

Available online at http://scik.org J. Math. Comput. Sci. 11 (2021), No. 6, 7634-7648 https://doi.org/10.28919/jmcs/6655 ISSN: 1927-5307

## PAIRWISE LINDELO PERFECT FUNCTIONS

# ALI ATOOM<sup>1</sup>, HAMZA QOQAZEH<sup>2</sup>, YOUSEF AL-QUDAH<sup>2</sup>, ALI JARADAT<sup>2</sup>, NABEELA ABU ALKISHIK<sup>3</sup>

<sup>1</sup>School of Science Mathematics Department, Ajlun National University, Ajlun, Jordan
<sup>2</sup>School of Science Mathematics Department, Amman Arab University, Amman, Jordan
<sup>3</sup>School of Science, Mathematics Department, Jarash University, Jarash, Jordan

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

**Abstract.** In this paper we introduce the notions and concepts of the perfect functions in the bitopological spaces, which yield to two types called p-Lindelö perfect and s-Lindelö perfect function. Also we study the images and inverse images of certain bitopological properties under these functions. We derive some related results. Finally some product theorems obtained concerning these concept.

Keywords: bitopological space; p-Lindelö perfect function; S-Lindelö perfect function.

2010 AMS Subject Classification: 54E55, 54B10, 54D30.

## **1.** INTRODUCTION

In 1963, Kelly [13] introduced the notion of a bitopological space, i.e. a triple  $(X, \tau_1, \tau_2)$  where X is a set and  $\tau_1$ ,  $\tau_2$  are two topologies on X. He also defined pairwise regular (*P*-regular), pairwise normal (*P*-normal), and obtained generalization of several standard results such as Urysohn's lemma and Tietze extension theorem. Several authors have since considered the problem of defining compactness for such spaces, see Kim [15], Fletcher, Hoyle and

<sup>\*</sup>Corresponding author

E-mail address: aliatoom82@yahoo.com

Received August 17, 2021

Patty [8]. In 1969, Fletcher et. al, [8] gave the definitions of  $\tau_1 \tau_2$ -open and P-open covers in bitopological spaces. A cover  $\tilde{U}$  of the bitopological space  $(X, \tau_1, \tau_2)$  is called  $\tau_1 \tau_2$ -open if  $\tilde{U} \subset \tau_1 \cup \tau_2$ , if in addition,  $\tilde{U}$  contains at least one non-empty member of  $\tau_1$  and at least one non-empty member of  $\tau_2$ , it is called *P*—open. Also they defined the concept of *P*—compact space as follows: A bitopological space  $(X, \tau_1, \tau_2)$  is called *P*—compact if every *P*–open cover of the space  $(X, \tau_1, \tau_2)$  has a finite subcover. While in 1972 Datta [6], defined S—compact space as follows: A bitopological space  $(X, \tau_1, \tau_2)$  is called S—compact if every  $\tau_1 \tau_2$ -open cover of the space  $(X, \tau_1, \tau_2)$  has a finite subcover. In 1969 Birsan [4] gave the following definitions: A bitopological space  $(X, \tau_1, \tau_2)$  is called  $\tau_1$ —compact with respect to  $\tau_2$  if for each  $\tau_1$ —open cover of X, there is a finite  $\tau_2$ —open subcover. A bitopological space  $(X, \tau_1, \tau_2)$  is called *B*—compact if it is  $\tau_1$ —compact with respect to  $\tau_2$  and  $\tau_2$ —compact with respect to  $\tau_1$ . In 1975 Cooke and Reilly [5] discussed the relations between these definitions. In 1979 Hdieb [11] introduced important theorem to the theory of [n, m] –compact, paracompact and normal spaces. In 1983 Fora and Hdieb [9] introduced the definition of P-Lindelöf, S-Lindelöf, B-Lindelöf spaces in analogue manner. They also gave the definitions of certain types of functions as follows : A function  $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$  is called *P*—continuous (*P*-open, *P*-closed, *P*-homeomorphism, respectively), if both functions  $f: (X, \tau_1) \longrightarrow (Y, \sigma_1)$  and  $f: (X, \tau_2) \longrightarrow (Y, \sigma_2)$  are continuous (open, closed, homeomorphism, respectively).

We now move , dear reader , to present to you a brief introductory summary of the perfect functions in the single topological spaces and some studies about these conjugations in the bitopological spaces and the important results that have been reached according to these studies. A continous function  $f: (X, \tau) \longrightarrow (Y, \sigma)$  is said to be perfect if X is a Hausdorff space, f is closed and the fibers  $f^{-1}(y)$  are compact subsets of X. In1952, Vainstein [23] for the first time introduced the class of perfect functions in the realm of metric spaces. Independently, perfect functions were introduced and studied (in the realm of locally compact spaces ) by Leray in 1950 and Baurkbaki in1951.Later several mathematicians worked on perfect functions and proved several results concerning it is effect on different topological spaces. For instance Baurkabaki (1961),Panomarev (1966), Michael (1971) and Hdeib(1982). In 2017, Qoqazeh et. al, [19], introduced a new definition of the perfect functions in bitopological spaces as , a function  $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$  is called *P*—perfect, if

the function f is P—continuous, P—closed, and for all  $y \in Y$ , the set  $f^{-1}(y)$  is P—compact.), and gives many properties of them.In 2018, Atoom and Hdeib [?] studied perfect functions in bitopological spaces while preparing their PHD thesis and presented many important results in this field.

Dear reader, many important studies in many areas in bitopological spaces have been brought out in the reference list for reference for adults interested in this field.

