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Abstract. Psittacosis is a disease in human beings that is commonly associated with pet birds such as cockatiels

and parrots, and among poultry such as ducks and turkeys. This paper proposed and developed a deterministic

epidemiological model that explains the transmission dynamics of Psittacosis infection in humans and poultry.

The Psittacosis deterministic model was analyzed to determine positivity of the solution set, the invariant feasible

region, the basic reproduction number, the disease free equilibrium points, the endemic equilibrium points and the

corresponding stability of each of the equilibrium points. The basic reproduction number is calculated using the

next generation matrix and it was found to be entirely dependent on the poultry population parameters. The study

established that whenever R0 < 1, Psittacosis dies out from the population and when R0 > 1, Psittacosis keeps

persisting in the population. Sensitivity analysis was conducted to determine the contribution of each parameter

to the basic reproduction number. The more sensitive parameters were found to be responsible for the further

propagation of Psittacosis while the less sensitive parameters rarely contributed to the spread. Stability analysis of

both the disease free equilibrium and the Endemic equilibrium were conducted. Lastly, numerical simulation was

conducted to justify quantitative analysis of the dynamics of the transmission of Psittacosis.
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1. INTRODUCTION

Psittacosis is a zoonotic infectious disease caused by gram-negative obligate intracellular

bacteria Chlamydia psittaci. It is also known as ornithosis or parrot fever since birds are the

major epidemiological reserviors. The disease has been documented in 467 species from 30

different orders of birds however, birds from the order of Galliformes such as turkeys, chicken

and pheasants and those from the order of Psittaciformes such as budgerigars, lories, cockatoos,

parakeets, and parots are ofen identified as the major epidemilogical reserviors [1].

Human infections are occasioned by contact with infected pet birds by inhalling the bacteria

from contaminated dust from bird feathers, bird secretions, and dried-out droppings. Human-

to human infections are suggested and thought to be rare but there is limitted documentation to

back the suggestions [2]. Psittacosis has an incubation period of one to four weeks during which

an individual develops influenza-like illness. Some of the common syptoms include headache,

dry cough, muscle aches, myalgia, rigors, fever, and chills. In some cases, it causes systemic

illness which leads to atypical pneumonia which can be fatal [3]. Mostly, antibiotics with intra-

cellular actions are administered as a form of treatment.

The infective dose of the bacteria is unknown since the infected birds shed the agent intermit-

tently or continously for weeks or months [3]. The disease infects humans across all ages and

genders but is more prevalent in mid-age groups with a peak at the ages of 35 to 55. Adults

in constant contact with birds have higher susceptibility such as zoos employees working with

avians, poultry farm or processing plant workers, vetinary technicians, and aviary and pet shop

employees [3].

Some outbreaks that have been well documented include the local cluster outbreak in the

Netherlands in November 2007. The outbreaks was traced to a bird show that was held in

the rural town of Weurt (village of Beuningen) [4]. In this particular case 25 positive cases were

recorded leading to cancellation of other bird shows as a precautionary measure. The outbreak

is summarized by the graph below
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Between January 12th and 9th April 2013 there was another outbreak in Southern Sweden

which was attributed to free-living birds reserviors. During this period there was a total of 25

cases reported which was a spike from the previous years mean of 3.3 cases per annum [2]. The

outbreak is illustrated below.

There was an outbreak reported in the United States between August and September 2018 in

Virginia. All the hospitalized persons tested positive for C. psittaci leading to the suspension of

operations at the chicken slaughter house [5]. The suspension was followed by deep cleaning

of the facility and inspection to ensure safety of workers. Another, outbreak was reported at in

Georgia on September 12 in chicken slaughter house leading to swift measures to contain the

situation. Three of the hospitalized patients of symptoms of psittacosis tested positive for C.
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psttaci [5].

New South Wales reported an outbreak in November 2014 at a veterinary school and a local

equine stud. All these cases originated from exposure to an equine fetal memabrane of Mare

A, which subsequently tested positive for Chlamydia psittaci. A cohort study of those exposed

reveled that five were infected with psittacosis arising from the exposure [6]. In particular, this

exposure was unique since there were no birds involved. As such, it was a clear inciator of

colonization of Chlamydia psittaci in mammals.

Mathematical models usually explains the dynamics of the transmission of diseases and can

predict the spread or die out of the infections in the system with time [7, 8, 9, 10, 11].

1.1. Model description and formulation.

1.1.1. Model Formation. In this model we consider population of turkeys and human. Each

population is subdivided in to four compartments; susceptible, exposed, infected and recovered.

Susceptible humans are recruited at a rate Λh either by birth or immigration, and their number

increase from individuals that come from sub-classes of psittacosis recovered by losing their

temporary immunity with rate of σ and decrease by individuals that move to exposed compart-

ments at a rate of βh and natural death rate with rate µh. Some exposed human population move

to infected compartment at the rate of δh and the remaining exposed human population who

get the drug compartment join the recovered compartment at a rate of τ . The infected human

compartment decrease both by natural and psittacosis induced death rate µh and ωh respectively.

