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Abstract: The problem to classify big data is an important one in machine learning. There are multiple ways to classify 

data, but the support vector machine (SVM) has become a great tool for the data scientist. In this paper we examine 

several modifications of the support vector machine algorithm that achieve better efficiency in terms of accuracy, F1 

precision and CPU time when classifying test observations in comparison to the standard SVM algorithm. To make 

the modifications faster than standard SVM we use a special methodology which splits the input dataset into n folds 

and combine it with input data transformations. Each time we execute the process, one of the folds is saved as a test 

subset and the rest of the folds are applied for training.  The process is executed n times. In the proposed methodology 

we are looking for the pair of subsets which produces the highest accuracy result. This pair is saved as an output SVM 

model. 
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1. INTRODUCTION  

In the field of the classification problems in the big data analysis, one of the most popular [11] and 

effective techniques is the support vector machines (SVM). The method has been proposed by 

Cortes, Vapnik [5], and it has been widely used in classification and regression problems in both 

application and research fields. Effectiveness of the SVM method depends on selecting parameters 

such as the optimal kernels and their parameters in the computer realizations. The robustness of 
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this method is not always satisfactory in this sense. Business applications need fast and as reliable 

as possible algorithms to solve the task of classifying big data sets. 

SVM is a popular technique for classifying medical data sets [1,2,4,7,8,16,17]. Miyaki and 

coauthors [12] applied the regression trees to identify the best predictors of diabetes mellitus. 

Kumari and coauthors [7] have investigated the standard SVM technique as a classification method 

on the data of Pima Indian diabetic patients available on http://networkrepository.com/pima-

indians-diabetes.php    

Kumar et al. [8] have proposed using a GA-SVM hybrid algorithm to optimize the parameters in 

the SVM in order to find the optimal subset of features. 

Yilmaz et al. [17] have used the K-means clustering algorithm to pre-process data to remove noise 

and, then the SVM was applied as a classification method further. 

The four bi-objective algorithms are employed to choose the least number of significant features 

with the highest classification accuracy using support vector machines in [2]. The proposed 

algorithms have been compared with other SVM classifiers for medical data sets (Table 10, in [2]). 

In this paper we propose some algorithm modifications of the support vector machine method for 

accessing high-quality SVM model that achieves better efficiency in terms of accuracy, F1 

precision and CPU time when classifying test observations in comparison to the standard SVM 

algorithm. A suggested approach for improving accuracy results of SVM classifiers is creating 

synthetic attributes which can be utilized in the modelling stage. Synthetic attributes can be created 

using other different features and data on subjects [3]. This innovation step in our modifications 

consists of the principal component analysis (PCA) transformation on the full given data set. 

To validate the results obtained from the proposed SVM modifications and to assess the 

performance, the predictions of them are tested on the datasets available on the Internet and 

compared with the standard SVM algorithm. In this investigation we apply the Python information 

technology. 

The method of support vector machines is used to solve the task of classifying big data sets. The 

purpose of this method [4]  is to construct a dividing line between the two classes (when the 

observations in a set form two classes against a certain criterion) and two additional lines parallel 

to the dividing line. The extra lines separate the two classes so that observations remain on both 

sides of the extra lines. The support vector machine method seeks to maximize the distance 

between the dividing line and the closest observations of the two classes. 

http://networkrepository.com/pima-indians-diabetes.php
http://networkrepository.com/pima-indians-diabetes.php
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We consider the pairs (x1, y1), (x2, y2), ….., (xn, yn) in which xi  is an n-size vector and yi takes 

values +1 or -1. In this way xi is interpreted with specific observations, and yi determines the 

belonging of observations to one of the two classes. We assume that the two classes can be 

separated by a straight line or a hyper line. 

In its essence, the SVM method is an optimization approach for finding the equation of the 

separating object. The result of the optimization task are the two additional lines that maximize 

the distance between the two classes. This approach provides the only solution and leads to a very 

good predictive power of the built model. The equation of the separating object is searched by the 

type wTx + b with unknown w and b, where w, x are n-size vectors and b is an unknown number. 

There are many hyperplanes through which the two classes can be separated.  

At the same time, the optimization model finds the only hyperline that sets the maximum distance 

to the two additional hyperplanes, which in turn are the boundaries between the two classes. The 

distance requested is expressed by  2 / || w ||. The optimization task is formulated as follows [9,15]:   

max
𝑤,𝑏

𝐽(𝑤) =
1

2
 𝑤 𝑤𝑇 =

1

2
||𝑤||

2
                                                                         (1)  

subject to : 𝑦𝑖 [ 𝑤𝑇 𝑥𝑖  + 𝑏] − 1 ≥ 0 ,  i=0,1,…,N  . 