## **2. PRELIMINARIES**

In this paper we introduce the notions and concepts of the perfect functions in the bitopological spaces, which yield to two types called p-Lindelö perfect, S-Lindelö perfect function. Also we study the images and inverse images of certain bitopological properties under these functions.We derive some related results. Finally some product theorems obtained concerning these concept . When  $(X, \tau_1, \tau_2)$  has the property Q this means that both  $(X, \tau_1)$  and  $(X, \tau_2)$  have this property. For instance a bitopological space  $(X, \tau_1, \tau_2)$  is called compact, if both  $(X, \tau_1)$ and  $(X, \tau_2)$  are compact spaces.

We will use the letters P-, S- to denote the pairwise and semi, respectively, e.g. P-compact stands for pairwise compact, S-compact stands for semi compact.

 $\tau_i$ -closure,  $\tau_i$ -interior of a set A will be denoted by  $CL_{\tau_i}(A)$ ,  $Int_{\tau_i}(A)$  respectively. The product of  $\tau_1$  and  $\tau_2$  will be denoted by  $\tau_1 \times \tau_2$ .

Let  $\mathbb{R}$ ,  $\mathbb{Z}$ ,  $\mathbb{N}$ ,  $\mathbb{Q}$  denote the set of all real numbers, integer numbers, natural numbers, and rational numbers respectively. Let  $\tau_{dis}$ ,  $\tau_{ind}$ ,  $\tau_u$ ,  $\tau_s$ ,  $\tau_{coc}$ ,  $\tau_{cof}$ ,  $\tau_l$ ,  $\tau_r$  denote the discrete, the indiscrete usual, Sorgenfrey line, cocountable, cofinite, left-ray, and right-ray topologies respectively. Let  $\omega_0$  and  $\omega_1$  denote the cardinal numbers of  $\mathbb{Z}$  and  $\mathbb{R}$  respectively.

#### **3.** MAIN RESULTS IN PAIRWISE LINDELÖ PERFECT FUNCTIONS

In this section, we will introduce the concept of Lindelö Perfect functions in bitopological spaces, and introduce some of their properties, and relate it to other spaces.

Let us recall known definitions which will be used in the sequel.

**Definition 3.1.** [9] A bitopological space  $(X, \tau_1, \tau_2)$  is called *P*—Lindelöf if every *P*–open cover of the space  $(X, \tau_1, \tau_2)$  has a countable subcover.

A bitopological space  $(X, \tau_1, \tau_2)$  is called S—Lindelöf if every  $\tau_1 \tau_2$ -open cover of the space  $(X, \tau_1, \tau_2)$  has a countable subcover.

**Definition 3.2.** A function  $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is called *p*-Lindelö perfect, if *f* is *p*-continuous, *p*-closed, and for each  $y \in Y$ ,  $f^{-1}(y)$  is *p*-Lindelö*f*.

**Corollary 3.2.1.** In above definition if  $f^{-1}(y)$  is countable then f is p-Lindelö perfect function.

**Example 3.3.** Let  $f : (R, \tau_u, \tau_{ind}) \longrightarrow (R, \tau_u, \tau_{ind})$  be the identy function ,where  $\tau_u$  and  $\tau_{ind}$  are the usual and indiscrete topoligies, respectively. then f is p-Lindelö perfect function.

Since f is P-continuous, P-closed and for each  $y \in Y$  any P-open cover  $\tilde{U}$  of  $f^{-1}(y)$  must be contains X because the only non empty open set in  $(R, \tau_{ind})$  is X. Hence  $\{X\}$  is a countable subcover of  $\tilde{U}$ . Hence  $f^{-1}(y)$  is p-Lindelöf.

**Example 3.4.** Let  $X = \{0, 1\}$  and  $\tau_1 = \{\phi, X, \{0\}\}$ ,  $\tau_2 = \{\phi, X, \{1\}\}$ . Define  $f : (X, \tau_1, \tau_2) \longrightarrow (R, \tau_1, \tau_2)$  by f(x) = 0. Then f is p-Lindelö perfect function.

**Theorem 3.5.** If  $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$  is a *p*-Lindelö perfect function, then for every *p*-Lindelöf subset  $Z \subseteq Y$ , the inverse image  $f^{-1}(Z)$  is a *p*-Lindelöf.

Proof. Let  $\tilde{U} = \{U_{\alpha}: \alpha \in \Lambda\}$  be a *p*-open cover of  $(X, \tau_1, \tau_2)$ , since *f* is a *p*-Lindelö perfect function, then  $\forall y \in Y$ ,  $f^{-1}(y)$  is *p*-Lindelöf subset of *X*. So there exists a countable subsets  $\Lambda_y$ ,  $\Lambda_y^*$  of  $\Lambda$ , s.t.  $f^{-1}(y) \subseteq \left(\bigcup_{\alpha \in \Lambda_y} \{V_{\alpha}: \alpha \in \Lambda_y\}\right) \bigcup \left(\bigcup_{\alpha \in \Lambda_y^*} \{W_{\alpha}: \alpha \in \Lambda_y^*\}\right)$ , where  $\{V_{\alpha} : \alpha \in \Lambda_{y}\}$  is  $\tau_{1}$ -open subsets of X and  $\{W_{\alpha} : \alpha \in \Lambda_{y}^{*}\}$  is  $\tau_{2}$ -open subsets of X. Now , let  $O_{y} = Y - f (X - \bigcup_{\alpha \in \Lambda_{y}} V_{\alpha})$  is a  $\sigma_{1}$ -open subset of Y containing y and  $O_{y}^{*} = Y - f (X - \bigcup_{\alpha \in \Lambda_{y}} W_{\alpha})$  is also a  $\sigma_{2}$ -open subset of Y containing y. Then  $y \in O_{y} \cup O_{y}^{*}$ . Since  $f^{-1}(O_{y}) \subseteq \bigcup_{\alpha \in \Lambda_{y}} V_{\alpha}$  and  $f^{-1}(O_{y}^{*}) \subseteq \bigcup_{\alpha \in \Lambda_{y}} W_{\alpha}$  then ,  $\tilde{O} = \{O_{y} : y \in Y\} \bigcup \{O_{y}^{*} : y \in Y\}$  is a p-open cover of Y. Hence ,  $\tilde{O}$  is p-open cover of Z. Since Z is p-Lindelof , $\tilde{O}$  has a countable subcover  $\left(\bigcup_{i=1}^{v}(O_{y_{i}})\right) \bigcup \left(\bigcup_{j=1}^{v}(O_{y_{j}}^{*})\right)$  and  $Z \subseteq \left(\bigcup_{i=1}^{v}(O_{y_{i}})\right) \bigcup \left(\bigcup_{j=1}^{v}(O_{y_{j}}^{*})\right)$ . Thus,  $f^{-1}(Z) \subseteq \left(\bigcup_{i=1}^{v}f^{-1}(O_{y_{i}})\right) \bigcup \left(\bigcup_{j=1}^{v}f^{-1}(O_{y_{j}}^{*})\right) \subseteq$  of a union of countable subset of  $\tilde{U}$ , i.e.  $f^{-1}(Z)$  is p-Lindelöf.