Susceptible turkeys are recruited at a rate Λp either by birth or immigration, and their number

increases from individuals that come from sub-classes of psittacosis recovered by losing their

temporary immunity with rate of γ and their number decrease by individuals that move to ex-

posed compartments with rate of βp and natural death rate with rate µp. The exposed population

of turkeys which get drug go to the recovery by rate of α and the remaining which not get the

drug with time go to the infected class. The infected population of turkeys reduces by natural

death (µp), diseased induce rate (ωp) and the removing parameter(ω2). Total human population

is given by; N(t) = S(t)+E(t)+ I(t)+R(t)

The dynamics of psittacosis transmission in human and turkeys population is represented in

the schematic diagram as shown in Fig: 1
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FIGURE 1. Schematic diagram of the model
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1.1.2. Model Equations. Based on the assumptions and interrelation between the variables

and parameters in figure 1, the following system of ordinary differential equation generated.



dSh

dt
= Λh +σRh− (βhIp +µh)Sh

dEh

dt
= βhShIp− (δh + τ +µh)Eh

dIh

dt
= δhEh− (µh +ωh)Ih

dRh

dt
= τEh− (σ +µh)Rh

dSp

dt
= Λp + γRp− (βpIp +µp)Sp

dEp

dt
= βpSpIp− (δp +µp +α)Ep

dIp

dt
= δpEp− (µp +ω2 +ωp)Ip

dRp

dt
= αEp− (µp + γ)Rp

(1)

1.2. Model analysis.

1.2.1. Invariant region. The region in which solutions of psittacosis model system is uni-

formly bounded is the proper subset Ω ∈ R8 and Ω = Nh∪Np ∈ R4×R4.

Considering the human population at any time t;

Nh = Sh +Eh + Ih +Rh.
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The feasible solution of human population of model system in equation (1);

Dh =

{
(Sh, Eh, Ih, Rh) ∈ R4, 0≤ Nh ≤

Λh

µh

}
(2)

Moreover, considering turkey population, denoted by Np;

Np = Sp +Ep + Ip +Rp.

The feasible solution of the human population of model system in equation (1) the region

Dp =

{
(Sp, Ep, Ip, Rp) ∈ R4 : 0≤ Np ≤

Λp

µp

}
Total turkey and human population is given by; NM = Np +Nh

From equation (1.2.1) and (1.2.1)

Nh = Sh +Eh + Ih +Rh

Np = Sp +Ep + Ip +Rp

NM = Sh +Eh + Ih +Rh +Sp +Ep + Ip +Rp

Feasible solution of human population of model system in equation (1);

Dp =

{
(Sp, Ep, Ip, Rp, Sh, Eh, Ih, Rh) ∈ R4×R4 = R8 : 0≤ NZ ≤

ΛN

θY

}
(3)

1.2.2. Positivity of solutions. Theorem 1: Let Sh(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0,

Sp(0) ≥ 0, Ep(0) ≥ 0, Ip(0) ≥ 0 and Rp(0) ≥ 0 then the solution set Sh, Eh, Ih, Rh, Sp, Ep, Ip

and Rp of the system of the equation (1) are positive for all t > 0 [12, 13, 14]

Proof:

dSh

dt
= Λh +σRh−βhShIh−µhSh(4)

dSh

dt
+(βhIh +µh)Sh = Λh +σRh

Let A(t) = e−
∫
(βhIh+µh)dsh be the integrating factor.

A(t) = e−
∫
(βhIh+µh)dsh(

∫
(Λh +σRh)dsh+C)≥ 0
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dEh

dt
= βhShIh−δhEh− τEh−µhEh(5)

dEh

dt
+(δh + τ +µh)Eh = βhShIh(6)

Let B(t) = e−
∫
(δh+τ+µh)deh be the integrating factor.

dB(t)
dt

= B(t)βhShIh(7) ∫ dB(t)
dt

=
∫

(B(t)βhShIh)deh(8)

B(t) = e−
∫
(δh+τ+µh)de(

∫
βhShIhdeh+ c)≥ 0(9)

By applying the same approach for; Ih(t),Rh(t),Sp(t),Ep(t), Ip(t),Rp(t)

Hence, Sh(t),Eh(t), Ih(t),Rh(t),Sp(t),Ep(t), Ip(t),Rp(t) are positive from equation (1).

1.2.3. Diseases Free Equilibrium point. Disease free equilibrium point of the system in equa-

tion (1) in the absence of rabbies infections is determined. Eh = Ip = Ep =Ih = 0

From equation (1)

dSp

dt
= λp−βpSpIp−µpSp + γRp = 0(10)

S∗p =
λp

µp
(11)

dSh

dt
= Λh +σRh−βhShIp−µhSh = 0(12)

S∗h =
Λh

µh
(13)

DFE =

(
Λh

µh
, 0, 0, 0,

λp

µp
, 0, 0, 0

)
(14)



8480 ONSONGO, MWINI, NYANARO, OSMAN

1.2.4. Basic reproductive number (R0). This is a threshold value that governs the dynamics

of rabbies. By employing the "Next Generation Matrix" [15, 10, 16]. Considering;

dEp

dt
= βpSpIp−δpEp−µpEp−αEp(15)

dIp

dt
= δpEp−µpIp−ω2Ip−ωpIp(16)

dEh

dt
= βhShIp−δhEh− τEh−µhEh(17)

dIh

dt
= δhEh−µhIh−ωhIh(18)

This can be written as;

F =


βpSpIp

0

βhShIp

0

 V =


−δpEp−µpEp−αEp

δpEp−µpIp−ω2Ip−ωpIp

−δhEh− τEh−µhEh

δhEh−µhIh−ωhIh


Differentiating F and V with respect Ep, Ip, Eh and Ih.

