Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 6, 8422-8429
https://doi.org/10.28919/jmcs/6677
ISSN: 1927-5307

COEFFICIENT ESTIMATES FOR BI-UNIVALENT FUNCTIONS IN CONNECTION WITH (p,q) CHEBYSHEV POLYNOMIAL

K. DHANALAKSHMI ${ }^{1}$, D. KAVITHA ${ }^{2, *}$, A. ANBUKKARASI ${ }^{3}$
${ }^{1}$ PG \& Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous), Villupuram, India
${ }^{2}$ Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai, India
${ }^{3}$ Department of Mathematics, IFET College of Engineering (Autonomous), Villupuram, India
Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this present work, authors are introduced a new subclass of bivalent functions $\mathfrak{S}_{\Sigma}(\alpha, x, p, q)$ with respect to symmetric conjugate points in the open unit disc \mathbb{U} related to (p, q) polynomials. Further the initial bounds of the subclass and the well known Fekete-Szegö inequality are determined.

Keywords: (p, q)-Chebyshev polynomials; bi-univalent functions; subordination.
2010 AMS Subject Classification: Primary 30C45; Secondary 30C50, 11B83.

1. Introduction

Let $\mathrm{R}=(-\infty, \infty)$ be the set of real numbers, \mathscr{C} be the set of complex numbers and

$$
N:=1,2,3 \ldots=N_{0} \backslash\{0\}
$$

be the set of positive integers.
*Corresponding author
E-mail address: soundarkavitha@gmail.com
Received August 22, 2021

Let \mathscr{A} denote the family of normalized analytic functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

in the open disc $\mathbb{U}=\{z: z \in \mathbb{C}:|z|<1\}$. Further, let \mathscr{S} denote the class of functions in \mathscr{A} which are also univalent in \mathbb{U}.

The well-known Koebe one-quarter theorem [2] ensures that the image of \mathbb{U} under every univalent function $f \in \mathscr{A}$ contains a disc of radius $1 / 4$. Hence every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z,(z \in \mathbb{U})$ and

$$
f^{-1}(f(w))=w,\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathscr{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). For example, functions in the class Σ are given below [8]:

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right) .
$$

In 1967, Lewin [5] introduced the class Σ of bi-univalent functions and shown that $\left|a_{2}\right|<$ 1.51. In 1969, Netanyahu [7] showed that $\max _{f \in \Sigma}\left|a_{2}\right|=4 / 3$ and Suffridge [9] have given an example of $f \in \Sigma$ for which $\left|a_{2}\right|=4 / 3$. Later, in 1980, Brannan and Clunie [1] improved the result as $\left|a_{2}\right| \leq \sqrt{2}$. In 1985, Kedzier-awski [3] proved this conjecture for a special case when the function f and f^{-1} are starlike. In 1984, Tan [10] proved that $\left|a_{2}\right| \leq 1.485$ which is the best estimate for the function in the class of bi-univalent functions.

For any integer $n \geq 2$ and $0<q<p \leq 1$, the (p, q)-Chebyshev polynomials of the second kind is defined by the following recurrence relations:

$$
U_{n}(x, s, p, q)=\left(p^{n}+q^{n}\right) x U_{n-1}(x, s, p, q)+(p q)^{n-1} s U_{n-2}(x, s, p, q)
$$

with the initial values $U_{0}(x, s, p, q)=1, U_{1}(x, s, p, q)=(p+q) x$ and 's' is a variable. By Assuming various values of $\mathrm{x}, \mathrm{s}, \mathrm{p}$ and q we get some interesting polynomials as follows:

- When $x=\frac{x}{2}, \mathrm{~s}=\mathrm{s}, \mathrm{p}=\mathrm{p}$ and $\mathrm{q}=\mathrm{q}$, the (p, q)- Chebyshev polynomials of the second kind becomes (p, q)-Fibonacci polynomials.
- When $\mathrm{x}=\mathrm{x}, \mathrm{s}=-1, \mathrm{p}=1$ and $\mathrm{q}=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Second kind of Chebyshev polynomials.
- When $x=\frac{x}{2}, \mathrm{~s}=1, \mathrm{p}=1$ and $\mathrm{q}=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Fibonacci polynomials.
- When $x=\frac{1}{2}, \mathrm{~s}=1, \mathrm{p}=1$ and $\mathrm{q}=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Fibonacci numbers.
- When $x=x, s=1, p=1$ and $q=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Pell polynomials.
- When $\mathrm{x}=1, \mathrm{~s}=11, \mathrm{p}=1$ and $\mathrm{q}=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Pell numbers.
- When $x=\frac{1}{2}, \mathrm{~s}=2 \mathrm{y}, \mathrm{p}=1$ and $\mathrm{q}=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Jacobsthal polynomials.
- When $x=\frac{1}{2}, \mathrm{~s}=2, \mathrm{p}=1$ and $\mathrm{q}=1$, the (p, q)- Chebyshev polynomials of the second kind becomes Jacobsthal numbers.

Recently Kızılatess et al.[4] defined (p, q)-Chebyshev polynomials of the first and second kinds and derived explicit formulas, generating functions and some interesting properties of these polynomials.

The generating function of the (p,q)- Chebyshev polynomials of the second kind is as follows:

$$
\begin{aligned}
& G_{p, q}(z)=\frac{1}{1-x p z \tau_{p}-x q z \tau_{q}-s p q z^{2} \tau_{p, q}} \\
& \quad=\sum_{n=0}^{\infty} U_{n}(x, s, p, q) z^{n} \quad(z \in \mathbb{U})
\end{aligned}
$$

where the Fibonacci operator τ_{q} was introduced by Mason [6], $\tau_{q} f(z)=f(q z)$. Similarly, $\tau_{p, q} f(z)=f(p q z)$.

Definition 1. For $0<\alpha \leq 1$, a function $s \in \sigma$ is belong to the class $\mathfrak{S}_{\Sigma}(\alpha, x, p, q)$ if it satisfies the following conditions

$$
\begin{align*}
& \left\{\frac{2 z s^{\prime}(z)}{s(z)-\overline{s(-\bar{z})}}+\frac{2\left(z s^{\prime}(z)\right)^{\prime}}{\left(s(z)-\overline{s(-\bar{z}))^{\prime}}\right.}\right. \\
& \left.-\frac{2 \alpha z^{2} s^{\prime \prime}(z)+2 z s^{\prime}(z)}{\alpha z(s(z)-\overline{s(-\bar{z})})^{\prime}+(1-\alpha)(s(z)-\overline{s(-\bar{z})})}\right\} \prec G_{p, q}(z) \tag{1.3}
\end{align*}
$$

and

$$
\begin{align*}
& \left\{\frac{2 w r^{\prime}(w)}{r(w)-\overline{r(-\bar{w})}}+\frac{2\left(w r^{\prime}(w)\right)^{\prime}}{(r(w)-\overline{r(-\bar{w})})^{\prime}}\right. \tag{1.4}\\
& \left.-\frac{2 \alpha w^{2} r^{\prime \prime}(w)+2 w r^{\prime}(w)}{\alpha w(r(w)-\overline{r(-\bar{w})})^{\prime}+(1-\alpha)(r(w)-\overline{r(-\bar{w})})}\right\} \prec G_{p, q}(w)
\end{align*}
$$

where $r=s^{-1}$.
By setting $\alpha=0, \mathfrak{S}_{\Sigma}(\alpha, x, p, q)=\mathfrak{S}_{\Sigma}(0, x, p, q)$ which holds the following conditions

$$
\frac{2\left(z s^{\prime}(z)\right)^{\prime}}{\left(s(z)-\overline{s(-\bar{z}))^{\prime}}\right.} \prec G_{p, q}(z) \quad \text { and } \quad \frac{2\left(w r^{\prime}(w)\right)^{\prime}}{(r(w)-\overline{r(-\bar{w})})^{\prime}} \prec G_{p, q}(z)
$$

where r is the extension of f^{-1}.