The defined problem (1) is equivalent to the following optimization task involving the Lagrange 

multiplier 𝛼𝑖 > 0:  

max
𝛼𝑖

𝐿 =  ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
 ∑ 𝛼𝑖𝑦𝑖𝛼𝑗𝑦𝑗  < 𝑥𝑖, 𝑥𝑗 > 𝑛

𝑖,𝑗=1     

subject to: ∑ 𝛼𝑖𝑦𝑖 
𝑛
𝑖,𝑗=1 = 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛   

 

Therefore, the desired hyperplane is represented by: 

∑ 𝛼𝑖  𝑦𝑖 < 𝑥𝑖  , 𝑥 > 𝑖∈𝐹  + 𝑏 , 

where F contains the observations of the training subset, respectively Lagrange's non-zero 

multipliers. The vectors defining the separating hyperplanes are called support vectors. 

The more general type of problem (1) is the following: 

  max
𝑤,𝑏

𝐶                                                                                                                   (2)  

  subject to : 
1

‖𝑤‖
𝑦𝑖 [ 𝑤𝑇 𝑥 + 𝑏] − 𝐶 ≥ 0 ,  i=0,1,…,N.   

Taking C =  1 / || w ||   the problem (2)  is equivalent to  (1).   
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In the case where the two classes in the set of observations are not linearly separable, the partition 

hyperplane is searched as:  

∑ 𝛼𝑖  𝑦𝑖 𝐾(𝑥𝑖, 𝑥) 𝑖∈𝑇  + 𝑏 ,  

where 𝐾(𝑥𝑖, 𝑥) is called a kernel function. The four types of kernels are used from SVM (𝛾,  r and 

𝜈 are parameters) : 

Linear Kernel :     :    𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇 𝑥𝑗  ;  

Polynomial Kernel :    𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾 𝑥𝑖
𝑇  𝑥𝑗 +  𝑟 )

𝜈
 , 𝛾 > 0 ;  

Radial Basis Function (RBF) Kernel :  

𝐾(𝑥𝑖, 𝑥𝑗) =  exp (−𝛾 ||𝑥 − 𝑦||
2

) , 𝛾 > 0 ;  

Sigmoid Kernel:  

  𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝛾 𝑥𝑖
𝑇 𝑥𝑗 +  𝑟 )  .  

 

2. DATA AND METHODOLOGY  

2.1. Several Modifications of the SVM method 

The general approach to realize the SVM method via computer realization is as follows - the set 

of observations is divided into two subsets: a training subset (X_train, y_train) and a testing subset   

(X_test, y_test) in a random way,  where the test subset includes 20% of the total number of 

observations in the respective dataset.  The model of support vector machines is defined and built 

on the training subset and its adequacy checked on the test subset.  

The general approach to realize the SVM method via computer realization is as follows - the set 

of observations is divided into two subsets: a training subset (X_train, y_train) and a testing subset  

(X_test, y_test) in a random way,  where the test subset includes 20% of the total number of 

observations in the respective dataset.  The model of support vector machines is defined and built 

on the training subset and its adequacy checked on the test subset.  

The application of the support vectors method in the classification of a given set includes the 

selection of several parameters - the type of the kernel and the value of the constant C used in (2) 

[4,15]. In this paper, we will use models of SVM with both kernels - linear and a kernel, where the 

distance between observations is calculated by exponential function (rbf). Then, the built model 

on the training subset (model=SVC(X_train, y_train)) is evaluated on the test set using the 
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model.score() command. We run the algorithm 10 times to get the average of model.score(). We 

program this approach and call it a standard algorithm, we mean Algorithm AS.  

We will also experiment with another algorithmic approach in which the observations of the set X 

and the dependent variable y are divided into n equal parts with the command KFold (len (X), 

n_folds = n). The operation of this command and its application in the analysis of observations 

and the role of this division to build an effective model are discussed in (Ivanov et al., 2018). The 

algorithm for realizing this approach will be called the modified support vector machines (MSVM) 

and it works for both types of the kernel. An important property of this algorithm is that it can 

work in a deterministic or stochastic mode, depending on the value of the logical variable. In this 

paper we apply the deterministic mode.  

