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Abstract. In this paper we introduce the notions and concepts of the perfect functions in the bitopological spaces,

which yield to two types called p-Lindelö perfect and s-Lindelö perfect function. Also we study the images and

inverse images of certain bitopological properties under these functions. We derive some related results. Finally

some product theorems obtained concerning these concept.
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1. INTRODUCTION

In 1963, Kelly [13] introduced the notion of a bitopological space, i.e. a triple (X ,τ1,τ2)

where X is a set and τ1, τ2 are two topologies on X . He also defined pairwise regular

(P−regular), pairwise normal (P−normal), and obtained generalization of several standard re-

sults such as Urysohn′s lemma and Tietze extension theorem. Several authors have since con-

sidered the problem of defining compactness for such spaces, see Kim [15], Fletcher, Hoyle and
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Patty [8]. In 1969, Fletcher et. al, [8] gave the definitions of τ1τ2−open and P−open covers in

bitopological spaces. A cover Ũ of the bitopological space (X ,τ1,τ2) is called τ1τ2−open if

Ũ ⊂ τ1∪ τ2, if in addition, Ũ contains at least one non-empty member of τ1 and at least one

non-empty member of τ2, it is called P—open. Also they defined the concept of P—compact

space as follows: A bitopological space (X ,τ1,τ2) is called P—compact if every P−open cover

of the space (X ,τ1,τ2) has a finite subcover. While in 1972 Datta [6], defined S—compact

space as follows: A bitopological space (X ,τ1,τ2) is called S—compact if every τ1τ2−open

cover of the space (X ,τ1,τ2) has a finite subcover. In 1969 Birsan [4] gave the following def-

initions: A bitopological space (X ,τ1,τ2) is called τ1—compact with respect to τ2 if for each

τ1—open cover of X , there is a finite τ2—open subcover. A bitopological space (X ,τ1,τ2) is

called B—compact if it is τ1—compact with respect to τ2 and τ2—compact with respect to τ1.

In 1975 Cooke and Reilly [5] discussed the relations between these definitions. In 1979 Hdieb

[11] introduced important theorem to the theory of [n , m] −compact, paracompact and nor-

mal spaces. In 1983 Fora and Hdieb [9] introduced the definition of P−Lindelöf, S−Lindelöf,

B−Lindelöf spaces in analogue manner. They also gave the definitions of certain types of func-

tions as follows : A function f : (X ,τ1,τ2) −→ (Y,σ1,σ2) is called P—continuous (P−open,

P−closed, P−homeomorphism, respectively), if both functions f : (X ,τ1) −→ (Y,σ1) and

f : (X ,τ2)−→ (Y,σ2) are continuous (open, closed, homeomorphism, respectively).

We now move , dear reader , to present to you a brief introductory summary of the per-

fect functions in the single topological spaces and some studies about these conjugations

in the bitopological spaces and the important results that have been reached according to

these studies.A continous function f : (X ,τ) −→ (Y,σ) is said to be perfect if X is a Haus-

dorff space, f is closed and the fibers f−1(y) are compact subsets of X . In1952, Vain-

stein [23] for the first time introduced the class of perfect functions in the realm of met-

ric spaces. Independently, perfect functions were introduced and studied (in the realm of lo-

cally compact spaces ) by Leray in 1950 and Baurkbaki in1951.Later several mathemati-

cians worked on perfect functions and proved several results concerning it is effect on dif-

ferent topological spaces. For instance Baurkabaki (1961),Panomarev (1966), Michael (1971)
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and Hdeib(1982). In 2017, Qoqazeh et. al, [19], introduced a new definition of the perfect func-

tions in bitopological spaces as , a function f : (X ,τ1,τ2)−→ (Y,σ1,σ2) is called P—perfect, if

the function f is P—continuous, P—closed, and for all y∈Y , the set f−1 (y) is P—compact.),

and gives many properties of them.In 2018 , Atoom and Hdeib [?] studied perfect functions in

bitopological spaces while preparing their PHD thesis and presented many important results in

this field.

Dear reader, many important studies in many areas in bitopological spaces have been brought

out in the reference list for reference for adults interested in this field.

2. PRELIMINARIES

In this paper we introduce the notions and concepts of the perfect functions in the bitopo-

logical spaces, which yield to two types called p−Lindelö perfect, S−Lindelö perfect function.

Also we study the images and inverse images of certain bitopological properties under these

functions.We derive some related results. Finally some product theorems obtained concerning

these concept . When (X ,τ1,τ2) has the property Q this means that both (X ,τ1) and (X ,τ2) have

this property. For instance a bitopological space (X ,τ1,τ2) is called compact, if both (X ,τ1)

and (X ,τ2) are compact spaces.

We will use the letters P−, S− to denote the pairwise and semi, respectively, e.g. P—compact

stands for pairwise compact, S—compact stands for semi compact.

τ i−closure, τ i−interior of a set A will be denoted by CLτ i (A), Intτ i (A) respectively. The

product of τ1 and τ2 will be denoted by τ1× τ2.

Let R, Z, N, Q denote the set of all real numbers, integer numbers, natural numbers, and

rational numbers respectively. Let τdis, τ ind , τu, τs, τcoc, τco f , τ l , τr denote the discrete,

the indiscrete usual, Sorgenfrey line, cocountable, cofinite, left-ray, and right-ray topologies

respectively. Let ω0 and ω1 denote the cardinal numbers of Z and R respectively.
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3. MAIN RESULTS IN PAIRWISE LINDELÖ PERFECT FUNCTIONS

In this section, we will introduce the concept of Lindelö Perfect functions in bitopological

spaces, and introduce some of their properties, and relate it to other spaces.

Let us recall known definitions which will be used in the sequel.

Definition 3.1. [9] A bitopological space (X ,τ1,τ2) is called P—Lindelöf if every P−open

cover of the space (X ,τ1,τ2) has a countable subcover.

A bitopological space (X ,τ1,τ2) is called S—Lindelöf if every τ1τ2−open cover of the space

(X ,τ1,τ2) has a countable subcover.

Definition 3.2. A function f : (X ,τ1,τ2) → (Y,σ1,σ2) is called p−Lindelö perfect, if f

is p−continuous, p−closed, and for each y ∈ Y , f−1(y) is p−Lindelöf .

Corollary 3.2.1. In above definition if f−1(y) is countable then f is p−Lindelö perfect func-

tion.

Example 3.3. Let f : (R,τu,τ ind)−→ (R,τu,τ ind) be the identy function ,where τu and τ ind

are the usual and indiscrete topoligies, respectively. then f is p−Lindelö perfect function.

Since f is P−continuous , P−closed and for each y∈Y any P−open cover Ũ of f−1(y) must

be contains X because the only non empty open set in (R ,τ ind) is X . Hence {X} is a countable

subcover ofŨ . Hence f−1(y) is p−Lindelöf .

Example 3.4. Let X = {0 .1} and τ1 = {φ , X ,{0}} , τ2 = {φ , X ,{1}}. Define f :

(X ,τ1,τ2)−→ (R,τ1,τ2) by f (x) = 0. Then f is p−Lindelö perfect function.

Theorem 3.5. If f : (X ,τ1,τ2) −→ (Y,σ1,σ2) is a p−Lindelö perfect function, then for ev-

ery p−Lindelöf subset Z ⊆ Y , the inverse image f−1 (Z) is a p−Lindelöf .

Proof. Let Ũ = {Uα :α ∈ Λ} be a p−open cover of (X ,τ1,τ2) , since f is a p−Lindelö

perfect function, then ∀y ∈ Y, f−1(y) is p−Lindelöf subset of X . So there exists a count-

able subsets Λy , Λ∗y of Λ ,s.t f−1(y) ⊆

 ⋃
α∈Λy

{Vα : α ∈ Λy}

 ⋃  ⋃
α∈ Λ∗y

{Wα : α ∈
∗

Λy}

,



7638 ATOOM, QOQAZEH, AL-QUDAH, JARADAT, ALKISHIK

where {Vα : α ∈ Λy} is τ1-open subsets of X and {Wα : α ∈
∗

Λy} is τ2-open sub-

sets of X . Now , let Oy = Y − f (X −
⋃

α∈Λy

Vα) is a σ1-open subset of Y con-

taining y and O∗y = Y − f (X −
⋃

α∈
∗

Λy

Wα) is also a σ2-open subset of Y containing

y.Then y ∈ Oy ∪O∗y .Since f−1(Oy) ⊆
⋃

α∈Λy

Vα and f−1 (O∗y) ⊆
⋃

α∈
∗

Λy

Wα then , Õ = {Oy :

y ∈ Y }
⋃
{O∗y : y ∈ Y } is a p−open cover of Y . Hence , Õ is p−open cover of Z

. Since Z is p−Lindelof ,Õ has a countable subcover
(⋃

i=1
(Oyi)

) ⋃ ( ⋃
j=1

(
∗

Oy j)

)
and

Z ⊆
(⋃

i=1
(Oyi)

) ⋃ ( ⋃
j=1

(
∗

Oy j)

)
.Thus, f−1 (Z)⊆

(⋃
i=1

f−1(Oyi)

)⋃ ( ⋃
j=1

f−1(
∗

Oy j )

)
⊆ of

a union of countable subset of Ũ , i.e f−1 (Z) is p−Lindelöf . �

Corollary 3.5.1. A p−Lindelöf space is inverse invariant under p−Lindelö perfect functions.

Corollary 3.5.2. The composition of two p−Lindelö perfect functions is a p−Lindelö perfect

function.

Proposition 3.6. If the composition g ◦ f of a p−continuous functions, f :

(X ,τ1,τ2)
onto→ (Y,σ1,σ2) and g : (Y,σ1,σ2)

onto→ (Z,ρ1,ρ2) is a p−closed then the

function g : (Y,σ1,σ2)
onto→ (Z,ρ1,ρ2) is p−closed.

Proof. Let A be a σ1−closed subset of Y,then f−1(A) is τ1−closed subset of X . Since g◦ f is

p−closed,then g( f
(

f−1(A)
)
) = g(A) is ρ1−closed subset of Z ,Similarly, we can show that if

B be a σ2−closed in Y, then g(B) is ρ2−closed in Z .Thus g is a p−closed. �

Theorem 3.7. If the composition function g ◦ f of a p−continuous funcions f :

(X ,τ1,τ2)
onto→ (Y,σ1,σ2),g : (Y,σ1,σ2)

onto→ (Z,ρ1,ρ2) is a p−Lindelö perfect, then the func-

tion g : (Y,σ1,σ2)
onto→ (Z,ρ1,ρ2) is p−Lindelö perfect.

Proof. For every z ∈ Z , g−1(z) = f ((g ◦ f )−1(z)) is a p−Lindelöf subset of Y , because

g◦ f is p−Lindelö perfect. �

Since g is p−closed by proposition 3.6, we get that g is p-Lindelo perfect .
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Theorem 3.8. If f : (X ,τ1,τ2)
onto→ (Y,σ1,σ2) is p−closed function ,then for any B ⊂ Y the

restriction fB : f −1(B) → B is p−closed .

Proof. Let B ⊂ Y .Consider the function f : (X ,τ1) → (Y,σ1). let A be a τ1−closed subset

of X . Then fB (A
⋂

f−1(B)) = f (A)
⋂

B is σ1−closed subset of B. Similarly we can show

that if A a τ2−closed subset of X . fB (A
⋂

f−1(B)) = f (A)
⋂

B is σ2−closed subset of B.

Thus fB : f−1(B)→ B is a p−closed. �

Theorem 3.9. If f : (X ,τ1,τ2)
onto→ (Y,σ1,σ2) is p−Lindelö perfect function ,then for any

B ⊂ Y the restriction fB : f −1(B) → B is p−Lindelö perfect.

Proof. The proof follows directly from theorem 3.8. �

The following two theorems can be found in [9]

Theorem 3.10. Let X = (X ,τ1,τ2) be a p−Hausdörff space, then every τ i−Lindelöf subset is

τ j−closed (i 6= j, i, j = 1,2).

Theorem 3.11. A τ i-closed proper subset of a p−Lindelöf space is τ j −Lindelöf (i 6= j, i, j =

1,2).

Theorem 3.12. If f : (X ,τ1,τ2)
onto−→ (Y,σ1,σ2) is a p−Lindelö perfect function ,where

(X ,τ1,τ2) is p−Lindelöf, and (Y,σ1,σ2) is p−Hausdörff ,then f is p−closed .

Proof. If A is τ1−closed subset of (X ,τ1,τ2) ,then it is τ2−Lindelöf because (X ,τ1,τ2) is

p−Lindelöf. Since f is p−continuous , f (A) is a σ2−Lindelöf subset of (Y,σ1,σ2). �

Since (Y,σ1,σ2) is p−Hausdörff, then f (A) is a σ1−closed subset of (Y,σ1,σ2) . Similarly

we can show that if B is a τ2−closed subset of (X ,τ1,τ2) , then f (B) is a σ2−closed subset of

(Y,σ1,σ2). Hence the result.

We can found the following definition in [21]

Definition 3.13. If (X ,τ1,τ2) is a bitopological space, then τ1 is said to be locally compact

with respect to τ2 if each point of X has a τ1 open neighborhood whose τ2 closure is pairwise

compact.
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A bitopological space (X ,τ1,τ2) is said to be pairwise locally compact ( P−locally compact

) if it is τ1locally compact with respect to τ2and τ2locally compact with respect to τ1.

Note that every p−compact space is p−locally compact.

Theorem 3.14. Let f : (X ,τ1,τ2) −→ (Y,σ1,σ2) be p−continuous function from a

p−Hausdörff space (X ,τ1,τ2) in to a p−locally compact space (Y,σ1,σ2).

Then the following are equivalent :

(i) f is a p−Lindelö perfect function,

(ii) For every p−Lindelöf subset Z ⊂ Y the set f−1(Z) is a p−Lindelöf subset of X .

Proof. (i)⇒ (ii) : the proof follows from theorem 3.8. �

(ii)⇒ (i) : It is suffices to show that f is a p−closed function , i.e both functions f1 :

(X ,τ1)→ (Y,σ1) and f2 : (X ,τ2)→ (Y,σ2) are closed functions. Let A be a τ1−closed subset

of X , and y be a cluster point of f1(A).Suppose y /∈ f1(A).Since Y is p−locally compact, there

is a σ1-open set V containing y s.t CLσ2 (V ) is p−compact, and so p−Lindelöf.

Now, f−1
1 (CLσ2 (V )

⋂
f (A)) = f−1

1 (CLσ2 (V ))
⋂

A .By using (ii) f−1
1 (CLσ2 (V )) is

p−Lindelöf and A is a τ2−closed , p−Lindelöf subset .

Also , f1( f−1
1 (CLσ2 (V ))

⋂
A ) = CLσ2 (V )

⋂
f1(A) is a p−Lindelöf subset which is

σ1−closed.

Now,V −CLσ2 (V )
⋂

f1(A) =U is a σ1−open set containing p and U
⋂

f1(A) = φ ,which

contradicts the fact that p is a cluster point. Hence p ∈ f1(A),i.e f1(A) is a σ1−closed.

Thus f1 : (X ,τ1)→ (Y,σ1) is a closed function.

By a similar method we can show that f2 : (X ,τ2)→ (Y,σ2) is a closed function. Hence

f : (X ,τ1,τ2)→ (Y,σ1,σ2) is p−closed function.

Theorem 3.15. Let f : (X ,τ1,τ2) → (Y,σ1,σ2) be a p−continuous bijection function. If

(Y,σ1,σ2) is p−Hausdörff space, and (X ,τ1,τ2) is p−Lindelöf, then f is p−homeomorphic

function.

Proof. It’s enough to show that f is p−closed.Let F be a τ i-closed proper subset of X .

and hence F is proper τ j − p−Lindelöf, for i 6= j, i, j = 1,2, by using theorem 3.10 �
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Hence , f (F) is a σ j − p−Lindelof, but (Y,σ1,σ2) is p−Hausdörff space, by theorem

3.11, f (F) is σ i-closed, i.e. f is p-homeomorphic function.

Definition 3.16. A function f : (X ,τ1,τ2)→ (Y,σ1,σ2) is called p−strongly function, if for ev-

ery p−open cover Ũ = {Uα : α ∈ Λ} of X there exists a p−open cover

Ṽ =
{

Vγ : γ ∈ Γ
}

of Y , s.t f−1(V )⊆
⋃
{Uα : α ∈ Λ1 : Λ1 is a countable subset of Λ}∀V ∈

Ṽ .

Theorem 3.17. Let f : (X ,τ1,τ2) → (Y,σ1,σ2) be a p−strongly onto function, then

(X ,τ1,τ2) is p−Lindelöf, if (Y,σ1,σ2) is so.

Proof. Let Ũ = {Uα : α ∈ Λ} be a p−open cover (X ,τ1,τ2).Since f is a p−strongly function,

there exists p−open cover Ṽ =
{

Vγ : γ ∈ Γ
}

of (Y,σ1,σ2), �

such that f−1(V )⊆
⋃
{Uα : α ∈ Λ1 : Λ1 is a countable subset of Λ}∀ V ∈ Ṽ .

but (Y,σ1,σ2) is p−Lindelöf , so there existsis a countable subset Γ1 of Γ s.t Y =⋃
γ∈ Γ1

Vγ . Hence X =
⋃

γ∈ Γ1

f−1(Vγ).So each f−1(Vγ) contains in a countable number of mem-

bers of Ũ Thus X is p−Lindelöf.

Theorem 3.18. Let f : (X ,τ1,τ2) → (Y,σ1,σ2) be a p−Lindelö perfect function such

that ∀y ∈ Y, f−1(y) is p−countably compact,. If (Y,σ1,σ2) is a p−countably compact ,

then (X ,τ1,τ2) is so.

Proof. Let Ũ = {Uα :α ∈ Λ} be a p−open cover of (X ,τ1,τ2). Since f is a p−Lindelö

perfect function, then ∀y ∈ Y, f−1(y) is p−Lindelöf, ∃ a countable subsets Λy ,
∗

Λy of Λ , �

s.t f−1(y) ⊆
⋃

α∈Λy

{Vα : α ∈ Λy}
⋃ ⋃

α∈ Λ∗y

{Wα : α ∈
∗

Λy},where {Vα : α ∈ Λy} is τ1-open

subsets of X and {Wα : α ∈
∗

Λy} is τ2-open subsets of X . Now , Oy(α,y) =Y − f (X−
⋃

α∈Λy

Vα)

is a σ1-open set containing y and O∗y(α,y) = Y − f (X −
⋃

α∈
∗

Λy

Wα : α ∈ Λ) is a σ2-

open set containing y .Also , f−1(Oy(α,y) ⊆
⋃

α∈Λy

Vα and f−1 (O∗y (α,y) ⊆
⋃

α∈
∗

Λy

Wα .
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Let Õ = {Oy(α,y) : y ∈ Y}
⋃
{O∗y(α,y) : y ∈ Y } then Õ a p−countable cover of Y .

Since (Y,σ1,σ2) is p -countably compact , Õ has a p−countable subcover say , Õ∗ =

{Oy(α i,y) : i ∈ N , y ∈ Y}
⋃
{O∗y(α i,y) : i ∈ N , y ∈ Y }. So ( X ,τ1,τ2) =⋃

i∈N

f−1(Oy(α i,y))
⋃ ⋃

i∈N

f−1(O∗y(α i,y)).Hence (X ,τ1,τ2) is a p−countably compact.

The following theorem shows that a p−paracompactness is an inverse invariant under

p−Lindelö perfect function.

Theorem 3.19. Let f : (X ,τ1,τ2) → (Y,σ1,σ2) be a p−Lindelö perfect function .

If (Y,σ1,σ2) is a p−regular p−paracompact space then (X ,τ1,τ2) is so.

Proof. Let Ũ = {Uα :α ∈ Λ} be a p-open cover of (X ,τ1,τ2) , since f is a p−Lindelö per-

fect function, then ∀y ∈ Y, f−1(y) is p−Lindelöf, ∃ a countable subsets Λy,
∗

Λy of Λ , �

s.t f−1(y) ⊆
⋃

α∈Λy

{Vα : α ∈ Λy}
⋃ ⋃

α∈ Λ∗y

{Wα : α ∈
∗

Λy}, where {Vα : α ∈ Λy} is τ1-open ,

{Wα : α ∈
∗

Λy} is τ2-open. Let

Oy = Y − f (X −
⋃

α∈Λy

Vα) is a σ1-open set containing y, and O∗y = Y − f (X −⋃
α∈

∗
Λy

Wα) is a σ2-open set containing y , where

f−1(Oy) ⊆
⋃

α∈Λy

Vα , f−1 (O∗y) ⊆
⋃

α∈
∗

Λy

Wα . Now , Õ = {Oy : y ∈ Y }
⋃
{O∗y :

y ∈ Y } is a p−open cover of Y .Since (Y,σ1,σ2) is p −paracompact Õ has a p−open lo-

cally finite

parallel refinement say H̃ = {HB : B ∈ Γ1 }
⋃
{H∗B : B ∈ Γ2 }, where {HB : B ∈ Γ1 } is σ1-

locally finite parallel refinement of {Oy : y ∈ Y } and {H∗B : B ∈ Γ2 } is σ2-locally finite

parallel

refinement of {O∗y : y ∈ Y }. Let S1 = { f−1(HB)
⋂

Vα i : B ∈ Γ1,α i ∈ Λy} then S1 is

a τ1− open locally finite parallel refinement of {Vα : α ∈ Λ}. Also S2 = { f−1(H∗B)
⋂

Wα i :

B ∈ Γ2 ,α i ∈ Λ∗y} is a τ2- open locally finite parallel refinement of {Wα : α ∈ Λ}. Let S̃ =

{S1
⋃

S2} ,then S̃ is a p−open locally finite parallel refinement of Ũ , so (X ,τ1,τ2) is

p−paracompact p−regular space.
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4. MAIN RESULTS IN S-LINDELÖ PERFECT FUNCTIONS

Definition 4.1. A function f : (X ,τ1,τ2) −→ (Y,σ1,σ2) is called S−Lindelö per-

fect,if f is p−continuous, p−closed, and for each y ∈ Y, f−1(y) is S−Lindelöf.

Corollary 4.1.1. In above definition if f−1(y) is countable then f is S−Lindelö perfect func-

tion.

Example 4.2. Let f : (R,τco f ,τdis) −→ f : (R,τco f ,τdis) be the identity func-

tion, where τ f and τd are denoted the cofinite topology on R and discrete topoli-

gies,respectively.Then f is S−Lindelö perfect function. Since f is P−continuous , P−closed

and for each y ∈ Y any τ1τ2−open cover Ũ of f−1(y) has a countable subcover. Hence

f−1(y) is S−Lindelöf.

Remark 4.3. Since every P−open cover of the space (X ,τ1,τ2) is a τ1τ2−open cover ,it is

clear that every S−Lindelöf space is P−Lindelöf. Hence every S−Lindelö perfect function is

P−Lindelö perfect function.

Theorem 4.4. If f : (X ,τ1,τ2) −→ (Y,σ1,σ2) is a S−Lindelö perfect function, then for ev-

ery S−Lindelöf subset Z ⊆ (Y,σ1,σ2), the inverse image f−1 (Z ) is S−Lindelöf.

Proof. Let Ũ = {Uα :α ∈ Λ} be a τ1τ2−open cover of (X ,τ1,τ2) , since f is a S−Lindelö

perfect function, then ∀y ∈ Y, f−1(y) is S−Lindelöf subset of X . So there exists a count-

able subsets Λy , Λ∗y of Λ ,s.t f−1(y) ⊆

 ⋃
α∈Λy

{Vα : α ∈ Λy}

 ⋃  ⋃
α∈ Λ∗y

{Wα : α ∈
∗

Λy}

,

where {Vα : α ∈ Λy} is τ1-open subsets of X and {Wα : α ∈
∗

Λy} is τ2-open subsets of X . Now

, let Oy = Y − f (X −
⋃

α∈Λy

Vα) is a σ1-open subset of Y and O∗y = Y − f (X −
⋃

α∈
∗

Λy

Wα) is

also a σ2-open subset of Y .Then y∈Oy∪O∗y .Since f−1(Oy)⊆
⋃

α∈Λy

Vα or f−1 (O∗y)⊆
⋃

α∈
∗

Λy

Wα

then , Õ = {Oy : y ∈ Y }
⋃
{O∗y : y ∈ Y } is a τ1τ2−open cover of Y . Hence , Õ is τ1τ2−open

cover of Z . Since Z isS−Lindelof ,Õ has a countable subcover
(⋃

i=1
(Oyi)

) ⋃ ( ⋃
j=1

(
∗

Oy j)

)
and



7644 ATOOM, QOQAZEH, AL-QUDAH, JARADAT, ALKISHIK

Z ⊆
(⋃

i=1
(Oyi)

) ⋃ ( ⋃
j=1

(
∗

Oy j)

)
.Thus, f−1 (Z)⊆

(⋃
i=1

f−1(Oyi)

)⋃ ( ⋃
j=1

f−1(
∗

Oy j )

)
⊆ of

a union of countable subset of Ũ , i.e f−1 (Z) is S−Lindelöf . �

Corollary 4.4.1. A S−Lindelöf space is inverse invariant under S−Lindelö perfect functions.

Corollary 4.4.2. The composition of two S−Lindelö perfect functions is a S−Lindelö perfect

function.

Theorem 4.5. If the composition g ◦ f of the p−continuous funcions, f :

(X ,τ1,τ2)
onto→ (Y,σ1,σ2),g : (Y,σ1,σ2)

onto→ (Z,ρ1,ρ2) is a S−Lindelö perfect, then

the function g : (Y,σ1,σ2)
onto→ (Z,ρ1,ρ2) is S−Lindelö perfect.

Proof. For every z ∈ Z , g−1(z) = f ((g◦ f )−1(z)) = S-Lindelöf , because g◦ f is S−Lindelö

perfect. Since g is p−closed by proposition (3.6), we get that g is S−Lindelö perfect. �

Theorem 4.6. If f : (X ,τ1,τ2)
onto→ (Y,σ1,σ2) is S−Lindelö perfect function , then for any

B ⊂ Y the restriction fB : f −1(B) → B is S−Lindelö perfect .

Proof. The proof is similar to the proof of theorem 3.5.

The following theorem is easy to prove similarly to the theorem 3.8 �

Theorem 4.7. If f : (X ,τ1,τ2)
onto→ (Y,σ1,σ2) is S−Lindelö perfect function ,then for any

B ⊂ Y the restriction fB : f −1(B) → B is S−Lindelö perfect.

Theorem 4.8. If f : (X ,τ1,τ2)
onto→ (Y,σ1,σ2) is S−perfect ,where (X ,τ1,τ2) is

P−Lindelöf, and (Y,σ1,σ2) is p−Hausdorff , then f is p−closed .

Proof. The proof follows from remark 4.3 and theorem 3.12. �

since every P−compact space (X ,τ1,τ2) is P−Lindelöf we give the following important

result:

Corollary 4.8.1. If f : (X ,τ1,τ2)
onto→ (Y,σ1,σ2) is S−Lindelö perfect ,where (X ,τ1,τ2) is

P−compact, and (Y,σ1,σ2) is p−Hausdorff , then f is p−closed .
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Definition 4.9. If (X ,τ1,τ2) is a bitopological space, then τ1 is said to be S−locally compact

with respect to τ2 if each point of X has a τ1open neighborhood whose τ2 closure is S−compact.

A bitopological space (X ,τ1,τ2) is said to be S− locally compact if τ1 is S−locally compact

with respect to τ2and τ2is S−locally compact with respect to τ1.

Note that every S−compact space is S−locally compact.

Theorem 4.10. The P−Hausdroff space is invariant under S−Lindelö perfect functions.