2. Estimation of Initial Coefficients \& Fekete-Szegö Inequality

Theorem 1. A function $f \in \Sigma$ of the form (1.1) is said to be in the class $\mathfrak{S}_{\Sigma}(\alpha, x, p, q)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{u_{1}(x, s, p, q)}{2}\left[\frac{\sqrt{u_{1}(x, s, p, q)}\left(m_{2}+n_{2}\right)}{\sqrt{(3-2 \alpha) u_{1}^{2}(x, s, p, q)-2(2-\alpha)^{2}}}\right] \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{u_{1}(x, s, p, q)}{4}\left[\frac{\left(m_{2}-n_{2}\right)}{(3-2 \alpha)-\frac{u_{1}(x, s, p, q)\left(m_{1}^{2}+n_{1}^{2}\right)}{2(2-\alpha)^{2}}}\right] \tag{2.2}
\end{equation*}
$$

Proof. Suppose that $f \in \mathfrak{S}_{\Sigma}(\alpha, x, p, q)$, then from (1.3) and (1.4)

$$
\begin{align*}
& \left\{\frac{2 z s^{\prime}(z)}{s(z)-\overline{s(-\bar{z})}}+\frac{2\left(z s^{\prime}(z)\right)^{\prime}}{\left(s(z)-\overline{s(-\bar{z}))^{\prime}}\right.}\right. \tag{2.3}\\
& -\frac{2 \alpha z^{2} s^{\prime \prime}(z)+2 z s^{\prime}(z)}{\alpha z\left(s(z)-\overline{s(-\bar{z}))^{\prime}+(1-\alpha)(s(z)-\overline{s(-\bar{z})})}\right\}=G_{p, q}(\phi(z))}
\end{align*}
$$

and for its inverse map $g=f^{-1}$, we have

$$
\begin{align*}
& \left\{\frac{2 w r^{\prime}(w)}{r(w)-\overline{r(-\bar{w})}}+\frac{2\left(w r^{\prime}(w)\right)^{\prime}}{(r(w)-\overline{r(-\bar{w})})^{\prime}}\right. \tag{2.4}\\
& \left.-\frac{2 \alpha w^{2} r^{\prime \prime}(w)+2 w r^{\prime}(w)}{\alpha w(r(w)-\overline{r(-\bar{w})})^{\prime}+(1-\alpha)(r(w)-\overline{r(-\bar{w})})}\right\}=G_{p, q}(\varphi(w)) .
\end{align*}
$$

For some analytic functions ϕ and φ such that $\phi(0)=\varphi(0)=0$ and $|\phi(z)|=|\varphi(w)|<1$ for all $z, w \in \mathbb{U}$. It is well known that if

$$
|\phi(z)|=\left|m_{1} z+m_{2} z^{2}+m_{3} z^{3}+\ldots\right|<1
$$

and

$$
|\varphi(w)|=\left|n_{1} w+n_{2} w^{2}+n_{3} w^{3}+\ldots\right|<1
$$

where $z, w \in \mathbb{U}$, then $\left|m_{k}\right|=\left|n_{k}\right|<1 \quad(\forall k \in N)$.
From (2.3) and (2.4),

