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Abstract. In this work, we discuss the existence and uniqueness of fixed points for a self-mapping defined on a

C∗-algebra valued rectangular quasi-metric space. Our results extend and supplement several recent results in the

literature. Some examples are provided to illustrate our results.
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1. INTRODUCTION

One of the most famous metrical fixed point theorem is the Banach contraction principle [1],

which is the classical tool for solving several nonlinear problems. Based on the noncomplexity

and the usefulness of this principle, it have many extension and generalization into several

directions [4, 5, 6, 7].
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In 1930, Wilson [9] introduced the concept of quasi-metric spaces. Using this idea many

researcher presented generalization of the renowned Banach fixed point theorem in the qusi-

metric spaces.

In 2000, Branciari [2] introduced the notion of rectangular metric spaces where the triangle

inequality of metric spaces was replaced by another inequality, so-called rectangular inequality.

In 2014, Ma et al. [8] established the notion of C∗-algebra valued metric spaces by replacing

the range set R with an unital C∗-algebra, which is more general class than the class of metric

spaces and utilized the same to prove some fixed point results is such spaces.

The following lemma will be useful in our main results.

Lemma 1.1. [10] Suppose that A is a unital C∗-algebra with a unit I.

(1) For any a ∈ A+ we have, a� I⇔‖a‖ ≤ 1.

(2) If a ∈ A+ with ‖a‖< 1
2 , then I−a is invertible and ‖a(I−a)−1‖< 1.

(3) Suppose that a,b ∈ A with a,b� 0A and ab = ba, then ab� 0A.

(4) Let a ∈ A
′
, if b,c ∈ A with b� c� 0A and I−a ∈ A

′
+ is an invertible, then (I−a)−1b�

(I−a)−1c.

2. MAIN RESULT

We now introduce the definition of a C∗-algebra-valued rectangular quasi-metric spaces.

Definition 2.1. Let X be a non empty set. Suppose the mapping d : X×X → A+ satisfies:

(i) d(x,y) = 0A if and only if x = y ; and 0A � d(x,y) for all x,y ∈ X;

(ii) d(x,y) � d(x,u)+ d(u,v)+ d(v,y) for all x,u,v,y ∈ X and for all distinct points u,v ∈

X{x,y}.

Then (X ,A+,d) is called a C∗-algebra valued rectangular quasi-metric space.

Remark 2.2. The C∗-algebra-valued rectangular quasi-metric space generalise the C∗-

algebra-valued metric space, C∗-algebra-valued rectangular metric space. The following ex-

ample illustrates that, in general, a C∗-algebra-valued rectangular quasi-metric space is not

necessarily a C∗-algebra-valued rectangular metric space and is not necessarily a C∗-algebra-

valued metric space.



C∗-ALGEBRA VALUED RECTANGULAR QUASI-METRIC SPACES 7461

Example 2.3. Let X = A∪B, where A = {0,2} and B = {1
n , n ∈ N∗}. Let A = M2(R) of all

2×2 matrices with the usual addition ,scalar multiplication and multiplication. Define partial

ordering on A as

 a1 a2

a3 a4

 �
 b1 b2

b3 b4

⇔ ai ≥ bi for i = 1,2,3,4

For any A ∈ A we define its norm as ,‖A‖= max1≤i≤4|ai|

Define d : X×X → A by

d (0,2) = d (2,0) =

 1 0

0 1


d
(

1
n
,0
)
=

 1 0

0 1


d
(

0,
1
n

)
=

 1
n 0

0 1
n


d
(

2,
1
n

)
=

 1 0

0 1


d
(

1
n
,2
)
=

 1
n 0

0 1
n


d
(

1
n
,

1
m

)
= d

(
1
m
,
1
n

)
=

 1 0

0 1


.

Then (X ,A+,d) is a C∗-algebra valued rectangular quasi- metric space. However we have the

following:

1) (X ,A+,d) is not a C∗-algebra valued metric space, as d
(1

n ,0
)
6= d

(
0, 1

n

)
, for all n≥ 1.

2) (X ,A+,d) is not a C∗-algebra valued asymmetric metric space, as

d (2,0) =

 1 0

0 1

�
 1

2 0

0 1
2

=

 1
4 0

0 1
4

+

 1
4 0

0 1
4

= d
(
2, 1

4

)
+d
(1

4 ,0
)
.

3) (X ,d) is not a C∗-algebra valued rectangular metric space, as

d
(1

n ,2
)
=

 1
n 0

0 1
n

 6=
 1 0

0 1

= d
(
2, 1

n

)
, for all n≥ 1.
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Definition 2.4. Let (X ,A,d) is a C∗-algebra valued rectangular quasi-metric space and

{xn}n∈N be a sequence in X. Then

(i) We say that {xn}n∈N forward converges to x with respect to A if and only if for given

ε � 0A, there is N such that for all n≥ N, d (x,xn)� ε. We denote it by

lim
n→+∞

d (x,xn) .

(ii) We say that {xn}n∈N backward converges to x with respect to A if and only if for given

ε � 0A, there is N such that for all n≥ N, d (xn,x)� ε. We denote it by

lim
n→+∞

d (xn,x) = 0A.

(iii) We say that {xn}n∈N forward Cauchy if

lim
n,m→+∞

d (xn,xm) = 0A.

(iv) We say that {xn}n∈Nbackward Cauchy if

lim
n,m→+∞

d (xm,xn) = 0A.

Remark 2.5. [4] Let (X ,d) be as in Example 2.3, {1
n}n∈N∗ be a sequence in X . However we

have the following:

i) lim
n→+∞

d
(1

n ,0
)
= 0A, lim

n→+∞
d
(1

n ,2
)
= 1 and lim

n→+∞
d
(
0, 1

n

)
= 1, lim

n→+∞
d
(
2, 1

n

)
= 0A. Then,

the sequence {1
n} forward converges to 2 and backward converges to 0, so limit is not

unique.

ii) lim
n→+∞

d
( 1

m ,
1
n

)
= lim

n→+∞
d
( 1

m ,
1
n

)
= 1. So, forward (backward) convergence dose not im-

ply forward (backward) Cauchy.

Lemma 2.6. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space and {xn}n be a

forward (or backward) Cauchy sequence with pairwise disjoint elements in X. If {xn}n forward

converges to x ∈ X and backward converges to y ∈ X, then x = y.

Proof. Let ε � 0A. First assume that {xn}n is a forward Cauchy sequence, so there exists n0 ∈N

such that d(xn,xm) � ε

3 for all m ≥ n ≥ n0. Since {xn}nforward converges to x so there exists
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n1 ∈ N such that d(xn,x) � ε

3 for all n ≥ n1. Also {xn}n forward converges to y so there exists

n2 ∈ N such thatd(y,xn)� ε

3s for all n≥ n2. Then for all N ≥max{n0,n1,n2},

d(x,y)� d(x,xn)+d(xn,xn+1)+d(xn+1,y)�
ε

3
+

ε

3
+

ε

3
= ε.

As ε � 0A was arbitrary, we deduce that d(x,y) = 0A, which implies x = y. When {xn}n is a

backward Cauchy sequence, the proof is similar to an earlier state �

Definition 2.7. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space. X is said

to be forward (backward) complete if every forward (backward) Cauchy sequence {xn}n in X

forward (backward) converges to x ∈ X.

Definition 2.8. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space. X is said to

be complete if X is forward and backward complete.

Definition 2.9. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space. A mapping

T : X→ X is a C∗-valued contractive mapping on X, if there exists an a ∈A with ‖A ‖< 1 such

that

(1) d(T x,Ty)� a∗d(x,y)a

for all x,y ∈ A.

Theorem 2.10. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space and let T :

X → X is a C∗-valued contractive mapping on X, then there exists a unique fixed point in X.

Proof. It is clear that if A = 0A, then T maps the X into a single point. Thus without loss of

generality, one can suppose that A 6= 0A. Choose an x0 ∈ X and set xn+1 = T xn = T nx0. Notice

that in C∗-algebra, if a,b ∈ A+ and a � b, then for any x ∈ A both x∗ax and x∗bx are positive

elements and x∗ax� x∗bx.

Substituting x = xn−1 and y = xn, from (1), for all n ∈ N, we have

d (xn,xn+1) = d (T xn−1,T xn)

� a∗d (xn−1,xn)a

� (a∗)2d (xn−2,xn−1)a2
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� ...

� (a∗)nd (x0,x1)an

Substituting x = xn−1 and y = xn , from (1), for all n ∈ N, we have

d (xn,xn+2) = d (T xn−1,T xn+1)

� a∗d (xn−1,xn+1)a

� (a∗)2d (xn−2,xn)a2

� ...

� (a∗)nd (x0,x2)an

Case 1: Assume that m = 2l +1 with l ≥ 1. By property (ii) of the C∗-algebra valued rectan-

gular quasi-metric space, we have

d (xn,xn+m) = d (xn,xn+2l+1)

� d (xn,xn+1)+d (xn+1,xn+2)+d (xn+2,xn+n+2l+1)

� d (xn,xn+1)+d (xn+1,xn+2)+d (xn+2,xn+3)+d (xn+3,xn+4)+d (xn+4,xn+n+2l+1)

� d (xn,xn+1)+d (xn+1,xn+2)+ ...+d (xn+2l,xn+2l+1)

� (a∗)nd (x0,x1)an +(a∗)n+1d (x0,x1)an+1 + ...+(a∗)n+2ld (x0,x1)an2l+1

=
i=n+2l

∑
i=n

(a∗)kd (x0,x1)ak

=
i=n+2l

∑
i=n

(akd (x0,x1)
1
2 )∗d (x0,x1)

1
2 ak

=
i=n+2l

∑
i=n
|d (x0,x1)

1
2 ak|2

� ‖
i=n+2l

∑
i=n
|d (x0,x1)

1
2 ak|2‖IA

� ‖d (x0,x1)
1
2 ‖2

i=n+2l

∑
i=n
‖a‖2kIA

� ‖d (x0,x1)
1
2 ‖2 ‖a‖2n

1−‖a‖2 IA→ 0A(n→ ∞).
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Case 2: If m = n+2k Similarly to case1 we have

d (xn,xn+m) = d (xn,xn+2k)

� d (xn,xn+2)+d (xn+2,xn+3)+d (xn+2,xn+n+2k)

� d (xn,xn+2)+d (xn+2,xn+3)+d (xn+3,xn+4)+d (xn+4,xn+5)+d (xn+5,xn+n+2k)

� d (xn,xn+2)+d (xn+2,xn+3)+ ...+d (xn+2k−1,xn+2k)

� (a∗)nd (x0,x2)an +(a∗)n+2d (x0,x1)an+2 + ...+(a∗)n+2k−1d (x0,x1)an+2k−1

= (a∗)nd (x0,x2)an +
i=n+2k−1

∑
i=n+2

(a∗)id (x0,x1)ai

= (and (x0,x2)
1
2 )∗d (x0,x2)

1
2 an +

i=n+2k−1

∑
i=n+2

(akd (x0,x1)
1
2 )∗d (x0,x1)

1
2 ak

= |d (x0,x2)
1
2 an|2 +

i=n+2k−1

∑
i=n+2

|d (x0,x1)
1
2 ai|2

� ‖|d (x0,x2)
1
2 an|2‖IA+‖

i=n+2k−1

∑
i=n

|d (x0,x1)
1
2 ai|2‖IA

� ‖d (x0,x2)
1
2 ‖2‖a‖2nIA+‖d (x0,x1)

1
2 ‖2

i=n+2k−1

∑
i=n

‖a‖2iIA

� ‖d (x0,x2)
1
2 ‖2‖a‖2nIA+‖d (x0,x1)

1
2 ‖2 ‖a‖2n

1−‖a‖2 IA→ 0A(n→ ∞).

Therefore xn is a forward Cauchy sequence with respect to A. By the completeness of (X ,A,d)

there exists an z ∈ X such that

(2) lim
n→∞

d(z,xn) = 0A.

Substituting x = xn and y = xn−1 , from (1), for all n ∈ N, we have

d (xn+1,xn) = d (T xn,T xn−1)

� a∗d (xn,xn−1)a

� (a∗)2d (xn−1,xn−2)a2

� ...

� (a∗)nd (x1,x0)an
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Substituting x = xn+1 and y = xn−1 , from (1), for all n ∈ N, we have

d (xn+1,xn) = d (T xn−1,T xn+1)

� (a∗)nd (x2,x0)an

Case 1: Assume that m = 2l +1 with l ≥ 1. By property (ii) of the C∗-algebra valued rectan-

gular quasi-metric space, we have

d (xn+m,xn) = d (xn+2l+1,xn)

� ‖d (x1,x0)
1
2 ‖2

i=n+2l

∑
i=n
‖a‖2kIA

� ‖d (x1,x0)
1
2 ‖2 ‖a‖2n

1−‖a‖2 IA→ 0A(n→ ∞).

Case 2: If m = n+2k Similarly to case 1 we have

d (xn+m,xn) = d (xn+2k,xn)

� d (xn+2,xn)+d (xn+3,xn+2)+d (xn+n+2k,xn+2)

� |d (x2,x0)
1
2 an|2 +

i=n+2k−1

∑
i=n+2

|d (x1,x0)
1
2 ai|2

� ‖|d (x2,x0)
1
2 an|2‖IA+‖

i=n+2k−1

∑
i=n

|d (x1,x0)
1
2 ai|2‖IA

� ‖d (x2,x0)
1
2 ‖2‖a‖2nIA+‖d (x0,x1)

1
2 ‖2

i=n+2k−1

∑
i=n

‖a‖2iIA

� ‖d (x2,x0)
1
2 ‖2‖a‖2nIA+‖d (x1,x0)

1
2 ‖2 ‖a‖2n

1−‖a‖2 IA→ 0A(n→ ∞).

Therefore xn is a backward Cauchy sequence with respect to A. By the completeness of

(X ,A,d) there exists an u ∈ X such that

lim
n→∞

d(u,xn) = 0A.
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So, from Lemma 2.6, we get z = u.

On has

0A � d (z,T z)� d (z,xn)+d (xn,T xn)+d (T xn,T z)

� d (z,xn)+d (xn,T xn)+a∗d(xn,z)a→ 0A(n→ ∞).

Since

0A � d (T z,z)� d (T z,T xn)+d (T xn,xn)+d (xn,z)

� a∗d(z,xn)a+d (T xn,xn)+d (xn,z)→ 0A(n→ ∞).

Therefore d (z,T z) = 0A or d (T z,z) = 0A which implies T z = z, i.e. z is a fixed point of T .

Uniqueness: Suppose that u 6= z is another fixed point of T . Since

0A � d (z,u) = d (T z,Tu)� a∗d(z,u)a

� ‖a∗d(z,u)a‖

� ‖a∗‖‖d(z,u)‖‖a‖

= ‖a‖2‖d(z,u)‖

< ‖d(z,u)‖, which is a contradiction.

Hence d (z,u) = θ and z = u, which implies that the fixed point is unique. �

Example 2.11. Let A= M2(R) of all 2×2 matrices with the usual addition ,scalar multiplica-

tion and multiplication.

Define partial ordering on A as

 a1 a2

a3 a4

 �
 b1 b2

b3 b4

⇔ ai ≥ bi for i = 1,2,3,4. For

any A ∈ A we define its norm as, ‖

 a1 a2

a3 a4

‖= [i=4
∑

i=1
|ai|2

] 1
2

.

Let X = A∪B, where A = {0, 1
2 ,

1
3 ,

1
4} and B = [1,2].

Define d : X×X → [0,+∞[ as follows:
d(x,y) = d(y,x) f or all x,y ∈ B;

d(x,y) = 0⇔ y = x f or all x,y ∈ X .
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and 

d
(

1
3
,
1
4

)
= d

(
0,

1
2

)
=

 0.3 0

0 0.3


d
(

1
3
,0
)
= d

(
1
4
,
1
2

)
=

 0.2 0

0 0.2


d
(

0,
1
3

)
= d

(
1
2
,
1
4

)
=

 0.35 0

0 0.35


d
(

1
3
,
1
2

)
= d

(
1
3
,
1
2

)
=

 0.6 0

0 0.6


d (x,y) =

 |x− y| 0

0 |x− y|

 otherwise.

Then (X ,A+,d) is a C∗-algebra valued rectangular quasi-metric space. However we have the

following:

1) (X ,A+,d) is not a C∗-algebra valued asymmetric metric space, as

d
(1

3 ,
1
2

)
=

 0.6 0

0 0.6

 �
 0.5 0

0 0.5

 =

 0.3 0

0 0.3

 +

 0.2 0

0 0.2

 =

d
(1

3 ,
1
4

)
+d
(1

4 ,
1
2

)
.

2) (X ,d) is not a C∗-algebra valued rectangular metric space, as

d
(1

2 ,
1
4

)
=

 0.35 0

0 0.35

 6=
 0.2 0

0 0.2

= d
(1

4 ,
1
2

)
.

Define mapping T : X → X by

T (x) =


x

1
4 i f x ∈ [1,2]

1 i f x ∈ A.

Evidently, T (x) ∈ X. Consider the following possibilities:

case 1 : x,y ∈ [1,2] x 6= y. Then

T (x) = x
1
4 , T (y) = y

1
4 , d (T x,Ty) =

 x
1
4 − y

1
4 0

0 x
1
4 − y

1
4

 .
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On the other hand

d (x,y) =

 x− y 0

0 x− y

 .

it follows that

(3) d(T x,Ty)� a∗d(x,y)a.

Indeed

d(T x,Ty) =

 x
1
4 − y

1
4 0

0 x
1
4 − y

1
4


�

 1√
3

0

0 1√
3

 x− y 0

0 x− y

 1√
3

0

0 1√
3


= a∗d(x,y)a.

where

a =

 1√
3

0

0 1√
3


with verify

‖a‖=
√

2√
3
≤ 1.

case 2 : x ∈ [1,2], y ∈ A. Then

T (x) = x
1
4 , T (y) = 1, D(T x,Ty) = 2

(
x

1
4 −1

)
.

d (T x,Ty) =

 x
1
4 −1 0

0 x
1
4 −1

 .

On the other hand

d (x,y) =

 x− y 0

0 x− y

 .

it follows that

(4) d(T x,Ty)� a∗d(x,y)a.
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Indeed

d(T x,Ty) =

 x
1
4 −1 0

0 x
1
4 −1


�

 1√
3

0

0 1√
3

 x−1 0

0 x−1

 1√
3

0

0 1√
3


�

 1√
3

0

0 1√
3

 x− y 0

0 x− y

 1√
3

0

0 1√
3


= a∗d(x,y)a.

where

a =

 1√
3

0

0 1√
3


with verify

‖a‖=
√

2√
3
≤ 1.

Hence, the condition (1) is satisfied. Therefore, T has a unique fixed point z = 1.

Example 2.12. Let A = M2(R+) of all 2× 2 matrices with the usual addition ,scalar multi-

plication and multiplication. Define partial ordering on A as

 a1 a2

a3 a4

 �
 b1 b2

b3 b4


⇔ ai ≥ bi for i = 1,2,3,4. For any A ∈A we define its norm as ,‖

 a1 a2

a3 a4

‖= [i=4
∑

i=1
|ai|2

] 1
2

.

Define d : X×X → [0,+∞[ as follows:

d (x,y) =

 ex− ey 0

0 0

 i f x≥ y

d (x,y) =

 0 0

0 e−x− e−y

 i f x≤ y

Then (X ,A+,d) is a C∗-algebra valued rectangular quasi-metric space.

Define mapping T : X → X by

T (x) =
x
4
.
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Evidently, T (x) ∈ X. Then

d (T x,Ty) =

 e
x
4 − e

y
4 0

0 0

 i f x≥ y

d (T x,Ty) =

 0 0

0 e−
x
4 − e−

y
4

 i f x≤ y

it follows that

(5) d(T x,Ty)� a∗d(x,y)a.

Indeed 

d (T x,Ty)�

 1
2 0

0 1
2

 ex− ey 0

0 0

 1
2 0

0 1
2

 i f x≥ y

d (T x,Ty)�

 1
2 0

0 1
2

 0 0

0 e−x− e−y

 1
2 0

0 1
2

 i f x≤ y

where

a =

 1
2 0

0 1
2


with verify

‖a‖= 1
2
< 1.

Hence, the condition (1) is satisfied. Therefore, T has a unique fixed point z = 0.

Definition 2.13. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space. A mapping

T : X → X is a C∗-valued Kannan-type mapping on X, if there exists an a ∈ A′+ with ‖ a ‖< 1
2

such that

(6) d(T x,Ty)� a [d(x,T x)+d(y,Ty)]

for all x,y ∈ A where

A
′
+ = {a ∈ A+| ab = ba f or all b ∈ A+}

Theorem 2.14. Let (X ,A,d) a C∗-algebra valued rectangular quasi-metric space and let T :

X → X is a C∗-valued Kannan-type mapping on X, then there exists a unique fixed point in X.
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Proof. Without loss of generality, one can suppose that a 6= 0A. Notice that a ∈ A′+,

a [d(x,T x)+d(y,Ty)] is also a positive element. Choose an x0 ∈ X and set xn+1 = T xn = T nx0.

Substituting x = xn−1 and y = xn, from (6), for all n ∈ N, we have

d (xn,xn+1) = d (T xn−1,T xn)

� a [d (xn−1,xn)+d (xn,xn+1)] .

Since a∈A′+ with ‖ a ‖< 1
2 , using Lemma 1.1, I−a is invertible and also ‖(I−a)a‖< 1. Thus

d (xn,xn+1)� (I−a)−1 a [d (xn−1,xn)]

� (I−a)−2 a2 [d (xn−2,xn−1)]

� ...

� (I−a)−n an [d (x0,x1)]

= hn [d (x0,x1)]

with hn = (I−a)−nan.

Substituting x = xn−1 and y = xn+1 , from (1), for all n ∈ N, we have

d (xn,xn+2)� (I−a)−1 a [d (xn−1,xn+1)]

� (I−a)−2 a2 [d (xn−2,xn)]

� ...

� (I−a)−n an [d (x0,x2)]

= hn [d (x0,x2)]

Case 1: Assume that m = 2l +1 with l ≥ 1. By property (ii) of the C∗-algebra valued rectan-

gular quasi-metric space, we have

d (xn,xn+m) = d (xn,xn+2l+1)

� d (xn,xn+1)+d (xn+1,xn+2)+d (xn+2,xn+n+2l+1)
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� d (xn,xn+1)+d (xn+1,xn+2)+d (xn+2,xn+3)+d (xn+3,xn+4)+d (xn+4,xn+n+2l+1)

� d (xn,xn+1)+d (xn+1,xn+2)+ ...+d (xn+2l,xn+2l+1)

�
i=n+2l

∑
i=n
‖h

k
2‖2‖d (x0,x1)

1
2 ‖2

� ‖d (x0,x1)
1
2 ‖2

i=n+2l

∑
i=n
‖h

k
2‖2

� ‖d (x0,x1)
1
2 ‖2 ‖h‖2n

1−‖h‖2 IA→ 0A(n→ ∞).

Case 1: If m = n+2k Similarly to case1 we have

d (xn,xn+m) = d (xn,xn+2k)

� d (xn,xn+2)+d (xn+2,xn+3)+d (xn+2,xn+n+2k)

� d (xn,xn+2)+d (xn+2,xn+3)+d (xn+3,xn+4)+d (xn+4,xn+5)+d (xn+5,xn+n+2k)

� d (xn,xn+2)+d (xn+2,xn+3)+ ...+d (xn+2k−1,xn+2k)

� ‖h‖n‖d (x0,x2)‖+
i=n+2l

∑
i=n
‖h

k
2‖2‖d (x0,x2)

1
2 ‖2

�

[
‖h‖n‖d (x0,x2)‖+‖d (x0,x2)

1
2 ‖2

i=n+2l

∑
i=n
‖h

k
2‖2

]
IA

�
[
‖h‖n‖d (x0,x2)‖+‖d (x0,x2)

1
2 ‖2 ‖h‖2n

1−‖h‖2

]
IA→ 0A(n→ ∞).

Therefore xn is a forward Cauchy sequence with respect to A. By the completeness of (X ,A,d)

there exists an z ∈ X such that

(7) lim
n→∞

d(z,xn) = 0A.

Substituting x = xn and y = xn−1, from (6), for all n ∈ N, we have

d (xn+1,xn) = d (T xn,T xn−1)

� a [d (xn,xn−1)+d (xn+1,xn)]

� hn [d (x1,x0)] .
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Substituting x = xn+1 and y = xn−1, from (6), for all n ∈ N, we have

d (xn+2,xn) = d (T xn+1,T xn−1)

� hn [d (x2,x0)] .

Therefore xn is a backward Cauchy sequence with respect to A. By the completeness of

(X ,A,d) there exists an u ∈ X such that

(8) lim
n→∞

d(xn,u) = 0A.

So, from Lemma 2.6, we get z = u.

On has

0A � d (z,T z)� d (z,xn)+d (xn,T xn)+d (T xn,T z)

� d (z,xn)+d (xn,T xn)+a(d(xn,T xn)+(d(z,T z)))→ 0A(n→ ∞).

This is equivalent to

d (z,T z)� (I−1)−1 [d (xn,T xn)+a(d(xn,T xn))]→ 0A(n→ ∞).

Since

d (T z,z)� (I−1)−1 [d (T xn,xn)+a(d(T xn,xn))]→ 0A(n→ ∞).

Therefore d (z,T z) = 0A or d (T z,z) = 0A which implies T z = z, i.e. z is a fixed point of T .

Uniqueness: Suppose that u 6= z is another fixed point of T . Since

0A � d (z,u) = d (T z,Tu)� a(d(z,T z)+(d(u,Tu)) = θ .

Hence d (z,u) = θ and z = u, which implies that the fixed point is unique. �
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