The values of the independent variables are loaded in the variable X, and the dependent variable 

is recorded as y. In advance, the set X (along with the variable y) is divided into n equal parts with 

the KFold command. By dividing the set X, we form the training set of  (n-1) / n parts and the test 

set of 1/n part. This distribution is performed in n different ways, following the ascending order of 

the natural numbers.  

Each time we build the pattern on the training set (modsvm=SVC(X_train, y_train)) and then test 

it on the test set. We calculate the percentage of match of the predicted values with the real values 

in each case by modsvm.score (X_test, y_test) and we select the highest percentage. The training 

set that is the most consistent match is used to train the method of SVM. For this method we 

calculate the percentage of match for the test set. The algorithm that implements this approach 

means Algorithm MSVM.  

We will process the data set in advance to obtain more effective algorithms using two approaches. 

We will standardize the data set (scale the data in short) via the Python package 

sklearn.preprocessing.  In the second approach we apply the principal component analysis method 

to convert the full data set. Note that all data is converted - the independent variables and the 

dependent variable.  

Thus, in our experiments we apply the above two algorithms (with two types of the kernel) and 

the treatment in advance the given data set - see Table 1.  The standard SVM algorithm is described 

by Algorithms AS applied on the original data.  SVM algorithm modifications depend on 

algorithms (AS, MSVM), kernels (linear, rbf) and type of data (Original data, Standardized data, 

PCA transformed data). 
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 Table 1 – SVM algorithm modifications  

Algorithms Kernels Given Data Set 

Algorithm AS   linear kernel    Original data 

Algorithm 

MSVM   

rbf kernel      Standardized data 

  PCA transformed 

data 

 

2.2. Performance criteria 

We provide experiments with some data sets, which can be found on the Internet. To estimate the 

effectiveness of the considered algorithms we compare them in two aspects - the success rate of 

each, presented via score coefficient received by the command score and F1 score estimate, noted 

as "sc" and "F1sc" in the tables.  The second aspect to compare is the CPU time (CPU) of the 

algorithm execution.   

Important aspect for selecting the algorithm which performance best is using metrics and tests to 

compare how well the method performs with different algorithms. Furthermore metrics and 

quantitative criteria are also useful to compare performance among different algorithm 

modifications of SVM. Moreover, for different datasets, different algorithm modifications may 

give the best results.  

In the below table, we visualize the dimensions of a confusion matrix which will help us define 

performance measures used for classification problems [14]. 

 

Table 2. The structure of the Confusion Matrix 
 
  Predicted classes 

Actual 

classes 

True Positives 

(TP) 

False Positives 

(FP) 

False Negatives 

(FN) 

True Negatives 

(TN) 
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The actual observations are presented in the first row of Table 2 and negatives refer to misclassified 

observations. In fact, True Positives (TP) gives us the number of observations which are observed 

positive and are actually positive, True Negatives (TN) are observed negative and actual negative, 

False Positives (FP) are observed negatives and actual positives, and finally, False Negatives are 

observed positives and actual negatives. This information is correct for each class of the data.  

Some of the criteria explaining the performance measure of a model are described in [14]. 

Accuracy as a performance measure looks at the sum of all correctly classified observations 

divided by the total number of observations in the subset: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. 

Sensitivity provides information on the accuracy of only positive predictions: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

Specificity represents the accuracy only of negative predictions: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
. 

F1-score is a statistical test that takes into consideration both sensitivity and specificity. In other 

words, it is the weighted average of the sensitivity and specificity: 

𝐹1 = 2 ∗
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
. 

Computational time can make a huge difference to choose the most effective solution for decision 

making involving enormous databases and complex computations. When using SVM classifier, it 

is expected the time needed for training and testing to depend on the values of the parameters. In 

our algorithms, we introduce the rule to execute the pre-processing of data set, including the 

independent variables.  

 

3.  EXPERIMENTAL RESULTS. CLASSIFICATION THE CLEVELAND HEART DISEASE 

DATASET 

 

We apply the described algorithms to analyze medical dataset. Similar investigations are 

introduced in [6,10,13]. We use accuracy score, F1-score and time to evaluate all considered 

algorithm modifications of the SVM method. Confusion matrix is used as well to present the 

results from Example 1, where there are more than 2 classes. 
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Let's start by analyzing the Cleveland Heart Disease Dataset from the data repository 

http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/ 

(processed.cleveland.data). This is a statistic for patients with heart disease in different regions of 

the world. The set contains 303 observations with 14 characteristics. Their description can be 

found in a source described in the literature [9]. The dependent variable y describes the 

observations in five classes: a healthy patient (value 0) and a patient depending on the degree of 

disease, the y values can be 1,2,3,4. When classifying the observations of this set of data, we apply 

the two described algorithms AS and MSVM. 