F =


0 βpSp 0 0

0 0 0 0

0 βhSh 0 0

0 0 0 0

 and V =


δp +µp +α 0 0 0

−δp µp +ω2 +ωp 0 0

0 0 δp + τ +µh 0

0 0 −δh µh +ωh



F =


0 βp

λp
µp

0 0

0 0 0 0

0 βh
Λh
µh

0 0

0 0 0 0


Where V−1 is given by;

V−1 =



1
(δp+α+µp)

0 0 0
δp

(δp+µp+α)(µp+ω2+ωp)
1

(µp+ω2+ωp)
0 0

0 0 1
(δp+τ+µh)

0

0 0 δh
(δp+µp+α)(µp+ω2+ωp)

1
(µh+ωh)


(19)



DYNAMICS OF PSITTACOSIS IN HUMAN AND POULTRY POPULATIONS 8481

Determining the product of F and V−1;

FV−1 =


0 βp

λp
µp

0 0

0 0 0 0

0 βh
Λh
µh

0 0

0 0 0 0





1
(δp+α+µp)

0 0 0
δp

(δp+µp+α)(µp+ω2+ωp)
1

(µp+ω2+ωp)
0 0

0 0 1
(δp+τ+µh)

0

0 0 δh
(δp+µp+α)(µp+ω2+ωp)

1
(µh+ωh)



(20)

=



βpλpδp
µp(δp+µp+α)(µp+ω2+ωp)

βpλp
µp(µp+ω2+ωp)

0 0

0 0 0 0
βhΛhδp

µh(δp+µp+α)(µp+ω2+ωp

βhΛh
µh(µp+ω2+ωp)

0 0

0 0 0 0



(21)

Let K = FV−1, the eigenvalues of FV−1 can be obtained,

|K|=

∣∣∣∣∣∣∣∣∣∣∣∣

βpλpδp
µp(δp+µp+α)(µp+ω2+ωp)

−λ
βpλp

µp(µp+ω2+ωp)
0 0

0 0−λ 0 0
βhΛhδp

µh(δp+µp+α)(µp+ω2+ωp

βhΛh
µh(µp+ω2+ωp)

0−λ 0

0 0 0 0−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(
βpλpδp

µp(δp +µp +α)(µp +ω2 +ωp)
−λ

)
(λ )(λ )(λ ) = 0(22)

βpλpδp

µp(δp +µp +α)(µp +ω2 +ωp)
= 0 or λ = 0(23)

Hence, eigenvalues,

λ1 = 0 or λ2 =
βpΛpδp

µp(δp +µp +α)(µp +ω2 +ωp)

The dorminant eigenvalue is the spectral radius (basic reproductive number).

RO =
βpλpδp

µp(δp +µp +α)(µp +ω2 +ωp)
(24)
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1.2.5. Endemic Equilibrium Point. Endemic equilibrium points are steady state situations

where the disease persists in the population. To determine the endemic equilibrium point we

put the right side of equation (1) equal to zero.

The endemic equilibrium point of the model is written below;

E∗ =
(
S∗h, E∗h , I∗h , R∗h, S∗p, E∗p, I∗p, R∗p

)
(25)

where;

S∗h =
(δh + τ +µh)Λhβh(σ +µh)

βh[(δh + τ +µh)(σ +µh)(βhI∗p +µh)−στβhI∗p]

E∗h =
ΛhβhI∗p(σ +µh)

[(δh + τ +µh)(σ +µh)(βhI∗p +µh)−στβhI∗p]

I∗h =
δhΛhβhI∗p(σ +µh)

(µh +ωh)[(δh + τ +µh)(σ +µh)(βhI∗p +µh)−στβhI∗p]

R∗h =
τΛhβhI∗p

[(δh + τ +µh)(σ +µh)(βhI∗p +µh)−στβhI∗p]

S∗p =
(δp +µp +α)(µp +ω2 +ωp)

βpδp

E∗p =
(µp + γ)[µp(δp +µp +α)(µp +ω2 +ωp)−λpβpδp]

(µp +ω2 +ωp)βp(γα− (δp +µp +α)Ep)(µp + γ)

I∗p =
(µp + γ)[µp(δp +µp +α)(µp +ω2 +ωp)−λpβpδp]

(µp +ω2 +ωp)βp(γα− (δp +µp +α)Ep)(µp + γ)

R∗p =
α[µp(δp +µp +α)(µp +ω2 +ωp)−λpβpδp]

βpδp(γα− (δp +µp +α)Ep)(µp + γ)
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1.3. Stability Analysis of Disease Free Equilibrium.

1.3.1. Local Stability of Disease Free Equilibrium. Local stability of an equilibrium point

means that if you put the system somewhere nearby the point then it will move itself to the

equilibrium point in some time [17].

Theorem 1. The disease free equilibrium point is locally asymptotically stable if R0 < 1

otherwise it is unstable.

