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Abstract. Frame theory is an active research area in mathematics, computer science and engineering with many

exciting applications in a variety of different fields. In this paper we study the notion of dual continuous K-frames

in Hilbert spaces. Also we establish some properties.
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1. INTRODUCTION

A frame is a set of vectors in a Hilbert space that can be used to reconstruct each vector in the

space from its inner products with the frame vectors. These inner products are generally called

the frame coefficients of the vector.
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Introduced by Duffin and Schaeffer in 1952 [6] to study some deep problems in nonharmonic

Fourier series, the theory of frame in Hilbert space has grown rapidly. After the fundamen-

tal paper [7] by Daubechies, Grossman and Meyer, frames theory began to be widely used,

particularly in the more specialized context of wavelet frames [3] and Gabor frames [8].

A discrete frame in a separable Hilbert space H is a sequence { fi}i∈I for which there exist

positive constants A,B > 0 called frame bounds such that

A‖x‖2 ≤∑
i∈I
|〈x, fi〉|2 ≤ B‖x‖2, ∀x ∈H .

The continuous frames has been defined by Ali, Antoine and Gazeau [1], called frames as-

sociated with measurable space. For more details, the reader can refer to [9]. The concept of

continuous K-frame in Hilbert space have been introduced in [10].

Many generalizations of the concept of frame have been defined in Hilbert Spaces and Hilbert

C∗-modules [11, 12, 13, 14].

In this papers, we characterize the concept of dual continuous K-frames in Hilbert spaces and

we give some new properties.

2. PRELIMINARIES

Let X be a Banach space, (Ω,µ) a measure space, and function f : Ω→ X a measurable

function. Integral of the Banach-valued function f has defined Bochner and others. Most

properties of this integral are similar to those of the integral of real-valued functions.

Let (Ω,µ) be a measure space, let H and K be two separables Hilbert Spaces, we denote

B(H,K) the collection of all bounded linear operators from H to K, as well B(H,H) is abbreav-

iated to B(H).

For T ∈ B(H,K), we use the notation R(T ) and N (T ) to denote respectively the range and

the null space of T .

Definition 2.1. [9] Let H be a complex Hilbert space, and (Ω,µ) be a measure space with

positive measure µ .

A map F : Ω−→ H is called a continuous frame with respect to (Ω,µ) if :
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1 - F is weakly measurable, ie: ∀ f ∈ H, w −→ 〈 f ,F(ω)〉 is a measurable function on

Ω.

2 - There exists two constants A,B > 0 such that :

(2.1) A‖ f‖2 ≤
∫

Ω

|〈 f ,F(ω)〉|2dµ(ω)≤ B‖ f‖2 ∀ f ∈ H.

For continuous frame F , the analysis operator T is defined by :

T :H −→ L2(Ω)

f −→ {〈 f ,F(ω)〉}ω∈Ω

The adjoint operator of T , called synthesis operator, is defined by :

T ∗ :L2(Ω)−→ H

x−→
∫

Ω

x(ω)F(ω)dµ(ω)

The frame operator of the continuous frame F is defined by : S = T ∗T such that, is bounded

and invertible.

Recall that a continuous Bessel sequence G is a dual continuous frame of F if :

f =
∫

Ω

〈 f ,G(ω)〉F(ω)dµ(ω) ∀ f ∈ H

We have :

f =
∫

Ω

〈 f ,S−1
F F(ω)〉F(ω)dµ(ω) ∀ f ∈ H

This show that S−1
F F is a dual continuous frame of F , called the canonical dual continuous

frame of F .

Definition 2.2. [10] Let K ∈ B(H), a map F : Ω −→ H is said to be a continuous K-frame, if

there exists a constants 0 < A < B < ∞ such that :

A‖K∗ f‖2 ≤
∫

Ω

|〈 f ,F(ω)〉|2dµ(ω)≤ B‖ f‖2 ∀ f ∈ H.

