

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 2, 386-393

ISSN: 1927-5307

MONOCHROMATIC 4-CONNECTED SUBGRAPHS IN CONSTRAINED 2-EDGE-COLORING OF K_{n}

HONGPING LUO, YINGLI KANG, AND SHILI WEN*
Department of Mathematics, Zhejiang Normal University
Jinhua 321004, P.R. China

Abstract

Bollobás and Gyárfás conjectured that for $n \geq 4 k-3$ every 2-edge-coloring of K_{n} contains a monochromatic k-connected subgraph with at least $n-2 k+2$ vertices. It was proved that the conjecture holds for $k=2,3$. In this paper, we prove that if each monochromatic k-connected $(k=2,3)$ subgraph has at most $n-2 k+2$ vertices in 2-edge-colored $K_{n}(n \geq 13)$, then there exists a monochromatic 4 -connected subgraph with at least $n-6$ vertices.

Keywords: monochromatic subgraph, k-connected subgraph, 2-edge-coloring.
2000 AMS Subject Classification: 05C15, 05C35

1. Introduction

It is easy to see that for any graph G, either G or its complement \bar{G} is connected. This is equivalent that there exists a connected monochromatic subgraph of every 2-edge-coloring of K_{n}. Bollobás and Gyárfás [1] conjectured that for $n>4(k-1)$ every 2-edge-coloring of K_{n} contains a monochromatic k-connected subgraph with at least $n-2 k+2$ vertices.

[^0]Received Dec 12, 2011

Liu et al. [9] proved that the conjecture holds when $n \geq 13 k-15$. Jin et al. [8] characterized all the 2-edge-colorings of K_{n} where there is a monochromatic k-connected subgraph with ai least $n-2 k+2$ vertices for $n \geq 13 k-15$. Fujita et al. [7] proved that every 2-edge-coloring of K_{n} contains a monochromatic k-connected subgraph with at least $n-2 k+2$ vertices when $n \geq 6.5(k-1)$. In fact this conjecture is a part of the question due to Bollobás: when we colored the edges of K_{n} with at most r colors, how large a k-connected subgraph are we guaranteed to find using only at most s colors.

Let ϕ be an r-edge-coloring of K_{n}. Given a subgraph H of K_{n}, we write $c_{\phi}(H)$ for the number of colors in H. Denote by

$$
M(\phi, n, r, s, k)=\max \left\{|V(H)|: H \subseteq K_{n}, H \text { is } k \text {-connected, and } c_{\phi}(H) \leq s\right\}
$$

the order of the largest k-connected subgraph of K_{n} using at most s colors. Let $m(n, r, s, k)=$ $\min _{\phi}\{M(\phi, n, r, s, k)\}$, where ϕ runs over all the r-edge-colorings of K_{n}. Thus the question of Ballobás asks for the value of $m(n, r, s, k)$.

When $s=k=1$, the question asks for the order of monochromatic component in edge colored graph K_{n} see [3, 5, 6]. Bollobás and Gyárfás [1] gave some bounds for the case $s=1$. Liu et al. $[9,10]$ gave some bounds for the parameter $m(n, r, s, k)$ for some r, s and k. Note that only a few cases are determined exactly. Besides of the connectivity of monochromatic subgraphs in edge colored K_{n}, other propositions should be interesting too. For example, Gyárfás and Sárközy [4, 5] considered the order of monochromatic double stars in edge colored K_{n}. Burr [2] proved that each 2-edge-colored K_{n} contains a monochromatic spanning broom.

Bollobás and Gyárfás [1] present a 2-edge-coloring of K_{n} where each monochromatic k connected subgraph has order at most $n-2 k+2$. They also proved that $m(n, 2,1,2)=n-2$ when $n \geq 5$. Liu et al. [9] proved that $m(n, 2,1,3)=n-4$ for $n \geq 9$. Without loss of generality, throughout the paper, we use red and blue to color the edges of K_{n}. For convenience, denote by R and B the spanning graphs of K_{n} which contains all the red and blue edges respectively.

2. Main results

First we present some known results, which also appeared in $[1,9,10]$.
Lemma 2.1. Let G be a graph and $v \in V(G)$ with $d(v) \geq k$. If $G-v$ is k-connected, then G is also k-connected.

Lemma 2.2. Let G and H be k-connected graphs. If $|V(G) \cap V(H)| \geq k$, then $G \cup H$ is also k-connected.

Lemma 2.3. For $n \geq 4 k-3, m(n, 2,1, k)=n-2 k+2, k=2,3$.

Second we will prove the following theorem.
Theorem 2.4. Let $K_{n}(n \geq 13)$ be 2-edge-colored. If each monochromatic k-connected $(k=2,3)$ subgraph has at most $n-2 k+2$ vertices in K_{n}, then there exists a monochromatic 4 -connected subgraph with at least $n-6$ vertices.