**Corollary 3.5.1.** A *p*-Lindelöf space is inverse invariant under *p*-Lindelö perfect functions.

**Corollary 3.5.2.** The composition of two p-Lindelö perfect functions is a p-Lindelö perfect function.

**Proposition 3.6.** If the composition  $g \circ f$  of a *p*-continuous functions, f:  $(X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2)$  and  $g: (Y, \sigma_1, \sigma_2) \xrightarrow{onto} (Z, \rho_1, \rho_2)$  is a *p*-closed then the function  $g: (Y, \sigma_1, \sigma_2) \xrightarrow{onto} (Z, \rho_1, \rho_2)$  is *p*-closed.

*Proof.* Let A be a  $\sigma_1$ -closed subset of Y, then  $f^{-1}(A)$  is  $\tau_1$ -closed subset of X. Since  $g \circ f$  is p-closed, then  $g(f(f^{-1}(A))) = g(A)$  is  $\rho_1$ -closed subset of Z. Similarly, we can show that if B be a  $\sigma_2$ -closed in Y, then g(B) is  $\rho_2$ -closed in Z. Thus g is a p-closed.

**Theorem 3.7.** If the composition function  $g \circ f$  of a p-continuous functions f:  $(X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2), g: (Y, \sigma_1, \sigma_2) \xrightarrow{onto} (Z, \rho_1, \rho_2)$  is a p-Lindelö perfect, then the function  $g: (Y, \sigma_1, \sigma_2) \xrightarrow{onto} (Z, \rho_1, \rho_2)$  is p-Lindelö perfect.

*Proof.* For every  $z \in Z$ ,  $g^{-1}(z) = f((g \circ f)^{-1}(z))$  is a *p*-Lindelöf subset of *Y*, because  $g \circ f$  is *p*-Lindelö perfect.

Since g is p-closed by proposition 3.6, we get that g is p-Lindelo perfect.

**Theorem 3.8.** If  $f:(X,\tau_1,\tau_2) \xrightarrow{onto} (Y,\sigma_1,\sigma_2)$  is p-closed function, then for any  $B \subset Y$  the restriction  $f_B: f^{-1}(B) \to B$  is p-closed.

*Proof.* Let  $B \subset Y$ . Consider the function  $f:(X,\tau_1) \to (Y,\sigma_1)$ . let A be a  $\tau_1$ -closed subset of X. Then  $f_B(A \bigcap f^{-1}(B)) = f(A) \bigcap B$  is  $\sigma_1$ -closed subset of B. Similarly we can show that if A a  $\tau_2$ -closed subset of X.  $f_B(A \bigcap f^{-1}(B)) = f(A) \bigcap B$  is  $\sigma_2$ -closed subset of B. Thus  $f_B: f^{-1}(B) \to B$  is a p-closed.  $\Box$ 

**Theorem 3.9.** If  $f:(X,\tau_1,\tau_2) \xrightarrow{onto} (Y,\sigma_1,\sigma_2)$  is p-Lindelö perfect function, then for any  $B \subset Y$  the restriction  $f_B: f^{-1}(B) \to B$  is p-Lindelö perfect.

*Proof.* The proof follows directly from theorem 3.8.

The following two theorems can be found in [9]

**Theorem 3.10.** Let  $X = (X, \tau_1, \tau_2)$  be a *p*-Hausdörff space, then every  $\tau_i$ -Lindelöf subset is  $\tau_j$ -closed ( $i \neq j, i, j = 1, 2$ ).

**Theorem 3.11.** A  $\tau_i$ -closed proper subset of a p-Lindelöf space is  $\tau_j$ -Lindelöf ( $i \neq j, i, j = 1, 2$ ).

**Theorem 3.12.** If  $f: (X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2)$  is a *p*-Lindelö perfect function ,where  $(X, \tau_1, \tau_2)$  is *p*-Lindelöf, and  $(Y, \sigma_1, \sigma_2)$  is *p*-Hausdörff, then *f* is *p*-closed.

*Proof.* If A is  $\tau_1$ -closed subset of  $(X, \tau_1, \tau_2)$ , then it is  $\tau_2$ -Lindelöf because  $(X, \tau_1, \tau_2)$  is p-Lindelöf. Since f is p-continuous, f(A) is a  $\sigma_2$ -Lindelöf subset of  $(Y, \sigma_1, \sigma_2)$ .

Since  $(Y, \sigma_1, \sigma_2)$  is *p*-Hausdörff, then f(A) is a  $\sigma_1$ -closed subset of  $(Y, \sigma_1, \sigma_2)$ . Similarly we can show that if *B* is a  $\tau_2$ -closed subset of  $(X, \tau_1, \tau_2)$ , then f(B) is a  $\sigma_2$ -closed subset of  $(Y, \sigma_1, \sigma_2)$ . Hence the result.