The constants A and B are called the lower and upper continuous K-frame bounds.

If A = B, F is called a tight continuous K-frame.

If A = B = 1, F is called Parseval continuous K-frame.

If (2.1) holds right, F is called continuous K-Bessel sequence.
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In the following definition we will recall the definition of dual continuous K-frame.

Definition 2.3. [10] Let K ∈ B(H), and F : Ω−→H be a continuous Bessel mapping for H, and

G : Ω −→ H be a continuous Bessel mapping for H, we say that F,G is a continuous K−dual

pair, if:

K f =
∫

Ω

〈 f ,G(ω)〉F(ω)dµ(ω) ∀ f ∈ H.

Definition 2.4. [2] A Bessel mapping F is said to be L2-independent if
∫

Ω
φ(ω)F(ω)dµ(ω)= 0

for φ ∈ L2(Ω), implies that φ = 0 a. e.

The following lemmas will be used to prove our mains results.

Lemma 2.5. [4] Let Λ ∈ B(H,K) has a closed range, then there exists a unique operator Λ† ∈

B(K,H), called the pseudo-inverse of Λ, satisfying :

ΛΛ
†
Λ = Λ (ΛΛ

†)∗ = ΛΛ
†

Λ
†
ΛΛ

† = Λ
† (Λ†

Λ)∗ = Λ
†
Λ (Λ∗)† = (Λ†)∗

N (Λ†) = (R(Λ))⊥ R(Λ†) = (N (Λ))⊥

Lemma 2.6. [5] Let H,H1 and H2 be three Hilbert Spaces, also let S ∈ B(H1,H) and T ∈

B(H2,H). The following statements are equivalent:

1 - R(S)⊂R(T ).

2 - There exist λ > 0 such that SS∗ ≤ λT T ∗.

3 - There exists θ ∈ B(H1,H2) such that S = T θ .

Moreover, if (1), (2) and (3) are valid, then there exists a unique operator θ such that :

a - ‖θ‖2 = in f{µ : SS∗ ≤ µT T ∗}.

b - N (S) = N (θ).

c - R(θ)⊂R(T ∗).

Lemma 2.7. [15] Let (Ω,µ) be a measure space, X and Y are two Banach spaces, λ : X → Y

be a bounded linear operator and f : Ω→ X measurable function; then,

λ

(∫
Ω

f dµ

)
=
∫

Ω

(λ f )dµ.



7848 FARAJ, ROSSAFI, MOALIGE, KABBAJ, TOURI

3. MAIN RESULT

Before giving our main results, we will first demonstrate the following lemmas.

Lemma 3.1. Let K ∈ B(H) and F be a continuous Bessel sequence of H with analysis operator

T . Then F is a continuous K-frame of H if and only if:

R(K)⊂R(T ∗).

Proof. It is an immediate consequence of Lemma 2.6. �

Lemma 3.2. Suppose that K ∈ B(H) has closed range and F is a parseval continuous K-frame

of H, then K†F is a dual continuous K-Bessel sequence of F.

Proof. F is a parseval continuous K-frame of H, then :

(3.1) ‖K∗ f‖2 =
∫

Ω

|〈 f ,F(ω)〉|2dµ(ω) ∀ f ∈ H.

Let g ∈R(K∗), we have : g = K∗(K∗)†g = K∗(K†)∗g. Replace f by (K∗)†g in (3.1), then :

‖K∗(K∗)†g‖2 =
∫

Ω

|〈(K∗)†g,F(ω)〉|2dµ(ω)

so,

‖g‖2 =
∫

Ω

|〈g,K†F(ω)〉|2dµ(ω).

Hence, K†F is a continuous Bessel sequence.

Since F is a parseval continuous K-frame, one has

KK∗ f =
∫

Ω

〈 f ,F(ω)〉F(ω)dµ(ω).

