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Abstract. A graph operator is a mapping between two families of graphs. In this paper, a new graph operator

called the line triangle intersection graph is introduced. Also, the concept of a quasi regular graph is proposed.

Further, various properties of line triangle intersection graph of a graph are investigated including its chromatic

number and clique number. It is proved that the line triangle intersection graph of a complete graph is quasi regular.

Moreover, partial characterization for a line triangle intersection graph is presented.
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1. INTRODUCTION

Even though Whitney [3] used the construction of line graphs, it was Krausz [4] who

formulated the concept of a graph operator and that of a line graph. A characterization of line

graphs was also given by him. Later, Beineke [5] gave a new characterization of line graph

in terms of 9 forbidden subgraphs. Again Šoltés [6] gave forbidden induced subgraphs of a

line graph with atleast 9 vertices. Modifying the construction of a line graph, two new graph
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operators were proposed by Gallai [7], which were named as Gallai and anti-Gallai graphs. The

notations for the same were proposed by Sun [9]. Many other graph operators are also studied

such as intersection graphs. Further, many of the intersection graphs are studied such as path

intersection graphs, P3 intersection graph, C4 intersection graphs, clique graphs, block graphs

etc.

Graph operators are mainly used to study complicated graphs. Most of the graph operators

produce graphs which have common properties with the original graph. So, complex graphs

can be studied in terms of simpler graphs. In this paper, we introduce a new graph operator

called the line triangle intersection graph and investigate various properties of this graph. The

structure of the paper is as follows: section 2 revisits some of the preliminary concepts in graph

theory, section 3 presents the concept of a line triangle intersection graph and quasi-regular

graph and section 4 concludes the paper.

2. PRELIMINARIES

Definition 2.1. [2] Let G = (V,E) be a graph, where V is a nonempty set of elements called

vertices and E is a set of elements called edges such that each element e ∈ E is associated with

two vertices in V which are called the end vertices of e.

Definition 2.2. [1] The number of edges incident at v in G is called the degree of the vertex v

and is denoted as d(v). The minimum and maximum values of the degrees of the vertices of a

graph G are denoted by δ (G) and ∆(G) respectively.

Definition 2.3. [1] A path is a sequence of vertices and edges in a graph such that no vertex is

repeated. A path on n vertices is called a path of length n and is denoted as Pn.

Definition 2.4. [1] A cycle is a closed path. ie; A path whose initial and terminal vertex coincide

is called a cycle. A cycle of length n is denoted as Cn.

Definition 2.5. [1] A cycle of length 3, ie;C3 is called a triangle.

Definition 2.6. [1] The shortest distance between any two vertices u and v in G is the length of

shortest path connecting u and v in G, denoted by d(u,v)
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Definition 2.7. [1] A simple graph G is said to be complete, if every pair of distinct vertices of

G are adjacent in G. A Complete graph on n vertices is denoted as Kn.

Definition 2.8. [1] A clique of G is a complete subgraph of G. A clique of G is said to be a

maximal clique of G if it is not properly contained in another clique of G.

Definition 2.9. [1] A graph G is said to be k-regular if every vertex of G has degree k. A graph

is said to be regular if it is k-regular for some non-negative integer k.

Definition 2.10. [1] A graph is said to be bipartite if its vertex set can be partitioned into two

non-empty disjoint subsets X and Y such that each edge of G has one end in X and the other

end in Y .

Definition 2.11. [1] A simple bipartite graph is said to be complete bipartite if every vertex of

X is adjacent to every vertex of Y .

Definition 2.12. [7] The clique number ω(G) is the supremum of all natural number k such

that G contains a complete subgraph with k vertices.

Definition 2.13. [1] The chromatic number of a graph G is the minimum number of colors

needed for a proper vertex coloring of G. Chromatic number of a graph G is denoted as χ(G).

Definition 2.14. [1] The minimum value k, for which a loopless graph G has a proper k-edge

coloring is called the edge-chromatic number or chromatic index of G. It is denoted by χ
′
(G).

Definition 2.15. [1] A graph G is called a split graph if its vertex set can be partitioned into

two subsets K and I such that the subgraph G[K] induced by K in G is a clique in G and I is an

independent subset of G.