Proof. We use red and blue to color the edges of K_{n}. From Theorem 2.3. we can assume that G_{1} is a monochromatic 3 -connected graph with $n-4$ vertices and G_{2} is a 2-connected graph with $n-2$ vertices in K_{n}. Let $C_{1}=V\left(K_{n}\right) \backslash V\left(G_{1}\right)$, and then $\left|C_{1}\right|=4$. Let $C_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

Case 1 The graphs G_{1} and G_{2} have the same color. Without loss of generality, let $G_{i} \subseteq R(i=1,2)$.

Since G_{1} is a red 3-connected graph, we have that G_{1} is a red 2 -connected graph. Note that $G_{1} \subseteq G_{2}$. Otherwise, since $\left|V\left(G_{2}\right)\right|=n-2$, we have that $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq n-6$. By Lemma 2.2, the graph $G_{1} \cup G_{2}$ is a red subgraph with at least $n-1$ vertices, a contradiction. Note that there are two vertices, say $v_{3}, v_{4} \in C_{1}$, each of which sends two red edges to G_{1}, i.e., $V\left(G_{2}\right)=V\left(G_{1}\right) \cup\left\{v_{3}, v_{4}\right\}$. Otherwise, by Lemma 2.1, there exists a red 2 -connected subgraph with at least $n-1$ vertices, a contradiction. Then it is easy to see that each vertex of $\left\{v_{1}, v_{2}\right\}$ sends at most one red edge to G_{1}.

If G_{1} is 4 -connected, then we are done. Now we suppose that G_{1} isn't a 4 -connected subgraph, then there exists a cut set C of G_{1} with at most 3 vertices. Let A_{1} be the union of vertices of some components of $G_{1}-C$ and $B_{1}=V\left(G_{1}\right) \backslash A_{1}$ such that $\left|A_{1}\right| \geq\left|B_{1}\right|$ and
$\left|B_{1}\right|$ as large as possible. Choose the cut set C that maximize the set $\left|B_{1}\right|$. It is easy to see that all edges between A_{1} and B_{1} are blue. This forms a complete bipartite graph in blue. Let $G_{3}=B\left[A_{1} \cup B_{1} \cup\left\{v_{1}, v_{2}\right\}\right]$ and $G_{4}=B\left[A_{1} \cup B_{1} \cup C_{1}\right]$.

Case $1.1\left|B_{1}\right| \geq 4$.
Then $B\left[A_{1}, B_{1}\right]$ is a blue 4 -connected complete bipartite graph with at least $n-7$ vertices. Since each vertex of C_{1} sends at least $n-|C|-\left|C_{1}\right|-2 \geq 5$ blue edges to $B\left[A_{1}, B_{1}\right]$, by Lemma 2.1, we know that G_{3} is a blue 4 -connected subgraph with at least $n-3$ vertices.

Case $1.2\left|B_{1}\right|=3$.
Then $\left|A_{1}\right|=n-|C|-\left|C_{1}\right|-\left|B_{1}\right| \geq 4(n \geq 13)$. Note that each vertex of $\left\{v_{1}, v_{2}\right\}$ sends at most one red edges to G_{1}. If the red edges between $\left\{v_{1}, v_{2}\right\}$ and $V\left(G_{1}\right)$ are non-adjacent, then it is easy to see that G_{3} is a blue 4 -connected subgraph with at least $n-5$ vertices. If the red edges between $\left\{v_{1}, v_{2}\right\}$ and $V\left(G_{1}\right)$ are adjacent, then there exists a vertex $u \in V\left(G_{1}\right)$ such that both $u v_{1}$ and $u v_{2}$ are red edges. Then we have that the graph $G_{3}-u$ is a blue 4 -connected subgraph with at least $n-6$ vertices.

Case $1.3\left|B_{1}\right|=2$.
Then $\left|A_{1}\right|=n-|C|-\left|C_{1}\right|-\left|B_{1}\right| \geq 4$.

Case 1.3.1 There are at least one vertex of $\left\{v_{1}, v_{2}\right\}$, say v_{1}, that sends one red edge to C.

Then there are at most one vertex v_{2} of $\left\{v_{1}, v_{2}\right\}$ that sends one red edge to $V\left(G_{1}\right) \backslash C$. And all edges between v_{1} and $A_{1} \cup B_{1}$ are blue. If v_{2} sends one red edge to B_{1}, then G_{3} a blue 4 -connected graph with at least $n-5$ vertices. If v_{2} sends one red edge to A_{1}, then there exists a vertex u of A_{1} such that $u v_{2}$ is red. Then the graph $G_{3}-u$ is a blue 4 -connected graph with at least $n-6$ vertices.

