha})$ be Infra $g^\#\alpha$-continuous. Let F be any Infra $g^\#\alpha$-closed set in Y. Then the inverse image $f^{-1}(F)$ is Infra $g^\#\alpha$-closed in X. Since, every Infra $g^\#\alpha$-closed set is Infra $g^\#\beta$-closed, thus $f^{-1}(F)$ is Infra $g^\#\beta$-closed in X. Hence f is Infra $g^\#\beta$-continuous.

Remark 4.21. The converse of the above theorem need not be true as seen from the following example.

Example 4.22. Let $X = Y = \{a, b, c,d\}$ with the Infra topologies $\tau = \{X, \emptyset, \{b\}, \{a,b\}, \{b,d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,d\}\}$, with the mapping defined by $f(a) = a, f(b) = b, f(c) = c, f(d) = d$. Then for the closed set $F = \{b,c\}$ in Y, $f^{-1}(\{b,c\}) = \{b,c\}$ implies f is not Infra $g^\#\alpha$-continuous, since $f^{-1}(\{b,c\})$ is not Infra $g^\#\alpha$-closed in X.
Theorem 4.23. If a map \(f: (X, \tau_{iX}) \to (Y, \tau_{iX}) \) from a Infra topological space \(X \) into a Infra topological space \(Y \) is Infra \(g^\# \alpha \)-continuous, then it is Infra \(gb \)-continuous.

Proof: Let \(f: (X, \tau_{iX}) \to (Y, \tau_{iX}) \) be Infra \(g^\# \alpha \)-continuous. Let \(F \) be any Infra \(g^\# \alpha \)-closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is Infra \(g^\# \alpha \)-closed in \(X \). Since, every Infra \(g^\# \alpha \)-closed set is Infra \(gb \)-closed, thus \(f^{-1}(F) \) is Infra \(gb \)-closed in \(X \). Hence \(f \) is Infra \(gb \)-continuous.

Remark 4.24. The converse of the above theorem need not be true as seen from the following example.

Example 4.25. Let \(X = Y = \{a, b, c, d\} \) with the Infra topologies \(\tau = \{X, \phi, \{b\}, \{a,b\}, \{b,d\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,d\}\} \), with the mapping defined by \(f(a) = a, f(b) = b, f(c) = c, f(d) = d \). Then for the closed set \(F = \{b,c\} \) in \(Y \), \(f^{-1}(\{b,c\}) = \{b,c\} \) implies \(f \) is not Infra \(g^\# \alpha \)-continuous, since \(f^{-1}(\{b,c\}) \) is not Infra \(g^\# \alpha \)-closed in \(X \).

Theorem 4.26. If a map \(f: (X, \tau_{iX}) \to (Y, \tau_{iX}) \) from a Infra topological space \(X \) into a Infra topological space \(Y \) is Infra \(g^\# \alpha \)-continuous, then it is Infra \(g^*b \)-continuous.

Proof: Let \(f: (X, \tau_{iX}) \to (Y, \tau_{iX}) \) be Infra \(g^\# \alpha \)-continuous. Let \(F \) be any Infra \(g^\# \alpha \)-closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is Infra \(g^\# \alpha \)-closed in \(X \). Since, every Infra \(g^\# \alpha \)-closed set is Infra \(g^*b \)-closed, thus \(f^{-1}(F) \) is Infra \(g^*b \)-closed in \(X \). Hence \(f \) is Infra \(g^*b \)-continuous.

Remark 4.27. The converse of the above theorem need not be true as seen from the following example.

Example 4.28. Let \(X = Y = \{a, b, c, d\} \) with the Infra topologies \(\tau = \{X, \phi, \{b\}, \{a\}, \{d\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,d\}\} \), with the mapping defined by \(f(a) = a, f(b) = b, f(c) = c, f(d) = d \). Then for the closed set \(F = \{c,d\} \) in \(Y \), \(f^{-1}(\{c,d\}) = \{c,d\} \) implies \(f \) is not Infra \(g^\# \alpha \)-continuous, since \(f^{-1}(\{c,d\}) \) is not Infra \(g^\# \alpha \)-closed in \(X \).

Theorem 4.29. If a map \(f: (X, \tau_{iX}) \to (Y, \tau_{iX}) \) from a Infra topological space \(X \) into a Infra topological space \(Y \) is Infra \(g^\# \alpha \)-continuous, then it is Infra \(gsp \)-continuous.