Definition 2.16. [1] Let G be a loopless graph. We construct a graph L(G) in the following

way. The vertex set of L(G) is in 1-1 correspondence with the edge set of G and two vertices of

L(G) are joined by an edge if and only if the corresponding edges of G are adjacent in G. The

graph L(G) is called line graph, derived graph or edge graph of G.
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Definition 2.17. [7] The Gallai graph Γ of a graph G is the graph whose vertex-set is the edge-

set of G; two distinct edges of G are adjacent in Γ(G) if they are incident in G, but do not span

a triangle in G.

Definition 2.18. [7] The anti-Gallai graph of a graph G denoted as ∆(G) has the edges of G as

its vertices; two edges are adjacent in ∆(G) if they span a triangle in G.

(Throughout this paper ∆(G) represent maximum degree of a vertex in G)

Theorem 2.19. [7] For every graph G with ω(G)≥ 1,

(1) ω(γ(G)) =

 ω(G)−1, i f ω(G) 6= 3

3, i f ω(G) = 3

where γ(G) denote anti-Gallai graph of G

Theorem 2.20. [5] The following statements are equivalent for a graph G.

(1) G is the derived graph of some graph.

(2) The edges of G can be partitioned into complete subgraphs in such a way that no vertex

belongs to more than two of the subgraphs.

(3) The graph K1,3 is not an induced subgraph of G;and if abc and bcd are distinct odd

triangles, then a and d are adjacent.

Theorem 2.21. Brook’s Theorem [8]: Every graph G with maximum degree ∆(G) has a ∆(G)

coloring unless either (i) G contains K∆(G)+1 or (ii) ∆(G) = 2 and G contains an odd cycle.

3. LINE TRIANGLE INTERSECTION GRAPH

Definition 3.1. Let G = (V,E) be a graph with vertex set V and edge set E. Then the line-

triangle intersection graph of G denoted by LT (G) is a graph having edges and triangles in

G as its vertices and two vertices in LT (G) are adjacent if and only if they corresponds to two

adjacent edges in G or an edge and a triangle in G having only one common vertex.

A vertex corresponding to an edge in G is called an edge vertex and a vertex corresponding

to a triangle in G is called a triangle vertex.
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FIGURE 1

FIGURE 2. LT(G)

Example 3.2. The line-triangle intersection graph of the graph G in Figure 1 is the graph in

Figure 2. The pendent vertex T1 in LT (G) is the triangle vertex and all other vertices are edge

vertices.

Definition 3.3. A graph having only two distinct non-negative integers in its degree sequence

is called a quasi-regular graph.

Example 3.4. In Figure 3, the degree of red vertices is 3 and the degree of green vertices is 2.

So, it is a quasi-regular graph.

Definition 3.5. The T-index of a graph is the number of triangles in it.

Definition 3.6. The number of triangles passing through a vertex of a graph is called the T-

degree of that vertex and if there is no triangles passes through that vertex T-degree of that

vertex is considered to be zero. T-degree of a vertex ’u’ is denoted as Td(u). The number of

triangles incident on an edge is called the T-degree of that edge. ie; If the number of triangles
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FIGURE 3

FIGURE 4

incident on an edge is 0, the T-degree of that edge is considered to be zero. The T-degree of an

edge ’e’ is denoted as Td(e).

Example 3.7. In figure 4, the T-index of the graph is 3. Also, Td(1) = Td(4) = 2, Td(2) =

Td(3) = Td(5) = Td(6) = Td(7) = 1, Td(a) = Td(b) = Td(c) = Td(e) = 1,

Td(d) = Td(g) = Td(h) = Td(i) = 0 and Td( f ) = 2

Theorem 3.8. The T-index of a graph G is ΣuεV Td(u)
3

Proof. Each triangle in G passes through 3 vertices. So, each triangle is counted once in the

T-degree of each of the 3 vertices. Thus, T- index of a graph is given by one-third of the sum of

all T-degress of vertices. �

Remark 1. (1) From the construction itself we can see that the line graph of a graph G is a

subgraph of the line triangle intersection graph.
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(2) For a triangle free graph G, LT (G) = L(G)

Example 3.9. LT (Pn) = L(Pn) and LT (Cn) = L(Cn) f or n≥ 3

Theorem 3.10. The maximum number of vertices in the line triangle intersection graph of a

graph G with ’n’ vertices is nC2 +nC3

Proof. For any graph G, the number of vertices in LT (G) is equal to the the sum of the number

of edges in G and the T-index of G. If G is a graph with ’n’ vertices, then the number of

edges and the number of triangles (T-index) is maximum when it is a complete graph and for

a complete graph, the number of edges is nC2 and T-index is nC3. Therefore, the maximum

number of vertices in LT (G) is nC2 +nC3 �

Theorem 3.11. The line triangle intersection graph of a complete graph is a quasi-regular

graph.