We can found the following definition in [21]

**Definition 3.13.** If  $(X, \tau_1, \tau_2)$  is a bitopological space, then  $\tau_1$  is said to be locally compact with respect to  $\tau_2$  if each point of X has a  $\tau_1$  open neighborhood whose  $\tau_2$  closure is pairwise compact.

A bitopological space  $(X, \tau_1, \tau_2)$  is said to be pairwise locally compact (*P*-locally compact) if it is  $\tau_1$  locally compact with respect to  $\tau_2$  and  $\tau_2$  locally compact with respect to  $\tau_1$ .

Note that every p-compact space is p-locally compact.

**Theorem 3.14.** Let  $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$  be *p*-continuous function from a *p*-Hausdörff space  $(X, \tau_1, \tau_2)$  in to a *p*-locally compact space  $(Y, \sigma_1, \sigma_2)$ .

Then the following are equivalent :

(i) f is a p-Lindelö perfect function,

(ii) For every p-Lindelöf subset  $Z \subset Y$  the set  $f^{-1}(Z)$  is a p-Lindelöf subset of X.

*Proof.*  $(i) \Rightarrow (ii)$ : the proof follows from theorem 3.8.

 $(ii) \Rightarrow (i)$ : It is suffices to show that f is a p-closed function, i.e both functions  $f_1$ :  $(X, \tau_1) \rightarrow (Y, \sigma_1)$  and  $f_2: (X, \tau_2) \rightarrow (Y, \sigma_2)$  are closed functions. Let A be a  $\tau_1$ -closed subset of X, and y be a cluster point of  $f_1(A)$ . Suppose  $y \notin f_1(A)$ . Since Y is p-locally compact, there is a  $\sigma_1$ -open set V containing y s.t  $CL_{\sigma_2}(V)$  is p-compact, and so p-Lindelöf.

Now,  $f_1^{-1}(CL_{\sigma_2}(V)\bigcap f(A)) = f_1^{-1}(CL_{\sigma_2}(V)) \bigcap A$ . By using (ii)  $f_1^{-1}(CL_{\sigma_2}(V))$  is p-Lindelöf and A is a  $\tau_2$ -closed, p-Lindelöf subset.

Also,  $f_1(f_1^{-1}(CL_{\sigma_2}(V)) \bigcap A) = CL_{\sigma_2}(V) \bigcap f_1(A)$  is a *p*-Lindelöf subset which is  $\sigma_1$ -closed.

Now,  $V - CL_{\sigma_2}(V) \bigcap f_1(A) = U$  is a  $\sigma_1$ -open set containing p and  $U \bigcap f_1(A) = \phi$ , which contradicts the fact that p is a cluster point. Hence  $p \in f_1(A)$ , i.e  $f_1(A)$  is a  $\sigma_1$ -closed.

Thus  $f_1: (X, \tau_1) \to (Y, \sigma_1)$  is a closed function.

By a similar method we can show that  $f_2 : (X, \tau_2) \to (Y, \sigma_2)$  is a closed function. Hence  $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  is *p*-closed function.

**Theorem 3.15.** Let  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  be a *p*-continuous bijection function. If  $(Y, \sigma_1, \sigma_2)$  is *p*-Hausdörff space, and  $(X, \tau_1, \tau_2)$  is *p*-Lindelöf, then *f* is *p*-homeomorphic function.

*Proof.* It's enough to show that f is p-closed.Let F be a  $\tau_i$ -closed proper subset of X. and hence F is proper  $\tau_j - p$ -Lindelöf, for  $i \neq j, i, j = 1, 2$ , by using theorem 3.10

7640

Hence, f(F) is a  $\sigma_j - p$ -Lindelof, but  $(Y, \sigma_1, \sigma_2)$  is p-Hausdörff space, by theorem 3.11, f(F) is  $\sigma_i$ -closed, i.e. f is p-homeomorphic function.

**Definition 3.16.** A function  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is called *p*-strongly function, if for ev-

ery *p*-open cover  $\tilde{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  of *X* there exists a *p*-open cover

$$\tilde{V} = \{V_{\gamma} : \gamma \in \Gamma\} \text{ of } Y, \text{ s.t } f^{-1}(V) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_1 : \Lambda_1 \text{ is a countable subset of } \Lambda\} \forall V \in \tilde{V}.$$

**Theorem 3.17.** Let  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  be a *p*-strongly onto function, then

 $(X, \tau_1, \tau_2)$  is *p*-Lindelöf, if  $(Y, \sigma_1, \sigma_2)$  is so.

*Proof.* Let  $\tilde{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  be a *p*-open cover  $(X, \tau_1, \tau_2)$ . Since *f* is a *p*-strongly function, there exists *p*-open cover  $\tilde{V} = \{V_{\gamma} : \gamma \in \Gamma\}$  of  $(Y, \sigma_1, \sigma_2)$ ,

such that  $f^{-1}(V) \subseteq \bigcup \{ U_{\alpha} : \alpha \in \Lambda_1 : \Lambda_1 \text{ is a countable subset of } \Lambda \} \forall V \in \tilde{V}.$ 

but  $(Y, \sigma_1, \sigma_2)$  is p-Lindelöf, so there exists a countable subset  $\Gamma_1$  of  $\Gamma$  s.t  $Y = \bigcup_{\gamma \in \Gamma_1} V_{\gamma}$ . Hence  $X = \bigcup_{\gamma \in \Gamma_1} f^{-1}(V_{\gamma})$ . So each  $f^{-1}(V_{\gamma})$  contains in a countable number of members of  $\tilde{U}$  Thus X is p-Lindelöf.

**Theorem 3.18.** Let  $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  be a *p*-Lindelö perfect function such that  $\forall y \in Y$ ,  $f^{-1}(y)$  is *p*-countably compact. If  $(Y, \sigma_1, \sigma_2)$  is a *p*-countably compact, then  $(X, \tau_1, \tau_2)$  is so.