$$
\begin{aligned}
& \left\{\frac{2 z s^{\prime}(z)}{s(z)-\overline{s(-\bar{z})}}+\frac{2\left(z s^{\prime}(z)\right)^{\prime}}{\left(s(z)-\overline{s(-\bar{z}))^{\prime}}-\frac{2 \alpha z^{2} s^{\prime \prime}(z)+2 z s^{\prime}(z)}{\alpha z(s(z)-\overline{s(-\bar{z})})^{\prime}+(1-\alpha)(s(z)-\overline{s(-\bar{z})})}\right\}}\right. \\
& =U_{0}(x, s, p, q)+U_{1}(x, s, p, q) \phi(z)+U_{2}(x, s, p, q) \phi^{2}(z)+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{\frac{2 w r^{\prime}(w)}{r(w)-\overline{r(-\bar{w})}}+\frac{2\left(w r^{\prime}(w)\right)^{\prime}}{(r(w)-\overline{r(-\bar{w})})^{\prime}}-\frac{2 \alpha w^{2} r^{\prime \prime}(w)+2 w r^{\prime}(w)}{\alpha w(r(w)-\overline{r(-\bar{w})})^{\prime}+(1-\alpha)(r(w)-\overline{r(-\bar{w})})}\right\} \\
& =U_{0}(x, s, p, q)+U_{1}(x, s, p, q) \varphi(w)+U_{2}(x, s, p, q) \varphi^{2}(w)+\cdots
\end{aligned}
$$

Thus, we write

$$
\begin{align*}
& \left\{\frac{2 z s^{\prime}(z)}{s(z)-\overline{s(-\bar{z})}}+\frac{2\left(z s^{\prime}(z)\right)^{\prime}}{\left(s(z)-\overline{s(-\bar{z}))^{\prime}}-\frac{2 \alpha z^{2} s^{\prime \prime}(z)+2 z s^{\prime}(z)}{\alpha z\left(s(z)-\overline{s(-\bar{z}))^{\prime}+(1-\alpha)(s(z)-\overline{s(-\bar{z})})}\right\}}\right.} \begin{array}{l}
=1+U_{0}(x, s, p, q)+m_{1}(z)+\left[U_{1}(x, s, p, q) m_{2}+U_{2}(x, s, p, q) m_{1}^{2}\right] z^{2}+\ldots
\end{array}\right. \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& \left\{\frac{2 w r^{\prime}(w)}{r(w)-\overline{r(-\bar{w})}}+\frac{2\left(w r^{\prime}(w)\right)^{\prime}}{(r(w)-\overline{r(-\bar{w})})^{\prime}}-\frac{2 \alpha w^{2} r^{\prime \prime}(w)+2 w r^{\prime}(w)}{\alpha w(r(w)-\overline{r(-\bar{w})})^{\prime}+(1-\alpha)(r(w)-\overline{r(-\bar{w})})}\right\} \tag{2.6}\\
& =1+U_{0}(x, s, p, q)+n_{1}(w)+\left[U_{1}(x, s, p, q) n_{2}+U_{2}(x, s, p, q) n_{1}^{2}\right] w^{2}+\cdots
\end{align*}
$$

By equating the coefficients from (2.5) and (2.6)

$$
\begin{equation*}
2(3-2 \alpha) a_{3}=u_{1}(x, s, p, q) m_{2}+u_{2}(x, s, p, q) m_{1}^{2} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
2(3-2 \alpha)\left(2 a_{2}^{2}-a_{3}\right)=u_{1}(x, s, p, q) n_{1}^{2} \tag{2.10}
\end{equation*}
$$

From (2.7) and (2.9)

$$
\begin{equation*}
m_{1}=-n_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
8(2-\alpha)^{2} a_{2}^{2}=u_{1}^{2}(x, s, p, q)\left(m_{1}^{2}+n_{1}^{2}\right) . \tag{2.12}
\end{equation*}
$$

By using (2.8) and (2.10) we obtain,

$$
\begin{equation*}
4(3-2 \alpha) a_{2}^{2}=u_{1}(x, s, p, q)\left(m_{2}+n_{2}\right)+u_{2}(x, s, p, q)\left(m_{1}^{2}+n_{1}^{2}\right) . \tag{2.13}
\end{equation*}
$$

By using (2.12) in (2.13) we get,

$$
\begin{equation*}
\left[4(3-2 \alpha)-\frac{8(2-\alpha)^{2} u_{2}(x, s, p, q)}{u_{1}^{2}(x, s, p, q)}\right] a_{2}^{2}=u_{1}(x, s, p, q)\left(m_{2}+n_{2}\right) . \tag{2.14}
\end{equation*}
$$