Then we have : g = K∗(K∗)†g = K∗(K†)∗g,

Kg = KK∗(K†)∗g

=
∫

Ω

〈(K†)∗g,F(ω)〉F(ω)dµ(ω)

=
∫

Ω

〈g,K†F(ω)〉F(ω)dµ(ω).
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If h ∈ (R(K∗))⊥ = N (K)

lemma 2.5 =⇒ h ∈ (N ((K∗)†) = N ((K†)∗),

then : ∫
Ω

〈h,K†F(ω)〉F(ω)dµ(ω) =
∫

Ω

〈(K†)∗h,F(ω)〉F(ω)dµ(ω) = 0 = Kh.

So, for all f ∈ H, we have :

K f =
∫

Ω

〈g,K†F(ω)〉F(ω)dµ(ω).

�

Lemma 3.3. Suppose that K ∈ B(H) has closed range and F is a parseval continuous K-frame

of H with analysis operator T , then G is a dual continuous K-Bessel sequence of F if and only

if there exists ϕ ∈ B(H,L2(Ω)) such that : T ∗ϕ = 0 and (ϕ f )ω = 〈 f ,G(ω)−K†F(ω)〉 ∀ f ∈

H, ∀ω ∈Ω.

Proof. Let G be a dual continuous K-Bessel sequence of F ,

ϕ :H −→ L2(Ω)

f −→ ϕ f

wich is defined by: (ϕ f )ω = 〈 f ,G(ω)−K†F(ω)〉. One has

T ∗(ϕ f ) =
∫

Ω

〈 f ,G(ω)−K†F(ω)〉F(ω)dµ(ω)

=
∫

Ω

〈 f ,G(ω)〉F(ω)dµ(ω)−
∫

Ω

〈 f ,K†F(ω)〉F(ω)dµ(ω)

= K f −K f = 0.

Conversely, suppose that exist ϕ ∈ B(H,L2(Ω)) such that : T ∗ϕ = 0 and

(ϕ f )ω = 〈 f ,G(ω)−K†F(ω)〉 ∀ f ∈ H, ∀ω ∈Ω.

We have : ∫
Ω

〈 f ,G(ω)〉F(ω)dµ(ω) =
∫

Ω

〈 f ,K†F(ω)〉F(ω)dµ(ω)

= K f .

�
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Suppose that K ∈ B(H) and F is a continuous K-frame. The dual continuous K-Bessel se-

quence of F such that the square of the norm of its analysis operator equals to the optimal lower

continuous K-frame bound of F is called the canonical dual continuous K-Bessel sequence of

F .

Theorem 3.4. Suppose that K ∈B(H) has closed range and F is a parseval continuous K-frame

of H with analysis operator TF , then K†F is the canonical dual continuous K-Bessel sequence

of F.

Proof. From lemma 3.2, we know that K†F is a dual continuous K-Bessel sequence of F . To

complete the proof, by definition of the canonical dual continuous K-Bessel sequence of F it

only needs to prove: ‖TF ′‖ ≤ ‖TG‖ for any dual continuous K-Bessel sequence G of F , where

TF ′ is the analysis operator of K†F .

By lemma 3.3, there exist ϕ ∈ B(H,L2(Ω)) such that T ∗F ϕ = 0 and

(ϕ f )ω = 〈 f ,G(ω)−K†F(ω)〉 ∀ f ∈ H, ∀ω ∈Ω.

On the other hand : T ∗G = T ∗
F ′
+ϕ ,

‖T ∗G f‖2 = 〈T ∗G f ,T ∗G f 〉

= 〈T ∗
F ′

f +ϕ f ,T ∗
F ′

f +ϕ f 〉

= ‖T ∗
F ′

f‖2 + 〈T ∗
F ′

f ,ϕ f 〉+ 〈ϕ f ,T ∗
F ′

f 〉+‖ϕ f‖2

= ‖T ∗
F ′

f‖2 +‖ϕ f‖2 ≥ ‖T ∗
F ′

f‖2

Hence, ‖TF ′‖ ≤ ‖TG‖ as desired. �

Lemma 3.5. 1 - The canonical continuous dual K-Bessel sequence of a parseval continu-

ous K-frame F, wich will be denoted by F̃ later, is actually a parseval continuous frame

on (N (K))⊥.