Proof: To prove local stability of disease free equilibrium, we obtained the Jacobean’s matrix

of the system (1) at the disease free equilibrium (DFE).
Then the Jacobean matrix become

J =



−βhIp +−µh 0 0 σ 0 0 −βhSh 0

βhIp −(δh + τ +µh) 0 0 0 0 βhSh 0

0 δh −(µh +ωh) 0 0 0 0 0

0 τ 0 −(σ +µh) 0 0 0 0

0 0 0 0 −βpIp−µp 0 −βpSp γ

0 0 0 0 βpIp −(δp +µp +α) βpSp 0

0 0 0 0 0 δp −(µp +ω2 +ωp) 0

0 0 0 0 0 α 0 −(µp + γ)



(26)

J(DFE) =



−µh 0 0 σ 0 0 −βh
Λh
µh

0

0 −(δh + τ +µh) 0 0 0 0 βh
Λh
µh

0

0 δh −(µh +ωh) 0 0 0 0 0

0 τ 0 −(σ +µh) 0 0 0 0

0 0 0 0 −µp 0 −βp
λp
µp

γ

0 0 0 0 0 −(δp +µp +α) βp
λp
µp

0

0 0 0 0 0 δp −(µp +ω2 +ωp) 0

0 0 0 0 0 α 0 −(µp + γ)



(27)
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J(DFE) =



C1 0 0 σ 0 0 −b3 0

0 C2 0 0 0 0 b3 0

0 δh c3 0 0 0 0 0

0 τ 0 C4 0 0 0 0

0 0 0 0 c5 0 −b4 γ

0 0 0 0 0 C6 b4 0

0 0 0 0 0 δp b1 0

0 0 0 0 0 α 0 b2



(28)

Where

C1 =−µh C6 =−(δp +µp +α)(29)

C2 =−(δh + τ +µh) b1 =−(µp +ω2 +ωp)(30)

C3 =−(µh +ωh) b2 =−(µp + γ)(31)

C4 =−(σ +µh) b3 = βh
Λh

µh
(32)

C5 =−µp b4 = βp
λp

µp
(33)

|J(DFE)−λ |=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C1−λ 0 0 σ 0 0 −b3 0

0 C2−λ 0 0 0 0 b3 0

0 δh C3−λ 0 0 0 0 0

0 τ 0 C4−λ 0 0 0 0

0 0 0 0 C5−λ 0 −b4 γ

0 0 0 0 0 C6−λ b4 0

0 0 0 0 0 δp b1−λ 0

0 0 0 0 0 α 0 b2−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0(34)

(C1−λ )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C2−λ 0 0 0 0 b3 0

δh C3−λ 0 0 0 0 0

τ 0 C4−λ 0 0 0 0

0 0 0 C5−λ 0 −b4 γ

0 0 0 0 C6−λ b4 0

0 0 0 0 δp b1−λ 0

0 0 0 0 α 0 b2−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0(35)
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(C1−λ )(C2−λ )(C3−λ )(C4−λ )

∣∣∣∣∣∣∣∣∣∣∣∣

C5−λ 0 −b4 γ

0 C6−λ b4 0

0 δp b1−λ 0

0 α 0 b2−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0(36)

(C1−λ )(C2−λ )(C3−λ )(C4−λ )(C5−λ )

∣∣∣∣∣∣∣∣∣
C6−λ b4 0

δp b1−λ 0

α 0 b2−λ

∣∣∣∣∣∣∣∣∣= 0

(C1−λ )(C2−λ )(C3−λ )(C4−λ )(C5−λ )(b2−λ )[(C6−λ )(b1−λ )−b4δp] = 0

(C1−λ )(C2−λ )(C3−λ )(C4−λ )(C5−λ )(b2−λ ) =0

λ1 =C1 λ4= C4

λ2 =C2 λ5= C5

λ3 =C3 λ6= b2

Or

(C6−λ )(b1−λ )−b4δp = 0

λ
2− (C6+b1)λ +C6b1−b4δp(37)

Therefore, from the Routh-Hurwitz criterion of order two, it implies that the conditions,

−(c6 +b1)> 0 and C6 b1−b4δp > 0.
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From C6 b1−b4δp > 0

− (δp +µp +α)(−(µp +ω2 +ωp))−βp
λp

µp
δp > 0(38)

(δp +µp +α)(µp +ω2 +ωp)−βp
λp

µp
δp > 0(39)

(δp +µp +α)(µp +ω2 +ωp)> βp
λp

µp
δp(40)

(δp +µp +α)(µp +ω2 +ωp)>
βpλpδp

µp
(41)

1 >
βpλpδp

µp(δp +µp +α)(µp +ω2 +ωp)
(42)

R0 < 1 therefore DFE is locally asymptotically stable. The prove is completed.

1.3.2. Global Stability of Disease Free Equilibrium. According to [18, 19, 20] to get the

global stability of disease free equilibrium point of system (1) we write our system as follows:
dX1
dt = B(X1−X1(E0))+B1X2

dX2
dt = B2X2

(43)

X1 = transmitting compartments(44)

X2 = non - transmitting compartments(45)

X1 = (Sh, Rh, Sp, Rp)(46)

X2 = (Eh, Ih, Ep, Ip)(47)

The DFE is denoted by DFE =
{

Λh
µh
,0, λp

µp
,0
}

X1−X1(DFE) =



Sh− Λh
µh

Rh

Sp−
λp
µp

Rp

(48)

For the global stability of DFE we need to prove the following.

