A CONSTRUCTION OF BALANCED DEGREE-MAGIC GRAPHS

PHAISATCHA INPOONJAI*

Faculty of Science and Agricultural Technology,
Rajamangala University of Technology Lanna Chiang Rai,
99, Sai Khao, Phan, Chiang Rai, 57120, Thailand

Abstract. A graph G is called degree-magic if it admits a labelling of the edges by integers $1, 2, \ldots, |E(G)|$ such that the sum of the labels of the edges incident with any vertex v is equal to $(1 + |E(G)|)\deg(v)/2$. Degree-magic graphs extend supermagic regular graphs. In this paper, a new construction of balanced degree-magic graphs is introduced.

Keywords: supermagic graphs; degree-magic graphs; cycle graphs.

2010 AMS Subject Classification: 05C78.

1. INTRODUCTION

The finite simple graphs and multigraphs without loops and isolated vertices are considered. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the order and the size of G. For any integers p and q, the set of all integers z satisfying $p \leq z \leq q$ is indicated by $[p, q]$.

Let a graph G and a mapping f from $E(G)$ into the set of positive integers be given. The index-mapping of f is the mapping f^* from $V(G)$ into the set of positive integers defined by

*Corresponding author

E-mail address: phaisatcha_in@outlook.com

Received September 13, 2021
\[f^*(v) = \sum_{e \in E(G)} \eta(v,e) f(e) \quad \text{for every} \quad v \in V(G), \]

where \(\eta(v,e) \) is equal to 1 when \(e \) is an edge incident with a vertex \(v \), and 0 otherwise. An injective mapping \(f \) from \(E(G) \) into the set of positive integers is called a \textit{magic labelling} of \(G \) for an \textit{index} \(\lambda \) if its index-mapping \(f^* \) satisfies

\[f^*(v) = \lambda \quad \text{for all} \quad v \in V(G). \]

A magic labelling \(f \) of \(G \) is called a \textit{supermagic labelling} if the set \(\{ f(e) : e \in E(G) \} \) consists of consecutive positive integers. A graph \(G \) is said to be \textit{supermagic} (\textit{magic}) whenever there exists a supermagic (magic) labelling of \(G \).

A bijective mapping \(f \) from \(E(G) \) into \([1, |E(G)|] \) is called a \textit{degree-magic labelling} (or only \textit{d-magic labelling}) of a graph \(G \) if its index-mapping \(f^* \) satisfies

\[f^*(v) = \frac{1+|E(G)|}{2} \deg(v) \quad \text{for all} \quad v \in V(G). \]

A \(d \)-magic labelling \(f \) of \(G \) is called \textit{balanced} if for all \(v \in V(G) \) it holds

\[|\{ e \in E(G) : \eta(v,e) = 1, f(e) \leq \lfloor |E(G)|/2 \rfloor \}| \]
\[= |\{ e \in E(G) : \eta(v,e) = 1, f(e) > \lfloor |E(G)|/2 \rfloor \}|. \]

A graph \(G \) is said to be \textit{degree-magic} (\textit{balanced degree-magic}) (or only \textit{d-magic}) when a \(d \)-magic (balanced \(d \)-magic) labelling of \(G \) exists.

The concept of magic graphs was put forward by Sedláček [10]. Later, supermagic graphs were introduced by Stewart [11]. Besides, a new construction of supermagic complements of some graphs was recommended [9]. Moreover, the notion of degree-magic graphs was then suggested by Bezegová and Ivančo [1] as an extension of supermagic regular graphs. Recently, numerous papers are published on degree-magic and supermagic graphs, see [2, 3, 4, 5, 6, 7, 8] for more comprehensive references.

Let one recall the basic properties of \(d \)-magic graphs that will be used in the next.

Theorem 1.1. [1] \textit{Let} \(G \) \textit{be a regular graph. Then} \(G \) \textit{is supermagic if and only if it is} \(d \)-\textit{magic}.
Theorem 1.2. [1] Let H_1 and H_2 be edge-disjoint subgraphs of a graph G which form its decomposition. If H_1 is d-magic and H_2 is balanced d-magic, then G is a d-magic graph. Moreover, if H_1 and H_2 are both balanced d-magic, then G is a balanced d-magic graph.