*Proof.* Let  $\tilde{U} = \{U_{\alpha}: \alpha \in \Lambda\}$  be a *p*-open cover of  $(X, \tau_1, \tau_2)$ . Since *f* is a *p*-Lindelö perfect function, then  $\forall y \in Y, f^{-1}(y)$  is *p*-Lindelöf,  $\exists$  a countable subsets  $\Lambda_y$ ,  $\Lambda_y^*$  of  $\Lambda$ ,  $\Box$ 

s.t 
$$f^{-1}(y) \subseteq \bigcup_{\alpha \in \Lambda_y} \{V_{\alpha} : \alpha \in \Lambda_y\} \bigcup_{\alpha \in \Lambda_y^*} \{W_{\alpha} : \alpha \in \Lambda_y\}$$
, where  $\{V_{\alpha} : \alpha \in \Lambda_y\}$  is  $\tau_1$ -open

subsets of X and  $\{W_{\alpha} : \alpha \in \bigwedge_{y}^{*}\}$  is  $\tau_{2}$ -open subsets of X. Now,  $Oy(\alpha, y) = Y - f(X - \bigcup_{\alpha \in \Lambda_{y}} V_{\alpha})$ is a  $\sigma_{1}$ -open set containing y and  $O_{y}^{*}(\alpha, y) = Y - f(X - \bigcup_{\alpha \in \Lambda_{y}} W_{\alpha} : \alpha \in \Lambda)$  is a  $\sigma_{2}$ open set containing y. Also,  $f^{-1}(O_{y}(\alpha, y) \subseteq \bigcup_{\alpha \in \Lambda_{y}} V_{\alpha})$  and  $f^{-1}(O_{y}^{*}(\alpha, y) \subseteq \bigcup_{\alpha \in \Lambda_{y}} W_{\alpha})$ . Let  $\tilde{O} = \{O_y(\alpha, y) : y \in Y\} \bigcup \{O_y^*(\alpha, y) : y \in Y\}$  then  $\tilde{O}$  a *p*-countable cover of *Y*. Since  $(Y, \sigma_1, \sigma_2)$  is *p*-countably compact,  $\tilde{O}$  has a *p*-countable subcover say,  $\tilde{O}^* = \{O_y(\alpha_i, y) : i \in N, y \in Y\} \bigcup \{O_y^*(\alpha_i, y) : i \in N, y \in Y\}$ . So  $(X, \tau_1, \tau_2) = \bigcup_{i \in N} f^{-1}(O_y(\alpha_i, y)) \bigcup_{i \in N} f^{-1}(O_y^*(\alpha_i, y))$ . Hence  $(X, \tau_1, \tau_2)$  is a *p*-countably compact.

The following theorem shows that a p-paracompactness is an inverse invariant under p-Lindelö perfect function.

**Theorem 3.19.** Let  $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  be a *p*-Lindelö perfect function. If  $(Y, \sigma_1, \sigma_2)$  is a *p*-regular *p*-paracompact space then  $(X, \tau_1, \tau_2)$  is so.

*Proof.* Let  $\tilde{U} = \{U_{\alpha}: \alpha \in \Lambda\}$  be a p-open cover of  $(X, \tau_1, \tau_2)$ , since f is a p-Lindelö perfect function, then  $\forall y \in Y, f^{-1}(y)$  is p-Lindelöf,  $\exists$  a countable subsets  $\Lambda_y, \Lambda_y$  of  $\Lambda$ ,  $\Box$ 

s.t 
$$f^{-1}(y) \subseteq \bigcup_{\alpha \in \Lambda_y} \{V_\alpha : \alpha \in \Lambda_y\} \bigcup_{\alpha \in \Lambda_y^*} \{W_\alpha : \alpha \in \Lambda_y^*\}$$
, where  $\{V_\alpha : \alpha \in \Lambda_y\}$  is  $\tau_1$ -open,

 $\{W_{\alpha}: \alpha \in \bigwedge_{y}^{*}\}$  is  $\tau_{2}$ -open. Let

 $O_y = Y - f (X - \bigcup_{\alpha \in \Lambda_y} V_\alpha)$  is a  $\sigma_1$ -open set containing y, and  $O_y^* = Y - f (X - \bigcup_{\alpha \in \Lambda_y} V_\alpha)$ 

 $\bigcup_{\alpha \in \Lambda_y^*} W_{\alpha}$  is a  $\sigma_2$ -open set containing y, where

$$f^{-1}(O_y) \subseteq \bigcup_{lpha \in \Lambda_y} V_{lpha}, f^{-1}(O_y^*) \subseteq \bigcup_{lpha \in \Lambda_y} W_{lpha}.$$
 Now ,  $ilde{O} = \{O_y : y \in Y \} \bigcup \{O_y^* : Q_y^* : Q_y^* \}$ 

 $y \in Y$  } is a *p*-open cover of *Y*. Since  $(Y, \sigma_1, \sigma_2)$  is *p*-paracompact  $\tilde{O}$  has a *p*-open locally finite

parallel refinement say  $\tilde{H} = \{H_B : B \in \Gamma_1\} \bigcup \{H_B^* : B \in \Gamma_2\}$ , where  $\{H_B : B \in \Gamma_1\}$  is  $\sigma_1$ -locally finite parallel refinement of  $\{O_y : y \in Y\}$  and  $\{H_B^* : B \in \Gamma_2\}$  is  $\sigma_2$ -locally finite parallel

refinement of  $\{O_y^* : y \in Y\}$ . Let  $S_1 = \{f^{-1}(H_B) \bigcap V_{\alpha_i} : B \in \Gamma_1, \alpha_i \in \Lambda_y\}$  then  $S_1$  is a  $\tau_{1-}$  open locally finite parallel refinement of  $\{V_\alpha : \alpha \in \Lambda\}$ . Also  $S_2 = \{f^{-1}(H_B^*) \bigcap W_{\alpha_i} : B \in \Gamma_2, \alpha_i \in \Lambda_y^*\}$  is a  $\tau_2$ - open locally finite parallel refinement of  $\{W_\alpha : \alpha \in \Lambda\}$ . Let  $\tilde{S} = \{S_1 \bigcup S_2\}$ , then  $\tilde{S}$  is a *p*-open locally finite parallel refinement of  $\tilde{U}$ , so  $(X, \tau_1, \tau_2)$  is *p*-paracompact *p*-regular space.