Proof: Let \(f: (X, \tau_{iX}) \to (Y, \tau_{iX}) \) be Infra \(g^\# \alpha \)-continuous. Let \(F \) be any Infra \(g^\# \alpha \)-closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is Infra \(g^\# \alpha \)-closed in \(X \). Since, every Infra \(g^\# g\alpha b \)-closed set is Infra \(gsp \)-closed, thus \(f^{-1}(F) \) is Infra \(gsp \)-closed in \(X \). Hence \(f \) is Infra \(gsp \)-continuous.
Remark 4.30. The converse of the above theorem need not be true as seen from the following example.

Example 4.31. Let \(X = Y = \{a, b, c\} \) with the Infra topologies \(\tau = \{X, \emptyset, \{a\}, \{c\}\} \) and \(\sigma = \{Y, \emptyset, \{a\}, \{b\}\} \), with the mapping defined by \(f(a) = a, f(b) = b, f(c) = c \). Then for the closed set \(F = \{a, c\} \) in \(Y \), \(f^{-1}(\{a, c\}) = \{a, c\} \) implies \(f \) is not Infra \(g^\#\alpha \)-continuous, since \(f^{-1}(\{a, c\}) \) is not Infra \(g^\#\alpha \)-closed in \(X \).

Theorem 4.32. If a map \(f: (X, \tau_iX) \rightarrow (Y, \tau_iX) \) from a Infra topological space \(X \) into a Infra topological space \(Y \), then the following statements are equivalent.

(1) \(f \) is Infra \(g^\#\alpha \)-continuous.
(2) The inverse image of each Infra open set in \(Y \) is Infra \(g^\#\alpha \)-open in \(X \).

Proof: Assume that \(f: (X, \tau_iX) \rightarrow (Y, \tau_iX) \) be Infra \(g^\#\alpha \)-continuous. Let \(G \) be Infra open in \(Y \). Then \(G^c \) is Infra closed in \(Y \). Since \(f \) is Infra \(g^\#\alpha \)-continuous, \(f^{-1}(G^c) \) is Infra \(g^\#\alpha \)-closed in \(X \). But \(f^{-1}(G^c) = X - f^{-1}(G) \). Thus \(X - f^{-1}(G) \) is Infra \(g^\#\alpha \)-closed in \(X \) and so \(f^{-1}(G) \) is Infra \(g^\#\alpha \)-open in \(X \). Therefore (i) implies (ii).

Conversely assume that the inverse image of each Infra open set in \(Y \) is Infra \(g^\#\alpha \)-open in \(X \). Let \(F \) be any Infra closed set in \(Y \). The \(F^c \) is Infra open in \(Y \). By assumption, \(f^{-1}(F^c) \) is Infra \(g^\#\alpha \)-open in \(X \). But \(f^{-1}(F^c) = X - f^{-1}(F) \). Thus \(X - f^{-1}(F) \) is Infra \(g^\#\alpha \)-open in \(X \) and so \(f^{-1}(F) \) is Infra \(g^\#\alpha \)-closed in \(X \). Therefore \(f \) is Infra \(g^\#\alpha \)-continuous. Hence (ii) implies (i).

Thus (i) and (ii) are equivalent.

Theorem 4.33. If \(f: (X, \tau_iX) \rightarrow (Y, \tau_iX) \) and \(g: (Y, \tau_iX) \rightarrow (Z, \tau_iX) \) be any two functions, then \(g \circ f: (X, \tau_iX) \rightarrow (Z, \tau_iX) \) is Infra \(g^\#\alpha \)-continuous and \(f \) is Infra \(g^\#\alpha \)-continuous.

Proof: Let \(V \) be any Infra closed set in \(Z \). Since \(g \) is Infra continuous, \(g^{-1}(V) \) is Infra closed in \(Y \) and since \(f \) is Infra \(g^\#\alpha \)-continuous, \(f^{-1}(g^{-1}(V)) \) is Infra \(g^\#\alpha \)-closed in \(X \). Hence \((g \circ f)^{-1}(V) \) is Infra \(g^\#\alpha \)-closed in \(X \). Thus \(g \circ f \) is Infra \(g^\#\alpha \)-continuous.