2. Balanced Degree-Magic Graphs

An injective mapping f from $E(G)$ into the set of positive integers is called a single-consecutive labelling (SC-labelling) of a graph G if its index-mapping f^* satisfies

$$f^*(V(G)) = [a, a + |V(G)| - 1] \text{ for some integer } a.$$

Let $f_i, i \in \{1, 2\},$ be a SC-labelling of a graph G_i. The labellings f_1 and f_2 are called complementary if $f_1(E(G_1)) \cap f_2(E(G_2)) = \emptyset$ and $f_1(E(G_1)) \cup f_2(E(G_2)) = [1, m]$, where $m = |E(G_1)| + |E(G_2)|$. The complementary labellings f_1 and f_2 are called balanced if all pairs of vertices $u \in V(G_1), v \in V(G_2)$ satisfy

$$|\{e \in E(G_1) : \eta(u, e) = 1, f_1(e) \leq \lfloor m/2 \rfloor\}|$$

$$+ |\{e \in E(G_2) : \eta(v, e) = 1, f_2(e) \leq \lfloor m/2 \rfloor\}|$$

$$= |\{e \in E(G_1) : \eta(u, e) = 1, f_1(e) > \lfloor m/2 \rfloor\}|$$

$$+ |\{e \in E(G_2) : \eta(v, e) = 1, f_2(e) > \lfloor m/2 \rfloor\}|.$$

Now, one is able to prove the following Proposition.

Proposition 2.1. Let H_1 and H_2 be spanning subgraphs of a graph G which form its decomposition with vertices v_1, v_2, \ldots, v_n. Let f be a SC-labelling of H_1 such that $f^*(v_1) < f^*(v_2) < \cdots < f^*(v_n)$ and let g be a SC-labelling of H_2 such that $g^*(v_1) > g^*(v_2) > \cdots > g^*(v_n)$. If f and g are complementary, then G is a supermagic graph.

Proof. Since f is a SC-labelling of H_1 such that $f^*(v_i) = f^*(v_i) + (i - 1)$ and g is a SC-labelling of H_2 such that $g^*(v_i) = g^*(v_i) - (i - 1)$ for all $i \in [1, n], f^*(v_i) + g^*(v_i) = f^*(v_i) + g^*(v_i)$. Now, consider a mapping φ from $E(G)$ into the set of positive integers defined by

$$\varphi(v_iv_j) = \begin{cases}
 f(v_iv_j) & : v_iv_j \in E(H_1), \\
 g(v_iv_j) & : v_iv_j \in E(H_2).
\end{cases}$$
Obviously, $\varphi^*(v_i) = f^*(v_i) + g^*(v_i) = f^*(v_1) + g^*(v_1)$. Since $\varphi(E(G)) = f(E(H_1)) \cup g(E(H_2))$ and the labellings f and g are complementary, φ is a supermagic labelling of G. Therefore, G is a desired graph. □

If the graph G in Proposition 2.1 is regular, then G is d-magic by Theorem 1.1. For balanced d-magic graphs, one can show the following assertion.

Proposition 2.2. Let H_1 and H_2 be spanning subgraphs of a regular graph G which form its decomposition with vertices v_1, v_2, \ldots, v_n. Let f be a SC-labelling of H_1 such that $f^*(v_1) < f^*(v_2) < \cdots < f^*(v_n)$ and let g be a SC-labelling of H_2 such that $g^*(v_1) > g^*(v_2) > \cdots > g^*(v_n)$. If f and g are (balanced) complementary, then G is a (balanced) d-magic graph.

Proof. By using the same proof as Proposition 2.1, G is a supermagic graph. Because G is regular, G is d-magic by Theorem 1.1. Since f and g are balanced complementary, for each vertex $v_i, i \in [1, n]$, of G it holds

$$
|\{e \in E(G) : \eta(v_i, e) = 1, \varphi(e) \leq \lfloor |E(G)|/2 \rfloor \}| = |\{e \in E(H_1) : \eta(v_i, e) = 1, f(e) \leq \lfloor |E(G)|/2 \rfloor \}| + |\{e \in E(H_2) : \eta(v_i, e) = 1, g(e) \leq \lfloor |E(G)|/2 \rfloor \}|$$

$$= |\{e \in E(H_1) : \eta(v_i, e) = 1, f(e) > \lfloor |E(G)|/2 \rfloor \}| + |\{e \in E(H_2) : \eta(v_i, e) = 1, g(e) > \lfloor |E(G)|/2 \rfloor \}| = |\{e \in E(G) : \eta(v_i, e) = 1, \varphi(e) > \lfloor |E(G)|/2 \rfloor \}|.
$$

Thus, φ is a balanced d-magic labelling of G. That is, G is an expected graph. □

The above two Propositions describe methods to construct supermagic graphs and d-magic graphs by using SC-labellings respectively. In order to use Proposition 2.2, one needs reasonable SC-labellings of some graphs.