(1) B should be a matrix with real negative Eigen values.
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(2) B2 Should be a Metzler matrix

Using system (1) together with the representation in (43) the two equations can be written as

follows:


Λh +σRh−βhShIp−µhSh

τEh−σRh−µhRh

λp−βpSpIp−µpSp + γRp

αEp−µpRp− γRp

= B


Sh− Λh

µh

Rh

Sp−
λp
µp

Rp

+B1


Eh

Ih

Ep

Ip


And


βhShIp−δhEh− τEh−µhEh

δhEh−µhIh−ωhIh

βpSpIp−δpEp−µpEp−αEp

δpEp−µpIp−ω2Ip−ωpIp

= B2


Eh

Ih

Ep

Ip


Matrices B, B1 and B2 are order 4× 4 matrix Using non - transmitting elements of the Ja-

cobean matrix of system (1) and representation in (43) we get

B =


−µh σ 0 0

0 −(σ +µh) 0 0

0 0 −µp γ

0 0 0 −(µp + γ)

(49)

B1 =


0 0 0 −βhSh

τ 0 0 0

0 0 0 −βpSp

0 0 α 0

(50)

B2 =


−δp−µp−α βpSp 0 0

δp −µp−ω2−ωp 0 0

0 βhSh −δp− τ−µh 0

0 0 δh −µh−ωh

(51)
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∣∣∣∣∣∣∣∣∣∣∣∣

−µh−λ σ 0 0

0 −(σ +µh)−λ 0 0

0 0 −µp−λ γ

0 0 0 −(µp + γ)−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(−µh−λ )(−(σ +µh)−λ )(−µp−λ )(−(µp + γ)−λ ) = 0(52)

λ1 =−µh(53)

λ2 =−(σ +µh)(54)

λ3 =−µp(55)

λ4 =−(µp + γ)(56)

The Eigen value of matrix B is negative and the off diagonal elements of matrix B2 are non

- negative which is Metzler matrix. This proves that the DFE point of system (1) globally

asymptotically stable in the region R8 and R0 < 1.

1.4. Stability Analysis of Endemic Equilibrium point. In this section we focus on the sta-

bility of the endemic equilibrium point. The stability of endemic equilibrium point is divided

into two local and global.

1.4.1. Local Stability Analysis of Endemic Equilibrium Point. Theorem 2. The endemic equi-

librium E∗ of model (1) is globally asymptotically stable whenever R0 > 1
Proof To determine the local stability of endemic equilibrium point from the differential

equation (1) first we determine the Jacobean matrix at E∗.

J =



−βhIp +−µh 0 0 σ 0 0 −βhSh 0

βhIp −(δh + τ +µh) 0 0 0 0 βhSh 0

0 δh −(µh +ωh) 0 0 0 0 0

0 τ 0 −(σ +µh) 0 0 0 0

0 0 0 0 −βhIp−µp 0 −βpSp γ

0 0 0 0 βhIp −(δp +µp +α) βpSp 0

0 0 0 0 0 δp −(µp +ω2 +ωp) 0

0 0 0 0 0 α 0 −(µp + γ)



(57)



DYNAMICS OF PSITTACOSIS IN HUMAN AND POULTRY POPULATIONS 8489

J(E∗) =



C1 0 0 σ 0 0 −b3 0

b5 C2 0 0 0 0 b3 0

0 δh C3 0 0 0 0 0

0 τ 0 C4 0 0 0 0

0 0 0 0 C5 0 −b4 γ

0 0 0 0 b6 C6 b4 0

0 0 0 0 0 δp b1 0

0 0 0 0 0 α 0 b2



(58)

Where

C1 =−βhI∗p−µh C6 =−(δp +µp +α)

C2 =−(δh + τ +µh) b1 =−(µp +ω2 +ωp)

C3 =−(µh +ωh) b2 =−(µp + γ)

C4 =−(σ +µh) b3 = βhS∗h

C5 =−βpI∗p−µp b4 = βpS∗p

b6 =−βpI∗p b5 =−βhI∗p

|J(E∗)−λ |=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(C1−λ ) 0 0 σ 0 0 −b3 0

b5 C2−λ 0 0 0 0 b3 0

0 δh C3−λ 0 0 0 0 0

0 τ 0 C4−λ 0 0 0 0

0 0 0 0 C5−λ 0 −b4 γ

0 0 0 0 b6 C6−λ b4 0

0 0 0 0 0 δp b1−λ 0

0 0 0 0 0 α 0 b2−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0(59)

From the above we get

λ
7 +m1λ

6 +m2λ
5 +m3λ

4 +m4λ
3 +m5λ

2 +m6λ +m7 = 0(60)
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From the above λ1= C3 it is negative and to see the remains value of λ we use Routh Hurwitz

criterion. To obtain the precise number of roots with nonnegative real part, proceed as follow

arrange the coefficient of polynomial and values subsequently calculated form them as below:

m0λ
n +m1λ

n−1 + · · ·+mn−1λ +mn = 0(61)

m0λ
n +m1λ

n−1 + · · ·+mn−1λ +mn = 0

λ
7 1 m2 m4 m6

λ
6 m1 m3 m5 m7

λ
5 d1 d2 d3 0

λ
4 e1 e2 e3

λ
3 f1 f2 0

λ
2 h1 h2

λ
1 n1 0

λ
0 x1

d1 =−
1

m1

∣∣∣∣∣∣−1 m2

m1 m3

∣∣∣∣∣∣=− 1
m1

(−m3 +m1m2) =
1

m1
(−m3 +m1m2)(62)

d2 =−
1

m1

∣∣∣∣∣∣−1 m4

m1 m5

∣∣∣∣∣∣=− 1
m1

(−m5 +m1m4) =
1

m1
(−m5 +m1m4)(63)

d3 =−
1

m1

∣∣∣∣∣∣−1 m6

m1 m7

∣∣∣∣∣∣=− 1
m1

(−m7 +m1m6) =
1

m1
(−m7 +m1m6)(64)
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e1 =−
1
d1