Case 1.3.2 Each vertex of $\left\{v_{1}, v_{2}\right\}$ sends one red edge to B_{1}.

Then all edges between $\left\{v_{1}, v_{2}, B_{1}\right\}$ and A_{1} are blue. We have that the graph G_{3} is a blue 4 -connected subgraph with at least $n-5$ vertices.

Case 1.3.3 There exists only one vertex of $\left\{v_{1}, v_{2}\right\}$, say v_{1}, that sends one red edge to A_{1}.

Then v_{2} sends at most one red edge to B_{1}. Let $u \in A_{1}$ such that $u v_{1}$ is red. It's easy to see that all the edges between B_{1} and v_{2} are blue. Then the graph $G_{3}-u$ is a blue 4 -connected graph with at least $n-6$ vertices.

Case 1.3.4 Each vertex of $\left\{v_{1}, v_{2}\right\}$ sends one red edge to A_{1}.
Then all the edges between B_{1} and $\left\{v_{1}, v_{2}\right\}$ are blue edges. If there exists a vertex $u \in A_{1}$ such that both $u v_{1}$ and $u v_{2}$ are red edges, then the graph $G_{3}-u$ is a blue 4 -connected graph with at least $n-6$ vertices.

Suppose that there exist two vertices $u_{1}, u_{2} \in A_{1}$ such that $v_{1} u_{1}$ and $v_{2} u_{2}$ are red edges. Then it is easy to see that the graph $G_{3}-\left\{u_{1}, u_{2}\right\}$ is a blue 4 -connected subgraph. We know that each vertex of $\left\{v_{3}, v_{4}\right\}$ sends two red edges to G_{1}. If there exists a vertex of $\left\{v_{3}, v_{4}\right\}$ and a vertex of $\left\{u_{1}, u_{2}\right\}$, say v_{3} and u_{1}, such that $u_{1} v_{3}$ is blue, then the graph $G_{4}-u_{2}-v_{4}$ is a 4-connected subgraph with at least $n-5$ vertices. If there isn't a vertex of $\left\{v_{3}, v_{4}\right\}$ such that $u_{i} v_{3}(i=1,2)$ is blue, then each vertex of $\left\{v_{3}, v_{4}\right\}$ sends at least four red edges to $G_{3}-u_{1}-u_{2}$. By Lemma 2.1, the graph $G_{4}-u_{1}-u_{2}$ is 4-connected with at least $n-5$ vertices.

Case $1.4\left|B_{1}\right|=1$.
Then $\left|A_{1}\right|=n-\left|B_{1}\right|-|C|-\left|C_{1}\right| \geq 5$. It is easy to see that there are at most six red edges between C_{1} and G_{1} in all.

Case 1.4.1 There are at most two red edges between A_{1} and C_{1}.
Then there exists at most one vertex v of A_{1} that sends at most three blue edges to $B_{1} \cup C_{1}$. It's easy to see that the graph $G_{4}-v$ is a 4 -connected subgraph with at least
$n-4$ vertices.

Case 1.4.2 There are three red edges between A_{1} and C_{1}.
Suppose that there exists a vertex of C_{1}, say v_{3}, that sends two red edges to different vertices of A_{1}. Then there exists a vertex of C_{1}, say v_{1}, that sends one red edges to the vertex u of A_{1}. If $u v_{3}$ is a red edge, then the graph $G_{4}-v_{3}$ is a 4 -connected subgraph with at least $n-4$ vertices. If $u v_{3}$ is a blue edge, then the graph $G_{4}-v_{1}-v_{3}$ is a 4 -connected subgraph with at least $n-5$ vertices. Suppose that there exist three vertices of C_{1}, say v_{1}, v_{2}, v_{3}, each of which sends one red edge to A_{1}. If each vertex of A_{1} sends at least four blue edges to $B_{1} \cup C_{1}$, then the graph G_{4} is a 4-connected subgraph with with at least $n-3$ vertices. If there exists a vertex u of A_{1} such that u sends three red edges to $B_{1} \cup C_{1}$, then the graph $G_{4}-u$ is a 4-connected subgraph with at least $n-4$ vertices. If there exist two vertices u_{1}, u_{2} of A_{1} such that $u_{1} v_{1}, u_{1} v_{2}, u_{2} v_{3}$ are red edges, then the graph $G_{4}-u_{1}-v_{3}$ is a 4 -connected subgraph with at least $n-5$ vertices.