From (2.13) we acquired the result which is desired in (2.1).
By subtracting (2.10) from (2.8)

$$
-4(3-2 \alpha)\left(a_{2}^{2}-a_{3}\right)=u_{1}(x, s, p, q)\left(m_{2}-n_{2}\right)+u_{2}(x, s, p, q)\left(m_{1}^{2}-n_{1}^{2}\right)
$$

Using (2.11) and (2.12),

$$
4(3-2 \alpha) \frac{u_{1}^{2}(x, s, p, q)\left(m_{1}^{2}+n_{1}^{2}\right)}{8(2-\alpha)^{2}}+4(3-2 \alpha) a_{3}=u_{1}(x, s, p, q)\left(m_{2}-n_{2}\right)
$$

$$
\begin{equation*}
a_{3}=\frac{u_{1}(x, s, p, q)\left(m_{2}-n_{2}\right)}{4(3-2 \alpha)}+\frac{u_{1}^{2}(x, s, p, q)\left(m_{1}^{2}+n_{1}^{2}\right)}{8(2-\alpha)^{2}} . \tag{2.15}
\end{equation*}
$$

By using (2.11), we obtain the desired result in (2.2).

Theorem 2. A function $f \in \Sigma$ of the form (1.1) is said to be in the class $\mathfrak{S}_{\Sigma}(\alpha, x, p, q)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\left|u_{1}(x, s, p, q)\right|}{2(3-2 \alpha)}, & \phi \leq \frac{1}{4(3-2 \alpha)} \\ 2\left|u_{1}(x, s, p, q)\right||p|, & \phi \geq \frac{1}{4(3-2 \alpha)}\end{cases}
$$

Proof. From (2.14) and (2.15),

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{\left[u_{1}(x, s, p, q)\right]^{3}\left(m_{2}+n_{2}\right)(1-\mu)}{4(3-2 \alpha) u_{1}^{2}(x, s, p, q)-8(2-\alpha)^{2} u_{2}(x, s, p, q)}+\frac{u_{1}(x, s, p, q)\left(m_{2}-n_{2}\right)}{4(3-2 \alpha)} \\
& =u_{1}(x, s, p, q)\left[m_{2}+\left(\phi+\frac{1}{4(3-2 \alpha)}\right)+n_{2}\left(\phi-\frac{1}{4(3-2 \alpha)}\right)\right]
\end{aligned}
$$

where

$$
\phi=\frac{u_{1}^{2}(x, s, p, q)(1-\mu)}{4(3-2 \alpha) u_{1}^{2}(x, s, p, q)-8(2-\alpha)^{2} u_{2}(x, s, p, q)} .
$$

Corollary 1. When $\alpha=0$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\left|u_{1}(x, s, p, q)\right|}{6}, & \phi \leq \frac{1}{12} \\ 2\left|u_{1}(x, s, p, q)\right||p|, & \phi \geq \frac{1}{12}\end{cases}
$$

CONFLICT OF Interests

The author(s) declare that there is no conflict of interests.

References

[1] D. A. Brannan, J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, New York Londan (1980).
[2] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenscafeten, 259, Spinger - Verlag, New York, (1983).
[3] A. Kedzierawski, J. Waniurski, Bi-univalent polynomials of small degree, Complex Var. Theory Appl. 10(23) (1988), 97-100.
[4] S. C. Kızılate, N. Tuglu, B. Çekim, On the (p, q)-Chebyshev polynomials and related polynomials, Mathematics, 7 (2019), 136.
[5] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[6] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman \& Hall, Boca Raton (2003).
[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z<1$, Arch. Rational Mech. Anal. 32 (1969), 100-112.
[8] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc. 23(2) (2015), 242-246.
[9] T. J. Suffridge, A coefficient problem for a class of univalent functions, Michigan Math. J. 16 (1969), 33-42.
[10] D. L. Tan, Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 5 (1984), 559-568.