### 4. MAIN RESULTS IN S-LINDELÖ PERFECT FUNCTIONS

**Definition 4.1.** A function  $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$  is called *S*-Lindelö perfect, if *f* is *p*-continuous, *p*-closed, and for each  $y \in Y$ ,  $f^{-1}(y)$  is *S*-Lindelöf.

**Corollary 4.1.1.** In above definition if  $f^{-1}(y)$  is countable then f is S-Lindelö perfect function.

**Example 4.2.** Let  $f : (R, \tau_{cof}, \tau_{dis}) \longrightarrow f : (R, \tau_{cof}, \tau_{dis})$  be the identity function, where  $\tau_f$  and  $\tau_d$  are denoted the cofinite topology on R and discrete topoligies, respectively. Then f is S-Lindelö perfect function. Since f is P-continuous, P-closed and for each  $y \in Y$  any  $\tau_1 \tau_2$ -open cover  $\tilde{U}$  of  $f^{-1}(y)$  has a countable subcover. Hence  $f^{-1}(y)$  is S-Lindelöf.

**Remark 4.3.** Since every P-open cover of the space  $(X, \tau_1, \tau_2)$  is a  $\tau_1\tau_2$ -open cover , it is clear that every S-Lindelöf space is P-Lindelöf. Hence every S-Lindelö perfect function is P-Lindelö perfect function.

**Theorem 4.4.** If  $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$  is a S-Lindelö perfect function, then for every S-Lindelöf subset  $Z \subseteq (Y, \sigma_1, \sigma_2)$ , the inverse image  $f^{-1}(Z)$  is S-Lindelöf.

Proof. Let  $\tilde{U} = \{U_{\alpha}: \alpha \in \Lambda\}$  be a  $\tau_{1}\tau_{2}$ -open cover of  $(X, \tau_{1}, \tau_{2})$ , since f is a S-Lindelö perfect function, then  $\forall y \in Y$ ,  $f^{-1}(y)$  is S-Lindelöf subset of X. So there exists a countable subsets  $\Lambda_{y}$ ,  $\Lambda_{y}^{*}$  of  $\Lambda$ , s.t  $f^{-1}(y) \subseteq \left(\bigcup_{\alpha \in \Lambda_{y}} \{V_{\alpha}: \alpha \in \Lambda_{y}\}\right) \bigcup \left(\bigcup_{\alpha \in \Lambda_{y}} \{W_{\alpha}: \alpha \in \Lambda_{y}\}\right)$ , where  $\{V_{\alpha}: \alpha \in \Lambda_{y}\}$  is  $\tau_{1}$ -open subsets of X and  $\{W_{\alpha}: \alpha \in \Lambda_{y}\}$  is  $\tau_{2}$ -open subsets of X. Now , let  $O_{y} = Y - f(X - \bigcup_{\alpha \in \Lambda_{y}} V_{\alpha})$  is a  $\sigma_{1}$ -open subset of Y and  $O_{y}^{*} = Y - f(X - \bigcup_{\alpha \in \Lambda_{y}} W_{\alpha})$  is also a  $\sigma_{2}$ -open subset of Y. Then  $y \in O_{y} \cup O_{y}^{*}$ . Since  $f^{-1}(O_{y}) \subseteq \bigcup_{\alpha \in \Lambda_{y}} V_{\alpha}$  or  $f^{-1}(O_{y}^{*}) \subseteq \bigcup_{\alpha \in \Lambda_{y}} W_{\alpha}$  then ,  $\tilde{O} = \{O_{y}: y \in Y\} \bigcup \{O_{y}^{*}: y \in Y\}$  is a  $\tau_{1}\tau_{2}$ -open cover of Y. Hence,  $\tilde{O}$  is  $\tau_{1}\tau_{2}$ -open cover of Z. Since Z is S-Lindelof,  $\tilde{O}$  has a countable subcover  $\left(\bigcup_{i=1}^{*}(O_{y_{i}})\right) \bigcup \left(\bigcup_{j=1}^{*}(O_{y_{j}})\right)$  and

$$Z \subseteq \left(\bigcup_{i=1}^{*} (O_{y_i})\right) \bigcup \left(\bigcup_{j=1}^{*} (\overset{*}{O}_{y_j})\right). \text{Thus, } f^{-1}(Z) \subseteq \left(\bigcup_{i=1}^{*} f^{-1}(O_{y_i})\right) \bigcup \left(\bigcup_{j=1}^{*} f^{-1}(\overset{*}{O}_{y_j})\right) \subseteq \text{of a union of countable subset of } \tilde{U}, \text{ i.e } f^{-1}(Z) \text{ is } S-\text{Lindelöf }.$$

**Corollary 4.4.1.** A S-Lindelöf space is inverse invariant under S-Lindelö perfect functions.

**Corollary 4.4.2.** The composition of two S-Lindelö perfect functions is a S-Lindelö perfect function.

**Theorem 4.5.** If the composition  $g \circ f$  of the *p*-continuous functions, f:  $(X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2), g: (Y, \sigma_1, \sigma_2) \xrightarrow{onto} (Z, \rho_1, \rho_2)$  is a *S*-Lindelö perfect, then the function  $g: (Y, \sigma_1, \sigma_2) \xrightarrow{onto} (Z, \rho_1, \rho_2)$  is *S*-Lindelö perfect.