5. Properties of Infra \(g^\#\alpha \)-Irresolutive Maps

In this section we set forth the concept of \(g^\#\alpha \)-irresolutive function. The relationship between Infra \(g^\#\alpha \)-irresolutive function and other defined Infra irresolute functions are explored.
Definition 5.1. Let \(f: (X, \tau_X) \to (Y, \tau_Y) \) be a Infra topological space \(X \) into a Infra topological space \(Y \) is called Infra \(g^\# \alpha \)-irresolute, if the inverse image of every Infra \(g^\# \alpha \)-closed set in \(Y \) is Infra \(g^\# \alpha \)-closed set in \(X \).

Theorem 5.2. A map \(f: (X, \tau_X) \to (Y, \tau_Y) \) is Infra \(g^\# \alpha \)-irresolute if and only if the inverse image of every Infra \(g^\# \alpha \)-open set in \(Y \) is Infra \(g^\# \alpha \)-open in \(X \).

Proof: Assume that \(f \) is Infra \(g^\# \alpha \)-irresolute. Let \(A \) be any Infra \(g^\# \alpha \)-open set in \(Y \). Then \(A^c \) is Infra \(g^\# \alpha \)-closed set in \(Y \). Since \(f \) is Infra \(g^\# \alpha \)-irresolute, \(f^{-1}(A^c) \) is Infra \(g^\# \alpha \)-closed in \(X \). But \(f^{-1}(A^c) = X - f^{-1}(A) \) and so \(f^{-1}(A) \) is Infra \(g^\# \alpha \)-open in \(X \). Hence the inverse image of every Infra \(g^\# \alpha \)-open set in \(Y \) is Infra \(g^\# \alpha \)-open set in \(X \).

Conversely, assume that the inverse image of every Infra \(g^\# \alpha \)-open set in \(Y \) is Infra \(g^\# \alpha \)-open in \(X \). Let \(A \) be any Infra \(g^\# \alpha \)-closed set in \(Y \). Then \(A^c \) is Infra \(g^\# \alpha \)-open in \(Y \). By assumption, \(f^{-1}(A^c) \) is Infra \(g^\# \alpha \)-open in \(X \). But \(f^{-1}(A^c) = X - f^{-1}(A) \) and so \(f^{-1}(A) \) is Infra \(g^\# \alpha \)-closed in \(X \). Therefore \(f \) is Infra \(g^\# \alpha \)-irresolute.

Theorem 5.3. If a map \(f: (X, \tau_X) \to (Y, \tau_Y) \) is Infra \(g^\# \alpha \)-irresolute, then it is Infra \(g^\# \alpha \)-continuous.

Proof: Assume that \(f \) is Infra \(g^\# \alpha \)-irresolute. Let \(F \) be any Infra closed set in \(Y \). Since every Infra closed set is Infra \(g^\# \alpha \)-closed, \(F \) is Infra \(g^\# \alpha \)-closed in \(Y \). Since \(f \) is Infra \(g^\# \alpha \)-irresolute, \(f^{-1}(F) \) is Infra \(g^\# \alpha \)-closed in \(X \). Therefore \(f \) is Infra \(g^\# \alpha \)-continuous.

Remark 5.4. The converse of the above theorem need not be true as seen from the following example.

Example 5.5. Let \(X = Y = \{a, b, c, d\} \) with the Infra topologies \(\tau = \{X, \phi, \{a\}, \{a,b,d\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,d\}\} \), with the identity mapping. Here \(f \) is Infra \(g^\# \alpha \)-continuous. But \(f \) is not Infra \(g^\# \alpha \)-irresolute, since for the closed set \(F = \{a, b\} \) in \(Y \) implies, \(f^{-1}(\{a,b\}) = \{a,b\} \) is not Infra \(g^\# \alpha \)-closed in \(X \).

Theorem 5.6. Let \(X, Y \) and \(Z \) be any Infra topological spaces. For any Infra \(g^\# \alpha \)-irresolute map \(f: (X, \tau_X) \to (Y, \tau_Y) \) and any Infra \(g^\# \alpha \)-continuous map \(g: (Y, \tau_Y) \to (Z, \tau_Z) \) the composition \(gof: (X, \tau_X) \to (Z, \tau_Z) \) is Infra \(g^\# \alpha \)-continuous.
Proof: Let F be any Infra closed set in Z. Since g is Infra $g^\#\alpha$-continuous, $g^{-1}(F)$ is Infra $g^\#\alpha$-closed in Y. Since f is Infra $g^\#\alpha$-irresolute, $f^{-1}(g^{-1}(F))$ is Infra $g^\#\alpha$-closed in X. But $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$. Therefore $gof: (X,\tau_X) \to (Z,\tau_Z)$ is Infra $g^\#\alpha$-continuous.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES