A NOTE ON CONE METRIC SPACES AND COMMON FIXED POINT RESULTS
FOR SET-VALUED MAPPINGS WITH APPLICATIONS

K.M. DHARMALINGAM*

PG and Research Department of Mathematics,
The Madura College, Madurai, TamilNadu – 625 011, India

Abstract. The aim of this paper is to establish the existence and uniqueness of common fixed point for a pair of
set-valued mappings satisfying more generalized constructive condition in the cone metric spaces setting with
normal constant $M = 1$. An illustrative example is provided to support the result obtained. As an application, prove
the well–posedness of the common fixed point problem. The presented results generalize many known results in
cone metric spaces.

Keywords: common fixed point; set–valued mapping; cone metric space; well – posedness.

2010 AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION

If (X,d) is a complete metric space and $T : X \to X$ is a contraction mapping that is

$$d(Tx,Ty) \leq \alpha d(x,y),$$

for $0 < \alpha < 1$ and $x,y \in X$ then the well known Banach contraction

mapping principle [7] says that the mapping T has a unique fixed point in X. A great number of
generalizations of this famous theorem have been obtained by relaxing or weakening the
contracting condition and sometimes by withdrawing the requirement of completeness or even
both, see [8, 10, 11, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 37, 39] and references given

*Corresponding author

E-mail address: kmdharma6902@yahoo.in

Received August 11, 2021
there in. Later, Nadier Jr. [22] has proved multivalued version of the Banach contraction principle which states that each closed bounded valued contraction map on a complete metric space has a fixed point. Many authors have been using the Hausdroff metric to obtain fixed point results for multivalued maps on metric spaces.

Recently, a very interesting generalization of the concept of metric space was obtained by Branciari [9], by replacing the triangle inequality of a metric space by a more general inequality. Correspondingly, the Banach contraction mapping principle was proved in such generalized metric space. Quite Recently, Huang and Zhang [15] generalized the concept of a metric space, replacing the set of real numbers by an ordered Banach space and obtained some fixed point theorems for mappings satisfying different contractive conditions. Later Wardowski [42] introduced the concept of multivalued contractions in cone metric spaces and using the notion of normal cones, obtained fixed point theorems for such mappings. As we know, most of known cones are normal with normal constant $M=1$. Further, Rezapour [35] proved two results about common fixed points of multifunctions on cone metric spaces. For a detailed study, see [1, 2, 3, 6, 12, 13, 16, 17, 18, 32, 35, 36, 38, 40, 41]. Motivated by the above work, in this paper, analyze the existence and uniqueness of common fixed point for a pair of set-valued mappings satisfying more generalized contractive condition in cone metric spaces setting with normal constant $M = 1$. An example is given to justify my results. Further, we prove the well-posedness of common fixed point problem. The presented results generalize many known results in cone metric spaces.

2. Preliminaries

In this section, recall the definition of cone metric space and some of their properties. The following notions will be used in order to prove the main results.

Definition 2.1. Let E be a real Banach space. A subset P of E is called a cone if the following conditions are satisfied:

(i) P is closed nonempty and $P \neq 0$;

(ii) $a, b \in \mathbb{R}$, $a, b \geq 0$ and $x, y \in P$ imply that $ax + by \in P$;

(iii) $P \cap (-P) = \{0\}$.
Given a cone P of E, define a partial ordering \(\leq \) with respect to P by \(x \leq y \) if and only if \(y - x \in P \).

We shall write \(x < y \) indicate that \(x \leq y \) but \(x \neq y \), while \(x \ll y \) will stand for \(y - x \in \text{int}P \).

A cone P is called normal if there is a number \(K > 0 \) such that for all \(x, y \in E \), \(0 \leq x \leq y \) implies \(\|x\| \leq K \|y\| \). The least positive number satisfying the above inequality is called the normal constant of P.

Definition 2.2. Let \(X \) be a nonempty set and \(d : X \times X \to E \) be a mapping such that the following conditions hold:

(i) \(0 \leq d(x,y) \) for all \(x, y \in X \) and \(d(x,y) = 0 \) if and only if \(x = y \);

(ii) \(d(x,y) = d(y,x) \) for all \(x, y \in X \);

(iii) \(d(x,y) \leq d(x,z) + d(z,y) \) for all \(x, y, z \in X \).

Then \(d \) is called a cone metric on \(X \) and \((X,d)\) is called a cone metric space.

Example 2.1. Let \(X = R, E = R^2, P = \{(x,y) \in E : x, y \geq 0\} \subset R^2 \) and \(d : X \times X \to E \) such that \(d(x,y) = (|x - y|, \delta |x - y|) \), where \(\delta \geq 0 \) is a constant. Then \((X,d)\) is a cone metric space.

Example 2.2. Let \(E = C_{[0,1]}^{1} \) with \(\|f\| = \|f\|_{\infty} + \|f\|_{\infty} \). The cone \(P = \{f \in E : f \geq 0\} \) is a non-normed cone.

Definition 2.3. Let \((X,d)\) be a cone metric space. We say that \(\{x_n\} \) is

(i) a Cauchy sequence if for every \(c \in E \) with \(0 \ll c \), there is \(N \) such that for all \(m, n > N \), \(d(x_n, x_m) \ll c \);

(ii) a convergent sequence if for every \(c \in E \) with \(0 \ll c \), there is \(N \) such that for all \(n > N \), \(d(x_n, x) \ll c \), for some \(x \in X \). It is denoted by \(\lim_{n \to \infty} x_n = x \) or \(x_n \to x \).

A cone metric space \(X \) is said to be complete if every Cauchy sequence in \(X \) is convergent in \(X \). The limit of a convergent sequence is unique provided \(P \) is a normal cone with normal constant \(K([15]) \).

Lemma 2.1. Let \((X,d)\) be a cone metric space and \(P \) be a normal cone with normal constant \(K \). Let \(x_n \) be a sequence in \(X \). Then \(x_n \) is a Cauchy sequence if and only if \(d(x_n, x_m) \to 0 \) as \(m, n \to \infty \).
Lemma 2.2. Let \((X,d)\) be a cone metric space, \(P\) be a normal cone with normal constant \(M = 1\) and \(A\) be a compact set in \((X,\tau_c)\). Then for every \(x \in X\) there exists \(a_0 \in A\) such that \(\|d(x,a_0)\| = \inf_{a \in A} \|d(x,a)\|\).

Lemma 2.3. Let \((X,d)\) be a cone metric space, \(P\) be a normal cone with normal constant \(M = 1\) and \(A, B\) be two compact sets in \((X,\tau_c)\). Then \(\sup_{x \in B} D(x,A) < \infty\), where \(D(x,A) = \inf_{a \in A} \|d(x,a)\|\), for each \(x \in X\).

Definition 2.4. Let \((X,d)\) be a cone metric space, \(P\) be a normal cone with normal constant \(M = 1\), \(H_c\) denote the set of all compact subsets of \((X,\tau_c)\) and \(A \in H_c\). Now by lemma(2.2), define
\[
h_A : H_c(X) \to [0,\infty) \quad \text{and} \quad d_H : H(X) \times H_c(X) \to [0,\infty)
\]
by
\[
h_A(B) = \sup_{x \in A} D(x,B) < \infty, \quad \text{and} \quad d_H(A,B) = \max\{h_A(B), h_B(A)\}, \text{respectively.}
\]

Remark 2.1. Let \((X,d)\) be a cone metric space and \(P\) be a normal cone with normal constant \(M = 1\). Define \(\rho : X \times X \to [0,\infty)\) by \(\rho(x,y) = \|d(x,y)\|\). Then, \((X,\rho)\) is a metric space. This implies that for each \(A,B \in H_c\) and \(x,y \in X\), we have the following relations:

\[
\begin{align*}
\text{(i)} & \quad D \leq \|d(x,y)\| + D(y,A), \\
\text{(ii)} & \quad D \leq D(x,B) + h_B(A), \quad \text{and} \\
\text{(iii)} & \quad D \leq \|d(x,y)\| + D(y,B) + h_B(A),
\end{align*}
\]