*Proof.* For every  $z \in Z$ ,  $g^{-1}(z) = f((g \circ f)^{-1}(z)) = S$ -Lindelöf, because  $g \circ f$  is S-Lindelö perfect. Since g is p-closed by proposition (3.6), we get that g is S-Lindelö perfect.  $\Box$ 

**Theorem 4.6.** If  $f: (X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2)$  is S-Lindelö perfect function, then for any  $B \subset Y$  the restriction  $f_B: f^{-1}(B) \to B$  is S-Lindelö perfect.

*Proof.* The proof is similar to the proof of theorem 3.5.

The following theorem is easy to prove similarly to the theorem 3.8

**Theorem 4.7.** If  $f: (X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2)$  is S-Lindelö perfect function ,then for any  $B \subset Y$  the restriction  $f_B: f^{-1}(B) \to B$  is S-Lindelö perfect.

**Theorem 4.8.** If  $f: (X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2)$  is S-perfect ,where  $(X, \tau_1, \tau_2)$  is P-Lindelöf, and  $(Y, \sigma_1, \sigma_2)$  is p-Hausdorff, then f is p-closed.

*Proof.* The proof follows from remark 4.3 and theorem 3.12.

since every *P*-compact space  $(X, \tau_1, \tau_2)$  is *P*-Lindelöf we give the following important result:

**Corollary 4.8.1.** If  $f: (X, \tau_1, \tau_2) \xrightarrow{onto} (Y, \sigma_1, \sigma_2)$  is S-Lindelö perfect ,where  $(X, \tau_1, \tau_2)$  is P-compact, and  $(Y, \sigma_1, \sigma_2)$  is p-Hausdorff, then f is p-closed.

**Definition 4.9.** If  $(X, \tau_1, \tau_2)$  is a bitopological space, then  $\tau_1$  is said to be *S*-locally compact with respect to  $\tau_2$  if each point of *X* has a  $\tau_1$  open neighborhood whose  $\tau_2$  closure is *S*-compact.

A bitopological space  $(X, \tau_1, \tau_2)$  is said to be *S*- locally compact if  $\tau_1$  is *S*-locally compact with respect to  $\tau_2$  and  $\tau_2$  is *S*-locally compact with respect to  $\tau_1$ .

Note that every *S*-compact space is *S*-locally compact.

### **Theorem 4.10.** The P-Hausdroff space is invariant under S-Lindelö perfect functions.

Proof. Let  $(X, \tau_1, \tau_2)$  be a P-Hausdroff space,  $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  be a S-Lindelö perfect function, and  $y_1 \neq y_2$  in  $(Y, \sigma_1, \sigma_2)$ , then  $f^{-1}(y_1)$ ,  $f^{-1}(y_2)$  are disjoint and S-Lindelöfness subset of  $(X, \tau_1, \tau_2)$ . Since  $(X, \tau_1, \tau_2)$  be a P-Hausdroff space, there exists a  $\tau_1$ -neighborhood U in X, and  $\tau_2$ -neighborhoodV in X s.t  $f^{-1}(y_1) \subseteq U$ ,  $f^{-1}(y_2) \subseteq$ V and  $U \bigcap V = \phi$ . Now, the sets Y - f(X - U) is a  $\sigma_1$ -open subset in  $(Y, \sigma_1, \sigma_2)$  containing  $y_1$ and Y - f(X - V) is a  $\sigma_2$ -open subset in  $(Y, \sigma_1, \sigma_2)$  containing  $y_2$ , s.t  $[Y - f(X - U) \bigcap Y - f(X - V)] = Y - [f(X - U) \bigcup f(X - V)]$ 

 $= Y - f(X - U \bigcap V) = Y - f(X) = \phi$ . Hence  $(Y, \sigma_1, \sigma_2)$  is *P*-Hausdroff space.

The following theorem is easy to prove :

**Theorem 4.11.** The P-Hausdroff space is inverse invariant under S-Lindelö perfect functions.

**Definition 4.12.** A function  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is called *S*-strongly function, if for ev-

*ery*  $\tau_1\tau_2$ *-open cover*  $\tilde{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  *of* X *there exists a*  $\tau_1\tau_2$ *-open cover* 

 $\tilde{V} = \{V_{\gamma} : \gamma \in \Gamma\} \text{ of } Y, \text{ s.t } f^{-1}(V) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_1 : \Lambda_1 \text{ is a countable subset of } \Lambda\} \forall V \in \tilde{V}.$ 

**Theorem 4.13.** Let  $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  be a *p*-closed onto function, and  $f^{-1}(y)$  is S-Lindelöf for all  $y \in Y$ , then f is S-strongly function. *Proof.* Let  $\tilde{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  be a  $\tau_1 \tau_2$ -open cover of  $(X, \tau_1, \tau_2)$ . Since  $f^{-1}(y)$  is *S*-Lindelöf for all  $y \in Y$ , there exists a countable subset  $\Lambda_1 \subset \Lambda$  such that  $f^{-1}(y) \subseteq \bigcup_{\alpha \in \Lambda_1} U_{\alpha}$ . Let  $O_y = Y - f(X - \bigcup_{\alpha \in \Lambda_1} U_{\alpha})$ , then  $O_y$  is  $\sigma_1 \sigma_2$ -open subset of *Y*. Now , define  $\tilde{O} = \{O_y : y \in Y\}$ , then  $\tilde{O}$  is  $\sigma_1 \sigma_2$ -open cover of *Y*. Hence  $f^{-1}(O_y)$  is contained in a countable number of members of  $\tilde{U}$  thus *f* is *S*-strongly function.

**Theorem 4.14.** Let  $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$  be a *p*-continuous *S*-strong function and  $K \in \sigma_1 \cup \sigma_2$  be a *S*-Lindelöf subset of  $(Y, \sigma_1, \sigma_2)$ . Then  $f^{-1}(K)$  is *S*-Lindelöf subset of  $(X, \tau_1, \tau_2)$ .