∣∣∣∣∣∣m1 m3

d1 d2

∣∣∣∣∣∣=− 1
d1

(m1d2−m3d1)(65)

=− 1
d1m1

(m1(−m5 +m1m4)−m3(−m3 +m1m2))(66)

=
1

d1m1
[m2

3 +m2
1m4−m1m5 +m3m1m2](67)

=
1

m5−m1m2
[−m2

3−m2
1m4 +m1m5 +m3m1m2](68)

e2 =−
1
d1

∣∣∣∣∣∣m1 m5

d1 d3

∣∣∣∣∣∣=− 1
d1

(m1d3−m5d1)(69)

=− 1
d1m1

(m1(−m7 +m1m6)−m5(−m3 +m1m2))(70)

=
1

d1m1
[−m2

1m6 +m1m7 +m5m1m2−m5m3](71)

=
1

m3−m1m2
[−m2

1m6 +m1m7 +m5m1m2−m5m3](72)

e3 =−
1
d1

∣∣∣∣∣∣m1 m7

d1 0

∣∣∣∣∣∣=− 1
d1

(−d1m7) = m7(73)

f1 =−
1
e1

∣∣∣∣∣∣d1 d2

e1 e2

∣∣∣∣∣∣=− 1
e1
(d1e2−d2e1)(74)

=− 1
e1
(

1
m1

(−m3 +m1m2)
1

m3−m1m2
[−m2

1m6 +m1m7 +m5m1m2−m5m3]−(75)

1
m1

(−m5 +m1m4)
1

m5−m1m2
[−m2

3−m2
1m4 +m1m5 +m3m1m2]](76)

f1 =
1

e1m1(m1m2−m3)
(−m2

1m2
2m5−m2

1m2m7 +m3
1m2m6 +m1m2m3m5 +m1m7m3−(77)

2m2
3m5−m2

1m3m6 +m2
1m2m3m4 +2m2

1m4m5−m1m2
5−m2

3m1m4−m3
1m2

4)(78)
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f2 =−
1
e1

∣∣∣∣∣∣d1 d3

e1 e3

∣∣∣∣∣∣=− 1
e1
(d1e3− e1d3)

(79)

=− 1
e1
(

1
m1

(−m3 +m1m2)m7−
1

m5−m1m2
[m2

3 +m2
1m4−m1m5−m3m1m2]

1
m1

(−m7 +m1m6))

(80)

f2 =
1

e1m1(m1m2−m3)
(−m2

1m2
2m7 +m1m2m3m7 +m2

1m2m3m6 +m2
1m5m6−m1m5m7−

(81)

m2
3m1m6−m3

1m4m6 +m2
1m4m7)

(82)

h1 =−
1
f1

∣∣∣∣∣∣e1 e2

f1 f2

∣∣∣∣∣∣=− 1
f1
(e1 f2− f1e2)

(83)

=− 1
f1
(

1
m5−m1m2

[(−m2
3−m2

1m4 +m1m5 +m3m1m2)
1

e1m1(m1m2−m3)
(−m2

1m2
2m7+(84)

m1m2m3m7 +m2
1m2m3m6 +m2

1m5m6−m1m5m7−m2
3m1m6−m3

1m4m6 +m2
1m4m7)−(85)

1
e1m1(m1m2−m3)

(−m2
1m2

2m5−m2
1m2m7 +m3

1m2m6 +m1m2m3m5 +m1m7m3−(86)

2m2
3m5−m2

1m3m6 +m2
1m2m3m4 +2m2

1m4m5−m1m2
5−m2

3m1m4−m3
1m2

4)(87)

1
m3−m1m2

[m2
1m6−m1m7 +m5m1m2−m5m3])(88)

h2 =−
1
f1

∣∣∣∣∣∣e1 e3

f1 0

∣∣∣∣∣∣(89)

h2 =−
1
f1
(0− e3 f1) = e3 = m7(90)
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n1 =−
1
f1

∣∣∣∣∣∣ f1 f2

h1 h2

∣∣∣∣∣∣(91)

n1 =−
1
f1
( f1h2−h1 f2)(92)

n1 =
1
f1
(h1 f2− f1h2)(93)

Let h1 = z, , f1 = r, f2 = y then, m1= 1
f1
(zy− rm7)

n1 =−
1
n1

∣∣∣∣∣∣h1 h2

n1 0

∣∣∣∣∣∣=− 1
n1

(−n1h2) = h2 = e3 = m7

By Using the Routh Hurwitz criterion it can be seen that all the Eigen values of the charac-

teristic equation have negative real part if and only if:

m1 > 0, m2 > 0, m3 > 0, m4 > 0, m5 > 0, m6 > 0, m7 > 0, d1 > 0, d2 > 0, d3 > 0, e1 > 0,

e2 > 0, e3 > 0, f1 > 0, f2 > 0, h1 > 0, h2 > 0, n1 > 0

Since R0 = λpβpδp
µp(δp+µp+α)(µp+ω2+ωp)

So, R0 > 1

This implies that the endemic equilibrium point (E∗) is local asymptotical stable.