Definition 2.5. \(\text{(Implicit Relation)}\) Let \(\Phi\) be the class of real valued continuous functions \(\phi : \mathbb{R}^3_+ \to \mathbb{R}_+\) non-decreasing in the first argument and satisfying the following condition: for \(x,y > 0\),

\[
\begin{align*}
\text{(i)} & \quad x \leq \phi(y, \frac{x+y}{2}, \frac{x+y}{2}) \quad \text{or} \\
\text{(ii)} & \quad x \leq \phi(x,0,x),
\end{align*}
\]

there exists a real number \(0 < h < 1\) such that \(x \leq hy\).

Example 2.3. Let \(\phi(r,s,t) = r - \alpha \min(s,t) + (2 + \alpha)t\), where \(\alpha > 0\).

Example 2.4. Let \(\phi(r,s,t) = r^2 - ar \max(s,t) - bs\), where \(a > 0, b > 0\).

Example 2.5. Let \(\phi(r,s,t) = r + c \max(s,t)\), where \(c \geq 0\).
Definition 2.6. A sequence \(\{x_n\} \) in a cone metric space in \(X \) is said to be asymptotically \(T \)-regular if \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \).

3. Main Results

Theorem 3.1. Let \((X, d)\) be a complete metric space with normal constant \(M = 1 \) and \(S, T : X \to H_c(X) \) be two set-valued mappings such that

\[
(3.1) \quad d(Sx, Ty) \leq \alpha \max \{d(x, y), d(x, Sx), d(y, Ty), \frac{d(x, Sx) + d(y, Ty)}{2}\}
\]

for all \(x, y \in X \) where \(0 \leq \alpha < 1 \). Then \(S \) and \(T \) have a unique common fixed point in \(X \).

Proof. Let \(x_0 \in X \) be a arbitrary point. Then by lemma 2.2, there exist \(x_1 \in Sx_0 \) and \(x_2 \in Tx_1 \) such that \(D(x_0, Sx_0) = \|d(x_0, x_1)\| \) and \(D(x_1, Tx_1) = \|d(x_1, x_2)\| \).

Likewise, for \(n \in \mathbb{N} \), we define a sequence \(x_n \) in \(X \) such that \(x_{2n-1} \in Sx_{2n-2}, \ x_{2n} \in Tx_{2n-1} \). Therefore, \(D(x_{2n-2}, Sx_{2n-2}) = \|d(x_{2n-2}, x_{2n-1})\| \) and \(D(x_{2n-1}, Tx_{2n-1}) = \|d(x_{2n-1}, x_{2n})\| \) for all \(n \in \mathbb{N} \). Thus, for all \(n \in \mathbb{N} \), we have the following

\[
\|d(x_{2n}, x_{2n+1})\| = D(x_{2n}, Sx_{2n})
\]

\[
\leq d_{Tx_{2n-1}}(Sx_{2n})
\]

\[
\leq d_{H}(Tx_{2n-1}, Sx_{2n})
\]

\[
\leq \alpha \max \{D(x_{2n-1}, Sx_{2n}), D(x_{2n-1}, Tx_{2n-1})
\]

\[
D(x_{2n}, Sx_{2n}) + D(x_{2n-1}, Tx_{2n-1})
\]

\[
= \alpha \max \{\|d(x_{2n-1}, x_{2n})\|, \|d(x_{2n}, x_{2n+1})\|, \|d(x_{2n-1}, x_{2n})\|, \|d(x_{2n}, x_{2n+1})\| + \|d(x_{2n-1}, x_{2n})\|\}
\]

\[
= \alpha \max \{\|d(x_{2n}, x_{2n+1})\|, \|d(x_{2n-1}, x_{2n})\|\}.
\]

Case(i): If \(\max \{\|d(x_{2n}, x_{2n+1})\|, \|d(x_{2n-1}, x_{2n})\|\} = \|d(x_{2n}, x_{2n+1})\| \leq \alpha \|d(x_{2n}, x_{2n+1})\| \) which implies that \(\|d(x_{2n}, x_{2n+1})\| \to 0 \) as \(n \to \infty \), since \(0 < \alpha < 1 \).

