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Abstract. Bollobás and Gyárfás conjectured that for n ≥ 4k− 3 every 2-edge-coloring of Kn contains a

monochromatic k-connected subgraph with at least n−2k+ 2 vertices. It was proved that the conjecture

holds for k = 2, 3. In this paper, we prove that if each monochromatic k-connected (k = 2, 3) subgraph

has at most n − 2k + 2 vertices in 2-edge-colored Kn (n ≥ 13), then there exists a monochromatic

4-connected subgraph with at least n− 6 vertices.
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1. Introduction

It is easy to see that for any graph G, either G or its complement G is connected. This is

equivalent that there exists a connected monochromatic subgraph of every 2-edge-coloring

of Kn. Bollobás and Gyárfás [1] conjectured that for n > 4(k − 1) every 2-edge-coloring

of Kn contains a monochromatic k-connected subgraph with at least n− 2k + 2 vertices.

∗Corresponding author

E-mail addresses: 499569218@qq.com (H. Luo), xiaokangyouxiang@163.com(Y. Kang),

wenshili@yahoo.cn(S. Wen)

Received Dec 12, 2011

386



MONOCHROMATIC 4-CONNECTED SUBGRAPHS 387

Liu et al. [9] proved that the conjecture holds when n ≥ 13k − 15. Jin et al. [8]

characterized all the 2-edge-colorings of Kn where there is a monochromatic k-connected

subgraph with ai least n − 2k + 2 vertices for n ≥ 13k − 15. Fujita et al. [7] proved

that every 2-edge-coloring of Kn contains a monochromatic k-connected subgraph with

at least n − 2k + 2 vertices when n ≥ 6.5(k − 1). In fact this conjecture is a part of the

question due to Bollobás: when we colored the edges of Kn with at most r colors, how

large a k-connected subgraph are we guaranteed to find using only at most s colors.

Let φ be an r-edge-coloring of Kn. Given a subgraph H of Kn, we write cφ(H) for the

number of colors in H. Denote by

M(φ, n, r, s, k) = max{|V (H)| : H ⊆ Kn, H is k-connected, and cφ(H) ≤ s}

the order of the largest k-connected subgraph ofKn using at most s colors. Letm(n, r, s, k) =

minφ{M(φ, n, r, s, k)}, where φ runs over all the r-edge-colorings of Kn. Thus the question

of Ballobás asks for the value of m(n, r, s, k).

When s = k = 1, the question asks for the order of monochromatic component in edge

colored graph Kn see [3, 5, 6]. Bollobás and Gyárfás [1] gave some bounds for the case

s = 1. Liu et al. [9, 10] gave some bounds for the parameter m(n, r, s, k) for some r, s

and k. Note that only a few cases are determined exactly. Besides of the connectivity of

monochromatic subgraphs in edge colored Kn, other propositions should be interesting

too. For example, Gyárfás and Sárközy [4, 5] considered the order of monochromatic

double stars in edge colored Kn. Burr [2] proved that each 2-edge-colored Kn contains a

monochromatic spanning broom.

Bollobás and Gyárfás [1] present a 2-edge-coloring of Kn where each monochromatic k-

connected subgraph has order at most n−2k+2. They also proved thatm(n, 2, 1, 2) = n−2

when n ≥ 5. Liu et al. [9] proved that m(n, 2, 1, 3) = n − 4 for n ≥ 9. Without loss

of generality, throughout the paper, we use red and blue to color the edges of Kn. For

convenience, denote by R and B the spanning graphs of Kn which contains all the red

and blue edges respectively.

2. Main results
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First we present some known results, which also appeared in [1, 9, 10].

Lemma 2.1. Let G be a graph and v ∈ V (G) with d(v) ≥ k. If G − v is k-connected,

then G is also k-connected.

Lemma 2.2. Let G and H be k-connected graphs. If |V (G) ∩ V (H)| ≥ k, then G ∪H

is also k-connected.

Lemma 2.3. For n ≥ 4k − 3, m(n, 2, 1, k) = n− 2k + 2, k = 2, 3.

Second we will prove the following theorem.

Theorem 2.4. Let Kn (n ≥ 13) be 2-edge-colored. If each monochromatic k-connected

(k = 2, 3) subgraph has at most n−2k+2 vertices in Kn, then there exists a monochromatic

4-connected subgraph with at least n− 6 vertices.