Proof. Let  $\tilde{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  be a  $\tau_1\tau_2$ -open cover  $f^{-1}$  (K). Let  $\tilde{W} = \tilde{U} \bigcup \{X - f^{-1}(K)\}$ , then  $\tilde{W}$  is a  $\tau_1\tau_2$ -open cover of  $(X, \tau_1, \tau_2)$ . Since f is S-strongly function, there exists a  $\tau_1\tau_2$ -open cover  $\tilde{V} = \{V_{\gamma} : \gamma \in \Gamma\}$  of  $(Y, \sigma_1, \sigma_2)$  such that  $f^{-1}(K)$  contained in the union of countable members of  $\tilde{U}$ , But K is S-Lindelöf subset of  $(Y, \sigma_1, \sigma_2)$ , so K is contained in the countable members of  $\tilde{V}$ . Hence  $f^{-1}(K)$  is S-Lindelöf subset of  $(X, \tau_1, \tau_2)$ .

**Theorem 4.15.** Let  $(X, \tau_1, \tau_2), (Y, \sigma_1, \sigma_2)$ , be any two bitopological spaces .If  $(X, \tau_1, \tau_2)$  is S-Lindelöf ,then the projection function,  $\pi : (X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is closed.

*Proof.* If  $(X, \tau_1, \tau_2)$  is *S*-Lindelöf, then both topological spaces  $(X, \tau_1)$  and  $(X, \tau_2)$  are *S*-Lindelöf. Thus the projection functions: $\pi_1 : (X \times Y, \tau_1 \times \sigma_1) \to (Y, \sigma_1)$  and  $\pi_2 : (X \times Y, \tau_2 \times \sigma_2) \to (Y, \sigma_2)$  are closed functions. Hence  $\pi$  is closed function.  $\Box$ 

The research team that carried out this research worked on full commitment to scientific credibility and honesty at work.

The main goal is to enrich scientific research away from personal interests or any other goals.

#### ACKNOWLEDGEMENT

This article is a part of the team work prepared by the first author in Ajlun National University, (Ajlun - Jordan ) under the help of other authors in Amman Arab University.

#### **CONFLICT OF INTERESTS**

The author(s) declare that there is no conflict of interests.

#### REFERENCES

- [1] A. A. Atoom, study of pairwise ω-compact spaces, Glob. J. Pure Appl. Math. 14(11) (2018), 1453–1459.
- [2] A. Atoom, H. Qoqazeh and N. Abu Alkishik, Lindelöf Perfect Functions, JP J. Geom. Topol. 26(2) (2021), 91-101
- [3] A. A. Atoom, H. Z. Hdeib, Perfect functions in bitoplogical spaces, (thesis) (2018).
- [4] T. Birsan, Compacite dans les espaces bitopologiques, An. st. univ. Iasi, s.I.a. Mat. 15 (1969), 317-328.
- [5] I. E. Cooke, I. L.Reilly, On bitopological compactness, J. Lond. Math. Soc. 9(2) (1975), 518-522.
- [6] M. C. Datta, Projective bitopological spaces, J. Austral Math. Soc. 13 (1972), 327-334.
- [7] R. Engleking, General Topology, Heldermann Verlag Berlin, (1989).
- [8] P. Fletcher, H. B. Hoyle, C. W. Patty, The comparison of topologies, Duke Math. J. 36 (1969), 325-331.
- [9] A. Fora, H. Hdeib, On pairwise Lindelöf spaces, Revista Colombiana de Matematicas, XVII (1983), 37-58.
- [10] M. Ganster, I. L. Reilly, On pairwise paracompactness, J. Austral. Math. Soc. Ser. A, 53 (1992), 281-285.
- [11] H. Z. Hdeib, Contribution to the theory of [n, m]-compact, paracompact and normal spaces, Ph. D. Thesis State University of Buffalo (1979).
- [12] H. Hdeib, A. Fora, On pairwise paracompact spaces, Dirasat, IX(2) (1982), 21-29.
- [13] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
- [14] A. Killiman and Z. Salleh, Product properties for pairwise Lindelöf spaces, Bull. Malays. Math. Soc. 34(2) (2011), 231-246.
- [15] Y. W. Kim, Pairwise compactness, Publ. Math. Debrecen, 15 (1968), 87-90.
- [16] M. M. Kovár, A note on Raghavan-Reilly's pairwise paracompactness, Int. J. Math. Math. Sci. 24 (2000), 139–143.
- [17] E. P. Lan, Bitopological spaces and quasi-uniform spaces, Proc. London Math. 17(3) (1967), 241-256.
- [18] D. H. Pahk, B. D. Choi, Notes on pairwise compactness, Kyungpook Math. J. 11 (1971), 45-52.
- [19] H. Qoqazah, H. Hdeib, E. Abu Osba, On metacompactness in bitopological spaces, Int. J. Pure Appl. Math. 119(1) (2018), 191-205.
- [20] T. G. Raghvan, I. L. Reilly, A new topological paracompactness, J. Austral. Math. Soc. Ser. A. 41 (1986), 268-274.
- [21] I. Reilly, Bitopological local compactness, Indagat. Math. (Proc.) 75 (5)(1972), 407-4011.
- [22] A. Srivastava, and T. Bhatia, On pairwise R-compact bitopological spaces, Bull. Cal. Math. Soc. 98(2) (2006), 93-96.

## ATOOM, QOQAZEH, AL-QUDAH, JARADAT, ALKISHIK

- [23] I. A. Vainstin, On closed mappings, Zanhekii Mock. Vhnb. 155 (1952), 3-53.
- [24] J. D. Weston, On the comparison of topologies, J. Lond. Math. Soc. 32 (1957), 342-354.