1.4.2. Global Stability Analysis of Endemic Equilibrium. (E∗)

Global stability means that the system will come to the equilibrium point from any possible

starting point.

Theorem 3 If R0 > 1, E∗ of the model (1) is globally asymptotically stable.

Proof. Using the Lyapunov approach in [21], global asymptotic stability of E∗:

Define;

V (S∗h,E
∗
h , I
∗
h ,R
∗
h,S
∗
p, I
∗
p, I
∗
p,R
∗
p) = (Sh−S∗h−S∗h ln

S∗h
Sh

)+(Eh−E∗h −E∗h ln
E∗h
Eh

)+(Ih− I∗h − I∗h ln
I∗h
Ih
)+

(94)

(Rh−R∗h−R∗h ln
R∗h
Rh

)+(Sp−S∗p−S∗p ln
S∗p
Sp

)+(Ep−E∗p−E∗p ln
E∗p
Ep

)+(95)

(Ip− I∗p− I∗p ln
I∗p
Ip
)+(Rp−R∗p−R∗p ln

R∗

Rp
)(96)
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By direct calculating the derivative of V along the solution of (1) we have;

dV
dt

=

(
1−

S∗h
Sh

)
dSh

dt
+

(
1−

E∗h
Eh

)
dEh

dt
+

(
1−

I∗h
Ih

)
dIh

dt
+

(
1−

R∗h
Rh

)
dRh

dt
(97)

+

(
1−

S∗p
Sp

)
dSp

dt
+

(
1−

E∗p
Ep

)
dEp

dt
+

(
1−

I∗p
Ip

)
dIp

dt
+

(
1−

R∗p
Rp

)
dRp

dt
(98)

dV
dt

=

(
1−

S∗h
Sh

)
(Λh +σRh−βhShIp−µhSh)+

(
1−

E∗h
Eh

)
(βhShIp−δhEh− τEh−µhEh)+

(99)

(
1−

I∗h
Ih

)
(δhEh−µhIh−ωhIh)+

(
1−

R∗h
Rh

)
(τEh−σRh−µhRh)+

(100)

(
1−

S∗p
Sp

)
(λp−βpSpIp−µpSp + γRp)+

(
1−

E∗p
Ep

)
(βpSpIp−δpEp−µpEp−αEp)+

(101)

(
1−

I∗p
Ip

)
(δpEp−µpIp−ω2Ip−ωpIp)+(1−

R∗p
Rp

)(αEp−µpRp− γRp)

(102)

dV
dt

= Λh +σRh +βhS∗hId +µhS∗h +βhShIp +δhE + τE∗+µhE∗+δhEh +µhI∗h +ωhI∗h + τEh +σR∗h +µhR∗h+

(103)

λp + γRp +βpS∗pIp +µpS∗p +βpSpIp +δpE∗p +µpE∗p +αE∗p +δpEp +µpI∗p +ω2I∗p +ωpI∗p +αEp+

(104)

µpR∗p + γR∗p−
(
−βhShIp−µhSh−

S∗h
Sh

Λh−
S∗h
Sh

σRh−δhEh− τEh−µhEh−
E∗

Eh
βhShIp−µhIh−ωhIh−

(105)

I∗h
Ih

δhEh−σRh−µhRh−
R∗h
Rh

τEh−βpSpIp−µpSp−
S∗p
Sp

λp−
S∗p
Sp

Rp−δpEp−µpEp−αEp−

(106)

E∗p
Ep

βpSpIp−µpIp−ω2Ip−ωpIp−
I∗p
Ip

δpEp−µpRp− γRp−
R∗p
Rp

αEp

)(107)
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dV
dt

= A−B

(108)

Where

(109)

A = Λh +σRh +βhS∗hId +µhS∗h +βhShIp +δhE∗+ τE∗+µhE∗+δhEh +µhI∗h +ωhI∗h + τEh +σR∗h+

(110)

µhR∗h +λp + γRp +βpS∗pIp +µpS∗p +βpSpIp +δpE∗p +µpE∗p +αE∗p +δpEp +µpI∗p +ω2I∗p+

(111)

ωpI∗p +αEp +µpR∗p + γR∗p

(112)

B =
(
−βhShIp−µhSh−

S∗h
Sh

Λh−
S∗h
Sh

σRh−δhEh− τEh−µhEh−
E∗

Eh
βhShIp−µhIh−ωhIh−

(113)

I∗h
Ih

δhEh−σRh−µhRh−
R∗h
Rh

τEh−βpSpIp−µpSp−
S∗p
Sp

λp−
S∗p
Sp

Rp−δpEp−µpEp−

(114)

αEp−
E∗p
Ep

βpSpIp−µpIp−ω2Ip−ωpIp−
I∗p
Ip

δpEp−µpRp− γRp−
R∗p
Rp

αEp

)(115)

Thus if A < B, then dV
dt ≤ 0;

Noting that:
dV
dt = 0 if and only if Sp =S∗p, Ep =E∗p, Ip =I∗p, Rp =R∗p, Sh =S∗h, Eh =E∗h , Ih =I∗h , Rh =R∗h

Therefore, the largest compact invariant set in
{(

S∗h,E
∗
h , I
∗
h ,R
∗
h,S
∗
p, I
∗
p, I
∗
p,R
∗
p
)
∈ R8 : dV

dt =

0
}

is the singleton E∗, where E∗ is the endemic equilibrium of the system (1) by invariance

principle (is criterion for the asymptotic stability of autonomous (possibly nonlinear) dynamical

system), it implies that E∗ is globally asymptotically stable in R8 if A < B. This implies that

R0 > 1 [22].