Proof. Consider the complete graph Kn on ’n’ vertices. Each vertex of Kn will be of degree

’n− 1’. Consider an edge e = uv in Kn. Then, there are ’n− 2’ more edges having ’u’ as

an end vertex and ’n− 2’ more edges having ’v’ as an end vertex. That is, there is a total of

2(n−2) = 2n−4 edges adjacent to the edge ’e’. Also, joining ’u’ to any two of the remaining

(n− 2) vertices (other than v), we get a triangle having only one common vertex with ’e’.

There are (n− 2)C2 such triangles in Kn having v as a common vertex with ’e’. So, there are
2(n−2)(n−3)

2 =(n− 2)(n− 3) triangles having only one common vertex with ’e’. Therefore, the

degree of any edge vertex in LT (G) is 2(n−2)+(n−2)(n−3) = (n−2)(n−1).

Now consider a triangle ’uvw’ in Kn. The edges joining u and the remaining (n−3) vertices

(other than ’v’ and ’w’) will have only one common vertex ’u’ with the triangle. There are

’n− 3’ such edges. Similarly there are ’n− 3’ edges having only one common vertex ’v’ with

the triangle and ’n− 3’ edges having only one common vertex ’w’ with the triangle. So, each

triangle in Kn has exactly 3(n− 3) edges having only one common vertex with it. Therefore,

the degree of each triangle vertex in LT (Kn) is 3(n−3).

Hence, LT (Kn) is quasi-regular graph with degrees (n−1)(n−2) and 3(n−3). �

Corollary 3.12. The number of edges of LT (Kn) is n(n−1)(n−2)2

2
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Proof. From theorem 3.11, each edge vertex has a degree (n−2)(n−3) and there are nC2 edge

vertices in LT (Kn). Similarly, there are nC3 triangle vertices each of degree 3(n− 3). So, the

degree sum of vertices of LT (Kn) is given by

Σe d(e)+ΣT d(T ) = nC2 (n−2)(n−1)+nC3 3(n−3)

= n(n−1)
2 (n−2)(n−1)+ n(n−1)(n−2)

6 3(n−3)

= n(n−1)(n−2)
2 (n−1+n−3) = n(n−1)(n−2)2

Therefore, the number of edges in LT (G) is Σ
d(vi)

2 = n(n−1)(n−2)2

2 �

Theorem 3.13. LT (K1,n) is the only line triangle intersection graph which is also a complete

graph.

Proof. By definition itself, LT (K1,n) = Kn.

Now if LT (G) = Kn for some G, then G must be triangle free. Also each edge in G should be

adjacent to all other edge. This is possible only when G = K1,n. �

Theorem 3.14. LT (G) is isomorphic to G iff G =
⋃

n>3Cn or G =C3∪K1

Proof. Necessary: If G is a triangle free graph, then LT (G) = L(G) and we know that L(G) is

isomorphic to G iff G =
⋃

Cn. So, let us assume that G is a connected graph having triangles.

Now, suppose that LT (G)isomorphic to L(G). This is possible only if n = m+ t where m denote

number of edges of G and t denotes T-index of G. Now consider the least case when t = 1, ie;

there is only one triangle . Then, n = m+1 or m = n−1. ie; G is a tree which is a contradiction.

When t>1, n<m−1 which means that G is disconnected. Again a contradiction. So, LT (G)

is not isomorphic to G except when G = C3 ∪K1 Sufficient: Cn is a triangle free graph and

LT (Cn) =Cn. So LT (
⋃

n>3Cn) =
⋃

n>3Cn . Also, LT (Cn∪K1) =Cn∪K1 �

Theorem 3.15. For any graph G, χ(LT (G))≤ χ
′
(G)+1

Proof. Case 1: If G is a triangle free graph then LT (G) = L(G) and χ(L(G) = χ
′
(G). Therefore

χ(LT (G)) = χ
′
(G).