Case 1.4.3 There are four red edges between A_{1} and C_{1}.
Since there are at most six red edges between C_{1} and G_{1} in all, we have that there exists a vertex $w \in C$ that sends $\left|C_{1}\right|$ blue edges to C_{1}. There are at most two vertices u_{1}, u_{2} of A_{1} each of which sends at most three blue edges to $B_{1} \cup C_{1}$. Then the graph $B\left[\left(A_{1} \backslash\left\{u_{1}, u_{2}\right\}\right) \cup B_{1} \cup C_{1} \cup\{w\}\right]$ is a 4 -connected subgraph with at least $n-4$ vertices.

Case 1.4.4 There are five red edges between A_{1} and C_{1}.
Then there are at least two vertices of C each of which sends $\left|C_{1}\right|$ blue edges to C_{1}. There are at most two vertices u_{1}, u_{2} of A_{1} each of which sends at most three blue edges to $B_{1} \cup C_{1}$. Then the graph $B\left[\left(A_{1} \backslash\left\{u_{1}, u_{2}\right\}\right) \cup B_{1} \cup C_{1} \cup\left\{w_{1}, w_{2}\right\}\right]$ is a blue 4-connected subgraph with at least $n-3$ vertices.

Case 1.4.5 There are six red edges between A_{1} and C_{1}.

Then There are at most three vertices u_{1}, u_{2}, u_{3} of A_{1} each of which sends at most three blue edges to $B\left[B_{1} \cup C, C_{1}\right]$. It's easy to see that each vertex of C sends $\left|C_{1}\right|$ blue edges to C and each vertex of C_{1} sends $\left|B_{1}\right|$ blue edges to B_{1}. Then $B\left[B_{1} \cup C \cup C_{1}\right]$ is a 4 -connected graph. Note that each vertex of $A_{1} \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$ sends at least four blue edges to $B\left[B_{1} \cup C \cup C_{1}\right]$. By Lemma 2.1, the graph $B\left[\left(A_{1} \backslash\left\{u_{1}, u_{2}, u_{3}\right\}\right) \cup B_{1} \cup C_{1} \cup C\right]$ is a 4 -connected subgraph with at least $n-3$ vertices.

Case 2 Suppose that G_{1} and G_{2} have different colors. Without loss of generality, let $G_{1} \subseteq R$ and $G_{2} \subseteq B$.

Note that there exists at most one vertex v of C_{1} that sends two red edges to G_{1}. Otherwise, there are at least two vertices v_{1}, v_{2} of C_{1} each of which sends two red edges to G_{1}. By Lemma 2.1, $R\left[G_{1} \cup\left\{v_{1}, v_{2}\right\}\right]$ is a red 2-connected subgraph with at least $n-2$ vertices, a contradiction. Then there are at most five red edges between C_{1} and G_{1}. Then There are at most five vertices, say $u_{i} \in G_{1}(i=1,2,3,4,5)$, each of which sends at least one red edge to C_{1}. Since $n \geq 13$, we have that there exists a blue 4 -connected subgraph $B\left[C_{1} \cup G_{1} \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right.$ with at least $n-5$ vertices.

This completes the proof.

References

[1] B. Ballobás, A. Gyárfás, Highly connected monochromatic subgraphs, Discrete Math. 308(2008), 1722-1725.
[2] S.A. Burr, Either a graph or its complement contains a spanning broom, manuscript.
[3] Z. Füredi, Maximum degreen and fractial matchings in uniform hypergraphs, Combinatorica 1(2008), 155-162.
[4] A. Gyárfás, G.N. Sárközy, Size of monchromatic double stars in edge colorings, Graphs and Combinatorics 24(2008), 531-536.
[5] A. Gyárfás, G.N. Sárközy, Size of monchromatic components in local edge colorings, Discrete Math. 308(2008), 2620-2622.
[6] A. Gyárfás, Patition coverings and blocking sets of hypergraphs (in Hungarian), Comm. Coput. Automat. Inst. Hungar. Acad. Sci. 71(1997), 62.
[7] Shinya Fujita, Colton Magnant, Note on highly connected monochromatic subgraphs in 2-colored graphs, The Electronic Journal of Combinatorics 18(2011).
[8] Z.M. Jin, S.L. Wen, Note on 2-edge-colorings with small monochromatic k-connected subgraphs, manuscript.
[9] H. Liu, R. Morris and N. Prince, Highly connected monochromatic subgraphs of multicolored graphs, J. Graph Thory 61(2008), 22-44.
[10] H. Liu, R. Morris and N. Prince, Highly connected multicolred subgraphs of multicolored graphs, Discrete Math. 308(2008), 5096-5121.
[11] H. Liu, Y. Person, Highly connected coloured subgraphs via the regularity lemma, Discrete Math. 309(2009), 6277-6287.

[^0]: *Corresponding author
 E-mail addresses: 499569218@qq.com (H. Luo), xiaokangyouxiang@163.com(Y. Kang),
 wenshili@yahoo.cn(S. Wen)