Proof. We use red and blue to color the edges of Kn. From Theorem 2.3. we can

assume that G1 is a monochromatic 3-connected graph with n − 4 vertices and G2 is a

2-connected graph with n− 2 vertices in Kn. Let C1 = V (Kn)\V (G1), and then |C1| = 4.

Let C1 = {v1, v2, v3, v4}.

Case 1 The graphs G1 and G2 have the same color. Without loss of generality, let

Gi ⊆ R (i = 1, 2).

Since G1 is a red 3-connected graph, we have that G1 is a red 2-connected graph. Note

that G1 ⊆ G2. Otherwise, since |V (G2)| = n− 2, we have that |V (G1) ∩ V (G2)| ≥ n− 6.

By Lemma 2.2, the graph G1 ∪ G2 is a red subgraph with at least n − 1 vertices, a

contradiction. Note that there are two vertices, say v3, v4 ∈ C1, each of which sends two

red edges to G1, i.e., V (G2) = V (G1)∪ {v3, v4}. Otherwise, by Lemma 2.1, there exists a

red 2-connected subgraph with at least n− 1 vertices, a contradiction. Then it is easy to

see that each vertex of {v1, v2} sends at most one red edge to G1.

If G1 is 4-connected, then we are done. Now we suppose that G1 isn’t a 4-connected

subgraph, then there exists a cut set C of G1 with at most 3 vertices. Let A1 be the union

of vertices of some components of G1−C and B1 = V (G1)\A1 such that |A1| ≥ |B1| and
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|B1| as large as possible. Choose the cut set C that maximize the set |B1|. It is easy to

see that all edges between A1 and B1 are blue. This forms a complete bipartite graph in

blue. Let G3 = B[A1 ∪B1 ∪ {v1, v2}] and G4 = B[A1 ∪B1 ∪ C1].

Case 1.1 |B1| ≥ 4.

Then B[A1, B1] is a blue 4-connected complete bipartite graph with at least n− 7 ver-

tices. Since each vertex of C1 sends at least n−|C|− |C1|−2 ≥ 5 blue edges to B[A1, B1],

by Lemma 2.1, we know that G3 is a blue 4-connected subgraph with at least n−3 vertices.

Case 1.2 |B1| = 3.

Then |A1| = n − |C| − |C1| − |B1| ≥ 4 (n ≥ 13). Note that each vertex of {v1, v2}

sends at most one red edges to G1. If the red edges between {v1, v2} and V (G1) are

non-adjacent, then it is easy to see that G3 is a blue 4-connected subgraph with at least

n−5 vertices. If the red edges between {v1, v2} and V (G1) are adjacent, then there exists

a vertex u ∈ V (G1) such that both uv1 and uv2 are red edges. Then we have that the

graph G3 − u is a blue 4-connected subgraph with at least n− 6 vertices.

Case 1.3 |B1| = 2.

Then |A1| = n− |C| − |C1| − |B1| ≥ 4.

Case 1.3.1 There are at least one vertex of {v1, v2}, say v1, that sends one red edge to

C.

Then there are at most one vertex v2 of {v1, v2} that sends one red edge to V (G1)\C.

And all edges between v1 and A1 ∪ B1 are blue. If v2 sends one red edge to B1, then G3

a blue 4-connected graph with at least n − 5 vertices. If v2 sends one red edge to A1,

then there exists a vertex u of A1 such that uv2 is red. Then the graph G3 − u is a blue

4-connected graph with at least n− 6 vertices.

Case 1.3.2 Each vertex of {v1, v2} sends one red edge to B1.
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Then all edges between {v1, v2, B1} and A1 are blue. We have that the graph G3 is a

blue 4-connected subgraph with at least n− 5 vertices.

Case 1.3.3 There exists only one vertex of {v1, v2}, say v1, that sends one red edge to

A1.

Then v2 sends at most one red edge to B1. Let u ∈ A1 such that uv1 is red. It’s easy

to see that all the edges between B1 and v2 are blue. Then the graph G3 − u is a blue

4-connected graph with at least n− 6 vertices.

Case 1.3.4 Each vertex of {v1, v2} sends one red edge to A1.

Then all the edges between B1 and {v1, v2} are blue edges. If there exists a vertex

u ∈ A1 such that both uv1 and uv2 are red edges, then the graph G3 − u is a blue

4-connected graph with at least n− 6 vertices.

Suppose that there exist two vertices u1, u2 ∈ A1 such that v1u1 and v2u2 are red edges.