Case 2: If G is a graph having a triangle, then each edge vertex can be given the same color as the

edge corresponding to it in G. Now consider a triangle vertex in LT (G). Corresponding to this

vertex there will be a triangle xyz (say) in G. If the color of any of the edges of xyz is different
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from the colors of the edges incident with this triangle, that color can be given to the triangle

vertex. If all triangle vertices can be colored like this, then χ(LT (G)) = χ
′
(G). Otherwise if

there is a triangle in G whose edges have the same color as its incident edges, then the triangle

vertex corresponding to this triangle can be given a new color. If there are more than one triangle

like this, all such triangle vertices can be given the same color as no two triangle vertices are

adjacent. In this case, χ(LT (G)) = χ ′(G)+1. So, in general χ(LT (G))≤ χ
′
(G)+1 �

Theorem 3.16. If two graphs G1 and G2 are isomorphic, then their line-triangle intersection

graphs are also isomorphic.

Proof. If G1 and G2 are isomorphic, there is a one-one correspondence between the vertex set

of G1 and G2 and a one one-one correspondence between the edge set of G1 and G2 which

preserves the incidence and adjacency relation. So, there will be a one-one correspondence

between the triangles of G1 and G2. Hence, in the line-triangle intersection graph of G1 and G2

also there will be a one-one correspondence between the vertex sets and the edge sets which

preserves adjacency and incidence relation. Hence, LT (G1) is isomorphic to LT (G2) �

Theorem 3.17. For any graph G with ω(G)≥ 1,

(2) ω(LT (G))≥

 ω(G)−1, i f ω(G) 6= 3,4

ω(G), i f ω(G) = 3,4

Proof. Let ω(G) 6= 3,4. If Kn is a complete subgraph of G where n 6= 3,4, then ’n− 1’ edges

of Kn have a common endpoint in G. These ’n− 1’ edges form a complete graph in LT (G).

Therefore, ω(LT (G))≥ ω(G)−1 if ω(G) 6= 3,4.

If ω(G) = 3,4. clearly ω(LT (G))≥ ω(G) �

Theorem 3.18. ω(LT (G)) = ∆(G) where ∆(G) is maximum degree of the graph G and ω(G)

is clique number of G.

Proof. Let ∆(G)= m. Let ′u′ be a vertex of degree ′m′. Then the ′m′ edge vertices in LT (G)

corresponding to these ′m′ edges in G make a complete graph in LT (G).

So ω(LT (G))≥ m.........(1).

Now let us prove that ω(LT (G))≤ m.
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Let us assume the contrary. ie; Let ω(LT (G))>m . Then there exist a clique of order atleast
′m+1′. Here there are two cases.

Case 1: All the vertices of that clique are edge vertices of LT (G). Then the corresponding

m+ 1 edges in G have a common vertex say ′u′. Then the degree of this vertex ′u′ will be
′m+1′, which is a contradiction. So, in this case ω(LT (G))≤ m.

Case 2: One vertex in the clique is a triangle vertex say ′T ′. (No two triangle vertex belongs

to same clique as they will not be adjacent in LT (G).) Then, the edges in G corresponding to

the remaining ′m′ edges of the clique will be incident to a vertex ′u′ of the triangle ′T ′. Then,

the degree of ′u′ =′ m+ 2′(′m′ edges incident to ′T ′ together with the 2 edges of the triangle).

Again, it is a contradiction to the fact that ∆(G) = m. Thus, in any case ω(LT (G))≤m.........(2)

Combining (1)and (2) we can say that ω(LT (G)) = ∆(G) �

Theorem 3.19. For any graph G , ∆(G)≤ χ(LT (G))

Proof. By Brook’s theorem, χ(G)≤ (∆(G))+1. Also, we know that ω(G)≤ χ(G).

So, for any graph G, ω(G)≤ χ(G)≤ ∆(G)+1. ∴ ω(LT (G))≤ χ(LT (G))≤ ∆(LT (G))+1.

From theorem 2.19 ∆(G) = ω(LT (G)). ∴ ∆(G)≤ χ(LT (G)) �

Theorem 3.20. For any graph G,

(3) χ(LT (G))≤

 2∆(G), i f ∆(G)≤ 5

3∆(G)−5, i f ∆(G)> 5

Proof. Let P be the set of edge vertices and T be the set of triangle vertices of LT (G).

Here, there are two cases.

Case 1: G is a triangle free graph.

Then, the vertex set of LT (G) consists of P only. Hence, each vertex p in LT (G) corresponds

to an edge uv in G.