2 - The canonical dual continuous K-Bessel sequence of parseval continuous K-frame F is

precisely a parseval continuous K†K-frame. But in general it is not a parseval continu-

ous K-frame. It can naturally generate a new one in the form KF̃.
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Proof. 1 -∫
Ω

|〈 f , F̃(ω)〉|2dµ(ω) = ‖K∗(K†)∗ f‖2 = ‖(K†K)∗ f‖2 = ‖K†K f‖2 = ‖ f‖2.

2 - ∫
Ω

|〈 f , F̃(ω)〉|2dµ(ω) =
∫

Ω

|〈 f ,K†F(ω)〉|2dµ(ω)

= ‖K∗(K†)∗ f‖2

= ‖(K†K)∗ f‖2 ∀ f ∈ H,

∫
Ω

|〈 f ,KF̃(ω)〉|2dµ(ω) =
∫

Ω

|〈 f ,KK†F(ω)〉|2dµ(ω)

=
∫

Ω

|〈(KK†)∗ f ,F(ω)〉|2dµ(ω)

= ‖K∗(KK†)∗ f‖2 = ‖(KK†K)∗ f‖2

= ‖K∗ f‖2 ∀ f ∈ H.

�

Theorem 3.6. Suppose that K ∈B(H) has closed range and F is a parseval continuous K-frame

of H with a dual continuous K-Bessel sequence G. Then G is the canonical dual continuous

K-Bessel sequence of F if and only if T ∗GTG = T ∗GTH for any dual continuous K-Bessel sequence

H of F, where TG and TH denote the analysis operators of G and H respectively.

Proof. Let us first assume that G = F̃ .

If we denote by TF the analysis operator of F then a direct calculation can show that TG =

TF(K†)∗.

From this fact and taking into account the fact that :

T ∗F (TG f −TH f ) =
∫

Ω

〈 f , F̃(ω)〉F(ω)dµ(ω)−
∫

Ω

〈 f ,H(ω)〉F(ω)dµ(ω) = 0.

We obtain for any f ,g ∈ H:

〈(TG−TH) f ,TGg〉= 〈(TG−TH) f ,TF(K†)∗g〉= 〈K†T ∗F (TG−TH) f ,g〉= 0.
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Thus T ∗G(TG f −TH f ) = 0 then T ∗GTG = T ∗GTH .

For the converse, suppose that T ∗GTG = T ∗GTH , for any dual continuous K-Bessel sequence H of

F . Then :

‖TG‖2 = ‖T ∗GTG‖= ‖T ∗GTH‖ ≤ ‖TG‖‖TH‖.

So, ‖TG‖ ≤ ‖TH‖ implying that G is the canonical continous K-Bessel sequence of F . �

Now it is legitimate to pose the following question: Under what condition will a parseval

continuous K-frame admit a unique dual continuous K-Bessel sequence?

Theorem 3.7. Suppose that K ∈B(H) has closed range and F is a parseval continuous K-frame

of H with analysis operator TF . Then F has a unique dual continuous K-Bessel sequence if and

only if R(TF) = L2(Ω).

Proof. Suppose that R(TF) = L2(Ω), then T ∗F is injective. Let G and Q be two dual continuous

K-Bessel sequences of F . Then: {〈 f ,G(ω)−Q(ω)〉}ω∈Ω ∈ L2(Ω) and that :

0 = K f −K f =
∫

Ω

〈 f ,G(ω)〉F(ω)dµ(ω)−
∫

Ω

〈 f ,Q(ω)〉F(ω)dµ(ω)

=
∫

Ω

〈 f ,G(ω)−Q(ω)〉F(ω)dµ(ω)

= T ∗F ({〈 f ,G(ω)−Q(ω)〉}ω∈Ω).