Then it is easy to see that the graph G3 − {u1, u2} is a blue 4-connected subgraph. We

know that each vertex of {v3, v4} sends two red edges to G1. If there exists a vertex of

{v3, v4} and a vertex of {u1, u2}, say v3 and u1, such that u1v3 is blue, then the graph

G4− u2− v4 is a 4-connected subgraph with at least n− 5 vertices. If there isn’t a vertex

of {v3, v4} such that uiv3 (i = 1, 2) is blue, then each vertex of {v3, v4} sends at least four

red edges to G3− u1− u2. By Lemma 2.1, the graph G4− u1− u2 is 4-connected with at

least n− 5 vertices.

Case 1.4 |B1| = 1.

Then |A1| = n− |B1| − |C| − |C1| ≥ 5. It is easy to see that there are at most six red

edges between C1 and G1 in all.

Case 1.4.1 There are at most two red edges between A1 and C1.

Then there exists at most one vertex v of A1 that sends at most three blue edges to

B1 ∪ C1. It’s easy to see that the graph G4 − v is a 4-connected subgraph with at least
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n− 4 vertices.

Case 1.4.2 There are three red edges between A1 and C1.

Suppose that there exists a vertex of C1, say v3, that sends two red edges to different

vertices of A1. Then there exists a vertex of C1, say v1, that sends one red edges to the

vertex u of A1. If uv3 is a red edge, then the graph G4−v3 is a 4-connected subgraph with

at least n− 4 vertices. If uv3 is a blue edge, then the graph G4− v1− v3 is a 4-connected

subgraph with at least n − 5 vertices. Suppose that there exist three vertices of C1, say

v1, v2, v3, each of which sends one red edge to A1. If each vertex of A1 sends at least

four blue edges to B1 ∪ C1, then the graph G4 is a 4-connected subgraph with with at

least n− 3 vertices. If there exists a vertex u of A1 such that u sends three red edges to

B1 ∪ C1, then the graph G4 − u is a 4-connected subgraph with at least n − 4 vertices.

If there exist two vertices u1, u2 of A1 such that u1v1, u1v2, u2v3 are red edges, then the

graph G4 − u1 − v3 is a 4-connected subgraph with at least n− 5 vertices.

Case 1.4.3 There are four red edges between A1 and C1.

Since there are at most six red edges between C1 and G1 in all, we have that there

exists a vertex w ∈ C that sends |C1| blue edges to C1. There are at most two vertices

u1, u2 of A1 each of which sends at most three blue edges to B1 ∪ C1. Then the graph

B[(A1\{u1, u2}) ∪B1 ∪ C1 ∪ {w}] is a 4-connected subgraph with at least n− 4 vertices.

Case 1.4.4 There are five red edges between A1 and C1.

Then there are at least two vertices of C each of which sends |C1| blue edges to C1.

There are at most two vertices u1, u2 of A1 each of which sends at most three blue edges

to B1 ∪ C1. Then the graph B[(A1\{u1, u2}) ∪ B1 ∪ C1 ∪ {w1, w2}] is a blue 4-connected

subgraph with at least n− 3 vertices.

Case 1.4.5 There are six red edges between A1 and C1.
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Then There are at most three vertices u1, u2, u3 of A1 each of which sends at most

three blue edges to B[B1 ∪ C,C1]. It’s easy to see that each vertex of C sends |C1| blue

edges to C and each vertex of C1 sends |B1| blue edges to B1. Then B[B1 ∪ C ∪ C1] is

a 4-connected graph. Note that each vertex of A1\{u1, u2, u3} sends at least four blue

edges to B[B1 ∪C ∪C1]. By Lemma 2.1, the graph B[(A1\{u1, u2, u3}) ∪B1 ∪C1 ∪C] is

a 4-connected subgraph with at least n− 3 vertices.

Case 2 Suppose that G1 and G2 have different colors. Without loss of generality, let

G1 ⊆ R and G2 ⊆ B.

Note that there exists at most one vertex v of C1 that sends two red edges to G1.

Otherwise, there are at least two vertices v1, v2 of C1 each of which sends two red edges

to G1. By Lemma 2.1, R[G1 ∪ {v1, v2}] is a red 2-connected subgraph with at least n− 2

vertices, a contradiction. Then there are at most five red edges between C1 and G1. Then

There are at most five vertices, say ui ∈ G1(i = 1, 2, 3, 4, 5), each of which sends at least

one red edge to C1. Since n ≥ 13, we have that there exists a blue 4-connected subgraph

B[C1 ∪G1\{u1, u2, u3, u4, u5} with at least n− 5 vertices.

This completes the proof.
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