1.5. Sensitivity Analysis. The sensitivity analysis of the model parameters was carried out

in order to determine parameters in the model that have a high transmission influence on the
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disease [23, 24]. We analysed the reproduction number to determine whether or not treatment

of infective and mortality can lead to the effective elimination or control the psittacosis disease

in the population.

We determine the most sensitive parameter by using the relation;

Pmi =
1

R0
× ∂R0

∂mi , where mi are parameter, and R0 is the reproductive number.

If Pmi < 0, then mi have an effect of controlling the disease

If Pmi > 0, then mi have an effect on expanding the disease

Pβp =
1

R0
× ∂R0

∂βp

TABLE 1. Sensitivity indices of model parameters to R0

Sensitivity indices of R0

No Parameter Sensitivity index

1. λp +ve

2. βp +ve

3. δp +ve

4. µp −ve

5. α −ve

6. ω2 −ve

7. ωp −ve

The results of the sensitivity analysis as shown in Table 1 indicates that some parameters are

more sensitive to the reproduction number than others. The following parameters; µp,α,ω2,ωp

help reduce the spread of the infection. However, the following parameters λp,βp,δp increases

the spread of the infection whenever their values increases.

2. NUMERICAL SIMULATION

Numerical simulations are required to study the behaviour of a systems whose mathematical

model is too complex to provide analytical solution as in most non linear systems [19, 25, 26].

Table 2 shows the values of the parameters used in the various simulations.
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TABLE 2. parameter value

Parameter Value Source

Λh 200 Assumption

µh 0.0008 Assumption

δh 0.17 [27]

ωh 1 [28]

βh 2.29×10−2 [27]

τ 0.1 [29]

σ 1 [29]

λp 2×104 [28]

µp 0.083 [28]

δp 2.571×10−2 [30]

ωp 0.005 Assumption

βp 3.776×10−6 Assumption

α 0.005 Assumption

γ 0.5 [28]

ω2 0.001 Assumption
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FIGURE 2. Simulation of total human population with initial value
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FIGURE 3. The stimulation of total population birds with initial value

2.1. Effect of Removing Rate on Psittacosis Infectious Population. In this subsection, as

we see in Fig. 4, we have experimented on the effect of ω2 in decreasing the number of psitta-

cosis infectious population. The figure shows that when the values of ω2 increase, the number

of psittacosis infectious population is going down (decreasing).
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FIGURE 4. Simulation of infectious birds with different removing rates.

2.2. Effect of contact rate on exposed birds population. In this section, as we see in Fig. 5,

FIGURE 5. Simulation of infectious birds with different contact rates.
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2.3. Effects of treatment rate on recovered birds population. In this section, we simulated

the effects of treatment on recovered birds population as shown in Fig: 6.

FIGURE 6. Simulation of infectious birds with different recovery rates.

2.4. Effects of rate of infection on infectious birds population. In this section, we simulated

the effects of rate of infection on infectious birds population as shown in Fig 7.
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FIGURE 7. Simulation of infectious birds with different infection rates.

3. CONCLUSION

In this study we have formulated mathematical model of psittacosis. The model contains

birds and human population. We defined the reproduction number in terms of the parameters

and computed it by using next generation operator. The results are depending only on the param-

eter of birds population. It was also established that for the basic reproduction number, R0 < 1,

the disease free equilibrium point is asymptotically stable so that the disease dies out after some

period of time and if R0 > 1, the disease free equilibrium is unstable and the disease persist.

We also established that when R0 > 1 then the endemic equilibrium is locally asymptotically

stable, and unstable if R0 < 1. The local stability theorems of disease free equilibrium and en-

demic equilibrium points of the model are proved by using Jacobian matrix and Routh-Hurwitz

criterion. Further more global stability analysis of endemic equilibrium point was computed by

using invariance principle. Sensitivity analysis of basic parameters and interpretation of the sen-

sitivity index is also computed. Depending on the value of the sensitivity analysis of parameter

the natural death rate, diseases induce rate, removing parameter and vaccination rate (the rate
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of exposed population of birds join to the recovered population) have an effects on controlling

the psittacosis disease in the community and natural birth rate, the rate susceptible population

infection by infected animal and the rate of exposed birds infected (incubation period) have an

effect on expansion the psittacosis disease in the community. Moreover, numerical stimulation

is performed in order to check the effect of each parameter in the expansion as well as in the

controlling of psittacosis. Depending on numerical stimulation the removing rate and treatment

rate are reduced (decrease) the expansion the disease and the other rate like contact rate and

infective rate are increase the expansion of the disease.
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