Case(ii): If \(\max \{\|d(x_{2n}, x_{2n+1})\|, \|d(x_{2n-1}, x_{2n})\|\} = \|d(x_{2n-1}, x_{2n})\| \), then \(\|d(x_{2n}, x_{2n+1})\| \leq \alpha \|d(x_{2n-1}, x_{2n})\| \). Proceeding in this way, we obtain \(\|d(x_{2n}, x_{2n+1})\| \leq \alpha^2 \|d(x_0, x_1)\|, n \in \mathbb{N} \).
Also for \(n > m \), we have

\[
\|d(x_n, x_m)\| \leq \|d(x_n, x_{n-1})\| + \|d(x_{n-1}, x_{n-2})\| + \cdots + \|d(x_{m+1}, x_m, u)\|
\]

\[
\leq (\alpha^{n-1} + \alpha^{n-2} + \cdots + \alpha^m) \|d(x_1, x_0)\|
\]

\[
\leq \frac{\alpha^m}{1 - \alpha} \|d(x_1, x_0)\|
\]

Thus \(\|d(x_n, x_m)\| \to 0 \), as \(n \to \infty \), since \(\frac{k^m}{1 - k} \to 0 \) as \(n \to \infty \). Therefore, in both cases, \(\{x_n\} \) is a Cauchy sequence in \(X \). Hence there exists a point \(z \in X \) such that \(x_n \to z \), as \(n \to \infty \). Further, by using Remark 2.1, we have

\[
D(z, S z) \leq D(z, T x_{2n-1}) + h_{T x_{2n-1}}(S z)
\]

\[
\leq D(z, T x_{2n-1}) + d_H(T x_{2n-1}, S z)
\]

\[
\leq \|d(z, x_{2n})\| + \alpha \max\{D(z, x_{2n-1}), D(z, S z), D(x_{2n-1}, T x_{2n-1}), D(z, S z) + D(x_{2n-1}, T x_{2n-1})\}
\]

\[
= \|d(z, x_{2n})\| + \alpha \max\{D(z, x_{2n-1}), D(z, S z), D(x_{2n-1}, x_{2n})\}
\]

\[
= \|d(z, x_{2n})\| + \alpha \max\{D(z, x_{2n-1}), D(z, S z), D(x_{2n-1}, x_{2n})\}
\]

Now, letting \(n \to \infty \), we get \(D(z, S z) = 0 \). Hence by lemma 2.2, \(z \in S z \). Similarly,

\[
D(z, T z) \leq D(z, S x_{2n}) + h_{S x_{2n}}(T z)
\]

\[
\leq D(z, S x_{2n}) + d_H(S x_{2n}, T z)
\]

\[
\leq \|d(z, x_{2n+1})\| + \alpha \max\{D(z, x_{2n}), D(z, T z), D(x_{2n}, S x_{2n})\}
\]

\[
= \|d(z, x_{2n+1})\| + \alpha \max\{D(z, x_{2n}), D(z, T z), D(x_{2n}, x_{2n+1})\}
\]

Now, letting \(n \to \infty \), we get \(D(z, T z) = 0 \). Hence by lemma 2.2, \(z \in T z \). Therefore, \(z \in X \) is a common fixed point of \(S \) and \(T \).

Uniqueness:
Let \(\tilde{z} \) be another common fixed point of \(S \) and \(T \), that is, \(S \tilde{z} = T \tilde{z} = \tilde{z} \). Then
\[
\|d(z, \tilde{z})\| = \|d(Sz, T\tilde{z})\| \\
\leq \alpha \max\{\|d(z, \tilde{z})\|, \|d(z, Sz)\|, \|d(\tilde{z}, T\tilde{z})\|, \frac{\|d(z, Sz)\| + \|d(\tilde{z}, T\tilde{z})\|}{2}\}
\]
Which implies that \(\|d(z, \tilde{z})\| = 0 \), since \(\alpha < 1 \) for all \(u \in X \). Thus \(z \) is a unique common fixed point of \(S \) and \(T \).

Remark 3.1. Theorem 3.1 generalizes Theorem 3.1 of [12], Also, my result establishes the uniqueness of the common fixed point of \(S \) and \(T \).

Corollary 3.1. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S, T : X \rightarrow H_c(X) \) be two set-valued mappings such that
\[
d(Sx, Ty) \leq ad(x, y) + bd(x, Sx) + cd(y, Ty) + e \frac{d(x, Sx) + d(y, Ty)}{2}
\]
for all \(x, y \in X \) and \(a, b, c, e \geq 0 \), where \(a + b + c + e < 1 \). Then \(S \) and \(T \) have a unique common fixed point in \(X \).

Remark 3.2. Note that corollary 3.1 reduces to:
1. Theorm 2.3 of Razapour [35] when \(b = c \) and \(a = 0 = e \) in corollary 3.1.
2. Nadler’s result [22] in the case \(S = T \) and \(b = c = e = 0 \).
3. Corollary 3.3 of Poonkundran and Dharmalingam [30] if we take \(e = 0 \). Note the following results are consequences of corollary 3.1.

Corollary 3.2. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S, T : X \rightarrow H_c(X) \) be two set-valued mappings such that
\[
d(Sx, Ty) \leq ad(x, Sx) + bd(y, Ty) + c \frac{d(x, Sx) + d(y, Ty)}{2}
\]
for all \(x, y \in X \) and \(a, b \geq 0 \), where \(a + b < 1 \). Then \(S \) and \(T \) have a unique common fixed point in \(X \).

Corollary 3.3. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S : X \rightarrow H_c(X) \) be two set-valued mappings such that

\[
d(Sx, Sy) \leq ad(x, y) + bd(x, Sx) + cd(y, Sy) + e \frac{d(x, Sx) + d(y, Sy)}{2}
\]

for all \(x, y \in X \) and \(a, b, c \geq 0 \), where \(a + b + c < 1 \). Then \(S \) and \(T \) have a unique common fixed point in \(X \).

Corollary 3.4. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S : X \rightarrow H_c(X) \) be two set-valued mappings such that

\[
d(Sx, Sy) \leq ad(x, Sx) + bd(y, Sy) + c \frac{d(x, Sx) + d(y, Sy)}{2}
\]

for all \(x, y \in X \) and \(a, b, c \geq 0 \), where \(a + b < 1 \). Then \(S \) and \(T \) have a unique common fixed point in \(X \).

Remark 3.3. We obtain the set-valued Kamman type contracting condition [19] when \(c = 0 \) in corollary 3.3 in the setting of cone metric spaces.

Theorem 3.2. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S \) and \(T : X \rightarrow H_c(X) \) be two set-valued mappings such that \(d(Sx, Ty) \leq \alpha \{d(x, y), d(x, Ty), d(y, Sx), d(x, Ty) + d(y, Sx)\} \) for all \(x, y \in X \) and \(0 \leq \alpha < 1 \). Then \(S \) and \(T \) have a unique common fixed point in \(X \).

Proof. Using the similar argument of the proof of theorem 3.1, we can show that there exists a Cauchy sequence \(x_n \) in \(X \) such that \(x_{2n-1} \in Sx_{2n-2}, x_{2n} \in Tx_{2n-1} \). Therefore, \(D(x_{2n-2}, Sx_{2n-2}) = ||d(x_{2n-2}, x_{2n-1})|| \) and \(D(x_{2n-1}, Tx_{2n-1}) = ||d(x_{2n-1}, x_{2n})|| \) for all \(n \in \mathbb{N} \). Thus, we can find an element \(\tilde{x} \in X \) such that \(x_n \rightarrow \tilde{x} \) as \(n \rightarrow \infty \).
Let \tilde{x} be another common fixed point of S and T. Then

$$D(\tilde{x}, S\tilde{x}) \leq D(\tilde{x}, T_{2n-1}) + h_{T_{2n-1}}(S\tilde{x})$$

$$\leq D(\tilde{x}, T_{2n-1}) + d_H(T_{2n-1}, S\tilde{x})$$

$$\leq \|d(\tilde{x}, x_{2n})\| + \alpha \max\{D(\tilde{x}, x_{2n-1}), D(\tilde{x}, T_{2n-1})\},$$

$$D(x_{2n-1}, S\tilde{x}), \frac{D(\tilde{x}, T_{2n-1}) + D(x_{2n-1}, S\tilde{x})}{2}$$

$$= \|d(\tilde{x}, x_{2n})\| + \alpha \max\{D(\tilde{x}, x_{2n}), D(x_{2n-1}, S\tilde{x}), D(\tilde{x}, x_{2n-1})\},$$

now, letting $n \to \infty$, we get $D(\tilde{x}, S\tilde{x}) = 0$. Hence, by lemma 2.2, $\tilde{x} \in S\tilde{x}$.

$$D(\tilde{x}, T\tilde{x}) \leq D(\tilde{x}, Sx_{2n}) + h_{Sx_{2n}}(T\tilde{x})$$

$$\leq D(\tilde{x}, Sx_{2n}) + d_H(Sx_{2n}, T\tilde{x})$$

$$\leq \|d(\tilde{x}, x_{2n+1})\| + \alpha \max\{D(\tilde{x}, x_{2n}), D(\tilde{x}, Sx_{2n})\},$$

$$D(x_{2n}, T\tilde{x}), \frac{D(\tilde{x}, Sx_{2n}) + D(x_{2n}, T\tilde{x})}{2}$$

$$= \|d(\tilde{x}, x_{2n+1})\| + \alpha \max\{D(\tilde{x}, x_{2n+1}), D(x_{2n}, T\tilde{x}), D(\tilde{x}, x_{2n})\},$$

now, letting $n \to \infty$, we get $D(\tilde{x}, T\tilde{x}) = 0$. Hence, by lemma 2.2, $\tilde{x} \in T\tilde{x}$. Therefore, $\tilde{x} \in X$ is a common fixed point of S and T. **Uniqueness:**

Let \tilde{z} be another common fixed point of S and T, that is $S\tilde{z} = T\tilde{z} = \tilde{z}$. Then

$$\|d(\tilde{x}, \tilde{z})\| = \|d(S\tilde{x}, T\tilde{z})\|$$

$$\leq \alpha \max\{\|d(\tilde{x}, \tilde{z})\|, \|d(\tilde{x}, T\tilde{z})\|, \|d(\tilde{z}, S\tilde{x})\|, \frac{\|d(x, T\tilde{z})\| + \|d(\tilde{z}, S\tilde{x})\|}{2}\}$$

which implies that $\|d(\tilde{x}, \tilde{z})\| = 0$, since $\alpha < 1$ for all $u \in X$. Thus \tilde{x} is a unique common fixed point of S and T. \Box

Remark 3.4. Theorem 3.2 generalizes Theorem 3.2 of [12]. Further, it establishes the uniqueness of the common fixed point of S and T.

Corollary 3.5. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1\) and \(S, T : X \to Hc(X)\) be two set-valued mappings such that \(d(Sx,Ty) \leq ad(x,y) + bd(x,Ty) + cd(y,Sx) + e^{\frac{d(x,Ty)+cd(y,Sx)}{2}}\) for all \(x, y \in X\) and \(a, b, c \geq 0\), where \(a + b + c < 1\). Then \(S\) and \(T\) have a unique common fixed point in \(X\).

The following example supports my results.

Example 3.1. Consider the metric defined in Example 2.1. Now define \(S, T : X \to Hc(X)\) such that \(Sx = \{0\}\) and \(Tx = \{x^2\}\), for all \(x \in X\).

\[
d(Sx,Ty) = (|y|^2, \delta |y^2|)
\]

(3.2)

and

\[
\max\{d(x,y), d(x,Sx), D(y,Ty), \frac{d(x,Sx) + d(y,Ty)}{2}\} = \max\{(|x - y|, \delta |x - y|), (|x|, \delta |x|), (|y - y^2|, \delta |y - y^2|), (|x|, \delta |x|) + (|y - y^2|, \delta |y - y^2|)\}
\]

(3.3)

From Equations (3.2) and (3.3), it can be easily viewed that all the conditions of theorem 3.1 and 3.2 are satisfied. Hence \(S\) and \(T\) have a unique common fixed point 0.

4. Applications

The concept of well-posedness of a fixed point problem has generated much interest to several mathematicians, for example [4, 5, 21, 34]. Here, we study well-posedness of a common fixed point problem of mappings in theorems 3.1 and 3.2.

Definition 4.1. Let \((X, d)\) be a complete cone metric space and \(f\) be a set mapping. Then the fixed point problem of \(f\) is said to be well-posed if

(i) \(f\) has a unique fixed point \(x_0 \in X\),

(ii) for any sequence \(\{x_n\} \subset X\) and \(\lim_{n \to \infty} D(x_n, f x_n) = 0\)

we have \(\lim_{n \to \infty} D(x_n, x_0) = 0\).

Let \(CFP(T,f,X)\) denote a common fixed point problem of set mappings \(T\) and \(f\) on \(X\) and \(CF(T,f)\) denote the set of all common fixed points of \(T\) and \(f\).
Definition 4.2. A CFP \((T, f, X)\) is called well-posed if \(CF(T, f)\) is singleton and for any sequence \(\{x_n\}\) in \(X\) with \(\bar{x} \in CF(T, f)\) and
\[
\lim_{n \to \infty} D(x_n, f x_n) = \lim_{n \to \infty} D(x_n, T x_n) = 0
\]
implies \(\bar{x} = \lim_{n \to \infty} x_n\).

Theorem 4.1. Let \((X, d)\) be a complete cone metric space and \(T, f\) be set mappings on \(X\) as in Theorem 3.1. Then the common fixed point problem of \(f\) and \(T\) is well posed.

Proof. From Theorem 3.1, the mappings \(f\) and \(T\) have a unique common fixed point, say \(v \in X\). Let \(\{x_n\}\) be a sequence in \(X\) and \(\lim_{n \to \infty} D(f x_n, x_n) = \lim_{n \to \infty} D(T x_n, x_n) = 0\).

Without loss of generality, assume that \(v \neq x_n\) for any non-negative integer \(n\). Using (3.1) and \(v \in f v = T v\), we get
\[
D(v, x_n) \leq D(T v, T x_n) + D(T x_n, x_n)
\]
\[
= D(f v, T x_n) + D(T x_n, x_n)
\]
\[
\leq D(T x_n, x_n) + \alpha \max(D(v, x_n), D(v, f v), D(x_n, T x_n), \frac{d(v, T v) + d(x_n, T x_n)}{2})
\]
As \(n \to \infty\) we obtain \((1 - \alpha) D(v, x_n) \leq 0\) which is a contraction since \(\alpha < 1\). Hence we obtain \(d(v, x_n) \to 0\) as \(n \to \infty\). This completes the proof.

Corollary 4.1. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1\) and \(S, T : X \to H_c(X)\) be two set-valued mappings such that
\[
d(Sx, Ty) \leq a d(x, y) + b d(x, Sx) + c d(y, Ty) + e \frac{d(x, Sx) + d(y, Ty)}{2}\]
for all \(x, y \in X\) and \(a, b, c, e \geq 0\), where \(a + b + c + e < 1\). Then the common fixed point problem of \(S\) and \(T\) is well-posed.

Corollary 4.2. Let \((X, d)\) be a complex cone metric space with normal constant \(M = 1\) and \(S, T : X \to H_c(X)\) be two set-valued mappings such that
\[
d(Sx, Ty) \leq a d(x, Sx) + b d(y, Ty) + c \frac{d(x, Sx) + d(y, Ty)}{2}\]
for all \(x, y \in X\) and \(a, b \geq 0\), where \(a + b < 1\). Then the common fixed point problem of \(S\) and \(T\) is well-posed.

Corollary 4.3. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1\) and \(S : X \to H_c(X)\) be a set-valued mappings such that
\[d(Sx, Sy) \leq ad(x, y) + bd(x, Sx) + cd(y, Sy) + e^{\frac{d(x, Sx) + d(y, Sy)}{2}} \] for all \(x, y \in X \) and \(a, b, c \geq 0 \), where \(a + b + c < 1 \). Then the common fixed point problem of \(S \) and \(T \) is well-posed.

Corollary 4.4. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S: X \to HC(X) \) be a set-valued mappings such that

\[d(Sx, Sy) \leq ad(x, Sx) + bd(y, Sy) + e^{\frac{d(x, Sx) + d(y, Sy)}{2}} \] for all \(x, y \in X \) and \(a, b \geq 0 \), where \(a + b < 1 \). Then the common fixed point problem of \(S \) and \(T \) is well-posed.

Theorem 4.2. Let \((X, d)\) be a complete cone metric space with normal constant \(M = 1 \) and \(S, T: X \to HC(X) \) be two set-valued mappings such that

\[d(Sx, Ty) \leq \alpha \max\{d(x, y), d(x, Ty), d(y, Sx), \frac{d(x, Ty) + d(y, Sx)}{2}\} \] for all \(x, y \in X \) and \(0 \leq \alpha < 1 \). Then the common fixed point problem of \(S \) and \(T \) is well-posed.

Proof. Note that the mappings \(f \) and \(T \) have a unique common fixed point by Theorem 3.2, say \(v \in X \). Let \(\{x_n\} \) be a sequence in \(X \) and \(\lim_{n \to \infty} D(fx_n, x_n) = \lim_{n \to \infty} D(Tx_n, x_n) = 0 \).

Without loss of generality, assume that \(v \neq x_n \) for any non-negative integer \(n \). Using (3.1) and \(v \in f v = Tv \), we get

\[D(v, x_n) \leq D(Tv, Tx_n) + D(Tx_n, x_n) = D(fv, Tx_n) + D(Tx_n, x_n) \leq D(Tx_n, x_n) + \alpha \max\{D(v, x_n), D(x_n, fx_n), \frac{D(x_n, Tv) + d(x_n, Tx_n)}{2}\} \]

As \(n \to \infty \) we obtain \((1 - \alpha)D(v, x_n) \leq 0 \) which implies that \(D(v, x_n) \to 0 \) as \(n \to \infty \). Therefore the common fixed point problem of \(S \) and \(T \) is well-posed.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[25] M. Pitchaimani and D. Ramesh Kumar, Some common fixed point theorems using implicit relation in 2-
[26] M. Pitchaimani and D. Ramesh Kumar, Common and coincide fixed point theorems for asymptotically regular
[27] M. Pitchaimani and D. Ramesh Kumar, On construction of fixed point theory under implicit relation in Hilbert
[28] M. Pitchaimani and D. Ramesh Kumar, On Nadler type results in ultrametric spaces with application to well
[31] S. Poonkundran and K.M. Dharmalingam, New common fixed point results under implicit relation in cone
Appl. 58(6)(2009), 1273 – 1278.
[33] D. Ramesh Kumar and M. Pitchaimani, Set–valued contraction mappings of Presic – Reich type in ultrametric
[35] S. Rezapour and R. Hambarani, Some notes on the paper: Cone metric spaces and fixed point theorems of
[36] S. Rezapour and P. Amiri, Some fixed point results for multivalued operators in generalized metric spaces,
[37] P. Semwal and R.C. Dimri, A suzuki type coupled fixed point theorem for generalized multivalued mapping.
[38] G. Song, X. Sun, Y. Zhao and G. Wang, New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett. 23(2010), 1033 – 1037.