Since, T ∗F is injective, we have

〈 f ,G(ω)−Q(ω)〉= 0 ∀ω ∈Ω and ∀ f ∈ H,

hence

G(ω) = Q(ω) ∀ω ∈Ω,

so G = Q.

Conversely, assume contrarity that R(TF) 6= L2(Ω).

Since F is a parseval continuous K-frame, it is easely seen that KK∗ = T ∗F TF .

Hence, R(T ∗F ) = R(K), by lemma 2.6, and T ∗F has closed range as a consequence.
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Let S ∈ B(H,L2(Ω)) be an invertible operator and 0 6= α ∈ (R(TF))
⊥.

Taking h = S−1(α) and G(ω) = ¯α(ω)h, for each ω ∈Ω, for every f ∈ H, we have:∫
Ω

|〈 f ,G(ω)〉|2dµ(ω) =
∫

Ω

|〈 f , ¯α(ω)h〉|2dµ(ω)

=
∫

Ω

|〈 f ,h〉|2|α(ω)|2dµ(ω)

= |〈 f ,h〉|2‖α‖2
2

≤ ‖α‖2
2‖h‖2‖ f‖2.

Hence, G is a continuous K-Bessel sequence for H.

Now, let Q(ω) = F̃(ω)+G(ω) for every ω ∈ Ω, then it is easely seen that Q is a continuous

K-Bessel sequence for H.

Since α is orthogonal to R(TF),

〈
∫

Ω

〈 f ,G(ω)〉F(ω)dµ(ω),e〉=
∫

Ω

〈 f , ¯α(ω)h〉〈F(ω),e〉dµ(ω)

=
∫

Ω

〈 f ,h〉α(ω)〈F(ω),e〉dµ(ω)

= 〈 f ,h〉〈α,{〈e,F(ω)〉}ω∈Ω〉

= 〈 f ,h〉〈α,TFe〉= 0 ∀e, f ∈ H.

Then
∫

Ω
〈 f ,G(ω)〉F(ω)dµ(ω) = 0 ∀ f ∈ H.

Which give:∫
Ω

〈 f ,Q(ω)〉F(ω)dµ(ω) =
∫

Ω

〈 f , F̃(ω)〉F(ω)dµ(ω)+
∫

Ω

〈 f ,G(ω)〉F(ω)dµ(ω)

=
∫

Ω

〈 f , F̃(ω)〉F(ω)dµ(ω) = K f .

Since α 6= 0, there exists w0 ∈Ω such that α(w0) 6= 0, and thus G(w0) 6= 0. A simple calculation

gives ( α(w0)
|α(w0)|2

)S(G(w0)) = α .

Hence Q is a dual continuous K-Bessel sequence of F and its different from F̃ wich is a contra-

diction. �

Theorem 3.8. Suppose that K ∈B(H) has closed range and F is a parseval continuous K-frame

of H then the following results hold:
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1 - F is continuous L2-independent if and only if F̃ is continuous L2-independent.

2 - If F admits a unique dual continuous K- Bessel sequence then F̃ admits a unique dual

continuous K∗-Bessel sequence.

Proof. (1) One has∫
Ω

〈 f ,F(ω)〉F(ω)dµ(ω) = T ∗F TF f = KK∗ f

=
∫

Ω

〈K∗ f , F̃(ω)〉F(ω)dµ(ω)

=
∫

Ω

〈 f ,KF̃(ω)〉F(ω)dµ(ω) ∀ f ∈ H.

Hence,

0 =
∫

Ω

〈 f ,F(ω)〉F(ω)dµ(ω)−
∫

Ω

〈 f ,KF̃(ω)〉F(ω)dµ(ω)

=
∫

Ω

〈 f ,F(ω)−KF̃(ω)〉F(ω)dµ(ω).