Proof. Let (X ,τ1,τ2) be a P−Hausdroff space, f : (X ,τ1,τ2)→ (Y,σ1,σ2) be a S−Lindelö

perfect function, and y1 6= y2 in (Y,σ1,σ2),then f−1(y1) , f−1(y2) are disjoint and

S−Lindelöfness subset of (X ,τ1,τ2) . Since (X ,τ1,τ2) be a P−Hausdroff space ,there ex-

ists a τ1−neighborhood U in X , and τ2−neighborhoodV in X s.t f−1(y1) ⊆ U , f−1(y2) ⊆

V and U
⋂

V = φ .Now , the sets Y − f (X−U) is a σ1-open subset in (Y,σ1,σ2) containing y1

and Y − f (X −V ) is a σ2-open subset in (Y,σ1,σ2) containing y2 , s.t [Y − f (X −U)
⋂

Y −

f (X−V )] = Y − [ f (X−U)
⋃

f (X−V )] �

= Y − f (X−U
⋂

V ) = Y − f (X) = φ .Hence (Y,σ1,σ2) is P−Hausdroff space.

The following theorem is easy to prove :

Theorem 4.11. The P−Hausdroff space is inverse invariant under S−Lindelö perfect func-

tions.

Definition 4.12. A function f : (X ,τ1,τ2)→ (Y,σ1,σ2) is called S−strongly function, if for ev-

ery τ1τ2−open cover Ũ = {Uα : α ∈ Λ} of X there exists a τ1τ2-open cover

Ṽ =
{

Vγ : γ ∈ Γ
}

of Y , s.t f−1(V )⊆
⋃
{Uα : α ∈ Λ1 : Λ1 is a countable subset of Λ}∀V ∈

Ṽ .

Theorem 4.13. Let f : (X ,τ1,τ2) → (Y,σ1,σ2) be a p−closed onto function,

and f−1(y) is S−Lindelöf for all y ∈ Y , then f is S−strongly function.
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Proof. Let Ũ = {Uα : α ∈ Λ} be a τ1τ2-open cover of (X ,τ1,τ2). Since f−1(y) is S−Lindelöf

for all y ∈ Y , there exists a countable subset Λ1 ⊂ Λ such that f−1(y) ⊆
⋃

α∈Λ1

Uα . Let Oy =

Y − f (X −
⋃

α∈Λ1

Uα), then Oy is σ1σ2−open subset of Y . Now , define Õ =
{

Oy : y ∈ Y
}

,

then Õ is σ1σ2−open cover of Y . Hence f−1(Oy) is contained in a countable number of mem-

bers of Ũ thus f is S−strongly function. �

Theorem 4.14. Let f : (X ,τ1,τ2)→ (Y,σ1,σ2) be a p−continuous S−strong function and K ∈

σ1∪σ2 be a S−Lindelöf subset of (Y,σ1,σ2).Then f−1 (K) is S−Lindelöf subset of (X ,τ1,τ2).

Proof. Let Ũ = {Uα : α ∈ Λ} be a τ1τ2-open cover f−1 (K). Let W̃ =

Ũ
⋃{

X− f−1 (K)
}

, then W̃ is a τ1τ2-open cover of (X ,τ1,τ2). Since f is S−strongly func-

tion, there exists a τ1τ2-open coverṼ =
{

Vγ : γ ∈ Γ
}

of (Y,σ1,σ2) such that f−1 (K) con-

tained in the union of countable members of Ũ , But K is S−Lindelöf subset of (Y,σ1,σ2),

so K is contained in the countable members of Ṽ . Hence f−1 (K) is S−Lindelöf subset

of (X ,τ1,τ2). �

Theorem 4.15. Let (X ,τ1,τ2),(Y,σ1,σ2), be any two bitopological

spaces .If (X ,τ1,τ2) is S−Lindelöf ,then the projection function, π : (X × Y ,τ1 ×

σ1 ,τ2×σ2)→ (Y,σ1,σ2) is closed.

Proof. If (X ,τ1,τ2) is S−Lindelöf, then both topological spaces (X ,τ1) and

(X ,τ2) are S−Lindelöf. Thus the projection functions:π1 : (X ×Y ,τ1 ×σ1)→ (Y,σ1) and

π2 : (X ×Y ,τ2 ×σ2)→ (Y,σ2) are closed functions. Hence π is closed function. �
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