So, the degree of p in LT (G), d(p) = d(u)+d(v)−1

∴maxp∈P d(P) = maxu∈(V (G)) d(u)+maxv∈(V (G)) d(v)−1

⇒ ∆(LT (G))≤ ∆(G)+∆(G)−1

≤ 2∆(G)−1

Case 2 : There is a triangle vertex t in LT (G) such that T = uvw in G.
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Then, the degree of t in LT (G), d(t) = d(u)+d(v)+d(w)−6

∴maxt∈T d(T )≤maxu∈(V (G)) d(u)+maxv∈(V (G)) d(v)+maxw∈(V (G)) d(w)−6.

≤ ∆(G)+∆(G)+∆(G)−6.

≤ 3∆(G)−6.

Therefore, ∆(LT (G))≤max{maxp∈P d(p) , maxt∈T d(t)}

≤max{2∆(G)−1,3∆(G)−6 }

≤

 2∆(G)−1, i f ∆(G)≤ 5

3∆(G)−6, i f ∆(G)> 5
According to Brook’s theorem, χ(LT (G))≤ ∆(LT (G))+1, and hence

(4) χ(LT (G))≤

 2∆(G), i f ∆(G)≤ 5

3∆(G)−5, i f ∆(G)>5

�

Theorem 3.21. Let G be a graph with n vertices. Then, LT (G) can be partitioned into edge

disjoint complete graphs in such a way that no vertex is common to more than (n−2)2 of such

subgraphs.

Proof. Case 1: Let t be a triangle vertex. Then, vertices in LT (G), corresponding to the edges

incident at each vertex of the triangle corresponding to t in G, induces a complete subgraph

along with t in LT (G). Since t has exactly 3 vertices, t is common to atmost 3 complete

subgraphs in LT (G), for n≥ 6

Case 2(a): Let e be an edge in G which is not incident with any triangle in G. Then, the

edges incident at each end vertex of ’e’ induces a complete subgraph in LT (G). So, ’e’ will be

common to maximum of two complete subgraphs of LT (G).

Case 2(b): Let ’e’ be an edge in G which is incident with one or more triangles in G. Then,

each vertex corresponding to a triangle incident with e, alongwith the vertices corresponding to

e and the other edges incident on the common vertex of e and the triangle, induce a complete

subgraph in LT (G). Now, maximum number of triangles incident on each end vertex of ’e’ will

be (n−1)C2. Of these, (n−1)C2 +
(n−1)C2 triangles,(n−2)C1 triangles will be common. Therfore,

the maximum number of triangles incident on an edge ’e’ in a graph will be (n−1)C2+
(n−1)C2−
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(n−2)C1.

= 2(n−1)C2− (n−2)C1

= 2(n−1)!
2!(n−3)! −

(n−2)!
!!(n−3)!

(n−2)(n−1)− (n−2) = (n−2)(n−2) = (n−2)2.

Hence, the maximum number of edge disjoint complete subgraphs common to an edge vertex

is (n−2)2,∀n≥ 3. �

3.1 Partial Characterization of LT Graph.

Theorem 3.22. Let G be the LT graph of a graph H having atleast two triangles. Then G is a

graph whose vertex set can be partitioned into two sets V1 and V2 where V1 induces a connected

graph and V2 is an independent set. Again, the edges of the connected graph induced by V1 can

be partitioned into complete subgraphs in such a way that not more than two of them have a

common vertex.

Proof. Without any loss of generality, let us assume that G is connected. Let G be the LT

graph of a connected graph H having atleast two triangles, then there are two types of vertices

in G- edge vertices and triangle vertices. Now, consider a partition of vertices in G into two

sets V1 and V2 such that V1 contains only edge vertices and V2 contains only triangle vertices.

As two triangle vertices are not adjacent , V2 is an independent set.Now consider V1. As V1 is

the set of edge vertices , the graph induced by the V1 is the line graph of H. ie, L(H). So by

characterization of line graphs given by Lowell.W.Beinkee [5], the edges of G can be partitioned

into complete subgraphs in such a way that not more than two such complete subgraphs have a

common vertex. �

4. CONCLUSION

Here, we introduced a new graph operator called line-triangle intersection graph and studied

various properties of it . Also, we introduced the concept of a quasi-regular graph. Graph

operators are used in various fields. They are very useful in the study of complex graphs.

Similarly, we can use LT graph in various fields to explore complex structures. Also line-

triangle intersection graphs can be helpful in traffic controlling. Quasi-regular graphs give a
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partition of graphs. We can further study about various properties of quasi-regular graph and

line-triangle graph.
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