Since, F is continuous L2-independent, it is follows that:

〈 f ,F(ω)−KF̃(ω)〉= 0 ∀ f ∈ H, ∀ω ∈Ω.

So F = KF̃ .

Suppose now that
∫

Ω
c(ω)F̃(ω)dµ(ω) = 0 for some c ∈ L2(Ω), then by lemma 2.7:

0 = K
∫

Ω

c(ω)F̃(ω)dµ(ω) =
∫

Ω

c(ω)KF̃(ω)dµ(ω) =
∫

Ω

c(ω)F(ω)dµ(ω).

So, c(ω) = 0 ∀ω ∈Ω, because F is continuous L2(Ω) independent.

For the converse, let
∫

Ω
c(ω)F(ω)dµ(ω) = 0 for c ∈ L2(Ω), then by lemma 2.7:

0 = K†
∫

Ω

c(ω)F(ω)dµ(ω) =
∫

Ω

c(ω)K†F(ω)dµ(ω) =
∫

Ω

c(ω)F̃(ω)dµ(ω)

Then c(ω) = 0 ∀ω ∈Ω.

(2) Since, F has a unique dual continuous K-Bessel, by theorem 3.7 we know that its analy-

sis operator TF is surjective and thus T ∗F is injective, which implies that F is continuous L2-

independent.

Hence, by (1), F̃ is also continuous L2-independent, from wich we conclude that F̃ has a unique

dual continuous K∗-Bessel sequence. �
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Theorem 3.9. Suppose that K ∈B(H) has closed range and F is a parseval continuous K-frame

of H. Then for any c ∈ L2(Ω) satisfying the equation:

K f =
∫

Ω
c(ω)F(ω)dµ(ω), we have:

∫
Ω

|c(ω)|2dµ(ω) =
∫

Ω

|c(ω)−〈 f , F̃(ω)〉|2dµ(ω)+
∫

Ω

|〈 f , F̃(ω)〉|2dµ(ω).

Proof. We have :

∫
Ω

(c(ω)−〈 f , F̃(ω)〉)〈F̃(ω), f 〉dµ(ω) =
∫

Ω

〈(c(ω)−〈 f , F̃(ω)〉)F̃(ω), f 〉dµ(ω)

= 〈
∫

Ω

(c(ω)−〈 f , F̃(ω)〉)F̃(ω), f 〉dµ(ω)

= 〈K†
∫

Ω

(c(ω)−〈 f , F̃(ω)〉)F(ω), f 〉dµ(ω)

= 〈K†(K f −K f ), f 〉= 0 ∀ f ∈ H.

Therefore

∫
Ω

|c(ω)|2dµ(ω)

=
∫

Ω

c(ω)c(ω)dµ(ω)

=
∫

Ω

[(c(ω)−〈 f , F̃(ω)〉)+ 〈 f , F̃(ω)〉][(c(ω)−〈 f , F̃(ω)〉)+ 〈 f , F̃(ω)〉]dµ(ω)

=
∫

Ω

(((c(ω)−〈 f , F̃(ω)〉)(c(ω)−〈 f , F̃(ω)〉)+(c(ω)−〈 f , F̃(ω)〉)〈F̃(ω), f 〉

+ 〈 f , F̃(ω)〉(c(ω)−〈 f , F̃(ω)〉)+ 〈 f , F̃(ω)〉〈F̃(ω), f 〉))dµ(ω)

=
∫

Ω

(c(ω)−〈 f , F̃(ω)〉)(c(ω)−〈 f , F̃(ω)〉)dµ(ω)+
∫

Ω

〈 f , F̃(ω)〉〈F̃(ω), f 〉dµ(ω)

=
∫

Ω

|c(ω)−〈 f , F̃(ω)〉|2dµ(ω)+
∫

Ω

|〈 f , F̃(ω)〉|2dµ(ω).

�
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