The set of data is split into two subsets - a training subset and a test subset, with 80% and 20% 

observations from the entire set (test_size = 0.2). To verify the achieved accuracy of the built 

model, three criteria are applied to the test subset - the value of the score parameter that determines 

the reliability of the built model (highest value 1); confusion matrix and the value of the F1-score. 

The results of the application of the two algorithms are presented in Table 3 on the Cleveland 

Heart Disease (CHD) data set.  

Table 3 – The results of the experiments with the CHD data set, in which the classes are 1,2,3,4, 

respectively, for the patient depending on the degree of the disease and 0 for the healthy patient 

 Algorithm AS Algorithm MSVM 

 (test_ size=0.2, 10 runs) (n_folds=5) 

 sc  F1sc CPU sc   F1sc CPU 

 CHD: linear kernel 

Normal data 0.59  0.56 7.2s 0.68 0.64 4.8s   

Scale data   0.55 0.52 0.66s 0.63 0.60 0.04s 

With PCA 0.68 0.67 0.03s 0.69 0.66 0.02s   

 CHD: rbf kernel  

Normal data 0.53 0.53 0.02s   0.63 0.49 0.14s 

Scale data   0.56 0.54 0.005s 0.69 0.65 0.06s 

With PCA 0.63 0.62 0.04s 0.77 0.77 0.06s 

 

In addition, we show the classification report, which presents the additional numerical values of 

the precision, recall, F1 score for the test subset. For example, the result of running the MSVM 

algorithm in the case of the linear kernel with PCA treatment on the data lead us to the following 

http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/
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classification report of the test subset (Table 3) and the corresponding confusion matrix presented 

in Table 4. 

Table 4 – Results obtained via Algorithm MSVM with the linear kernel and PCA treatment on the 

data 

Class Precision Recall F1 

score 

Number of 

observations 

0 0.87 0.97 0.92 35 

1 0.50 0.18 0.27 11 

2 0.40 0.40 0.40 5 

3 0.33 0.80 0.47 5 

4 0.00 0.00 0.00 4 

av. value 0.66 0.70 0.66 60 

 

The results in Table 4 show that this model does not classify patients by morbidity. The highest 

value in Table 3 for the score coefficient is 0.77, and from Table 4 the F1 score is very low for the 

classes of the patients, the built model classifies very well the first class (the healthy patients) and 

not so well the classes of the sick patients. For classes of sick patients (Table 5), misconceptions 

(located as non-diagonal entries) are more than properly classified observations (located 

diagonally). 

Table 5 – Confusion matrix obtained via Algorithm MSVM with the linear kernel and PCA 

treatment on the data 

 Predicted 

Actual 0 1 2 3 4 

0 34 1 0 0 0 

1 5 2 1 3 0 

2 0 1 2 2 0 

3 0 0 1 4 0 

4 0 0 0 0 0 

 

These results suggest that it could be more successful in classifying observations by dividing them 

into two classes - the healthy patient class and the sick patient class, covering the observations 

with corresponding values of the dependent variable from 1 to 4. We apply the two algorithms on 
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the Cleveland Heart Disease data set with two classes of observations. The results are presented in 

Table 6. 

The same set (with two classes of observations) has been analyzed by other authors in the literature. 

Experimental results can be seen in Khanna et al., 2015. The SVM method is implemented with 

the linear and rbf kernels. The set of data is split into two equal parts - a training subset and a test 

subset with the procedure train_split (test_size = 0.2). The results obtained by the authors in 

Khanna et al., 2015 show that the score values on the test subset for both kernels are 84.8% - 87.6% 

and the F1-score is 0.85-0.88. The operation of the Algorithm MSVM with linear kernel (Table 6) 

reaches the values of 0.93-0.97 at n_folds = 5. 

 

3. CONCLUSION  

Big data analytic is moving towards intensively under multidisciplinary collaboration between 

statistics, optimization modelling and computer science. This leads to strong demand for 

algorithmic innovations to analyse big data sets. This paper has covered a specific family of the 

machine learning algorithms. The proposed SVM algorithmic modifications combine simplicity 

and efficient computer realization. They achieve better efficiency in terms of accuracy, F1 

precision and CPU time. Experiments   demonstrate that for different types of the  data sets the 

proposed  approaches may  be  more  successful. 
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