Lemma 2.3. Let G be a cycle graph of order 4 with vertices v_1, v_2, v_3, v_4 and let k, h be positive integers. Then there are a SC-labelling f of G such that $f(E(G)) = \{k, k+1, k+4, k+6\}$ and $f^*(v_1) < f^*(v_2) < f^*(v_3) < f^*(v_4)$ and a SC-labelling g of G such that $g(E(G)) = \{h, h+1, h+3, h+5\}$ and $g^*(v_1) > g^*(v_2) > g^*(v_3) > g^*(v_4)$. Moreover, if $k = 1$ and $h = 3$, then the SC-labellings f and g are balanced complementary.
Proof. Consider a mapping f from $E(G)$ into the set of positive integers given by

$$f(e) = \begin{cases}
 k & : e = v_1v_3, \\
 k+6 & : e = v_3v_4, \\
 k+1 & : e = v_4v_2, \\
 k+4 & : e = v_2v_1.
\end{cases}$$

It is easy to see that $f(E(G)) = \{k, k+1, k+4, k+6\}$ and $f^*(v_1) < f^*(v_2) < f^*(v_3) < f^*(v_4)$. Hence, f is a desired SC-labelling of G. Moreover, consider a mapping g from $E(G)$ into the set of positive integers defined by

$$g(e) = \begin{cases}
 h+1 & : e = v_1v_3, \\
 h+3 & : e = v_3v_4, \\
 h & : e = v_4v_2, \\
 h+5 & : e = v_2v_1.
\end{cases}$$

One can see that $g(E(G)) = \{h, h+1, h+3, h+5\}$ and $g^*(v_1) > g^*(v_2) > g^*(v_3) > g^*(v_4)$. Thus, g is a required SC-labelling of G. Now, consider the case $k = 1$ and $h = 3$, one then has

$$f(e) = \begin{cases}
 1 & : e = v_1v_3, \\
 7 & : e = v_3v_4, \\
 2 & : e = v_4v_2, \\
 5 & : e = v_2v_1,
\end{cases}$$

and

$$g(e) = \begin{cases}
 4 & : e = v_1v_3, \\
 6 & : e = v_3v_4, \\
 3 & : e = v_4v_2, \\
 8 & : e = v_2v_1.
\end{cases}$$

Clearly, f and g are balanced complementary labellings. \qed

Lemma 2.4. Let G be a cycle graph of odd order $n \geq 3$ with vertices $v_1, v_2, ..., v_n$ and let k, h be positive integers. Then there exist a SC-labelling f of G such that $f(E(G)) = [k, k+n-1]$ and
$f^*(v_1) < f^*(v_2) < \cdots < f^*(v_n)$ and a SC-labelling g of G such that $g(E(G)) = [h, h + n - 1]$ and $g^*(v_1) > g^*(v_2) > \cdots > g^*(v_n)$. Moreover, if $k = 1$ and $h = n + 1$, then the SC-labellings f and g are balanced complementary.

Proof. Consider a mapping f from $E(G)$ into the set of positive integers given by

$$f(e) = \begin{cases}
 k + (n-1)/2 : e = v_n v_1, \\
 k : e = v_1 v_2, \\
 k + (n-1)/2 + 1 : e = v_2 v_3, \\
 k + 1 : e = v_3 v_4, \\
 k + (n-1)/2 + 2 : e = v_4 v_5, \\
 k + 2 : e = v_5 v_6, \\
 \vdots \\
 k + (n-1)/2 - 1 : e = v_{n-2} v_{n-1}, \\
 k + n - 1 : e = v_{n-1} v_n.
\end{cases}$$

One is able to check that $f(E(G)) = [k, k + n - 1]$ and $f^*(v_1) < f^*(v_2) < \cdots < f^*(v_n)$. Thus, f is a desired SC-labelling of G. Besides, consider a mapping g from $E(G)$ into the set of positive integers defined by

$$g(e) = \begin{cases}
 h + (n-1)/2 : e = v_1 v_n, \\
 h : e = v_n v_{n-1}, \\
 h + (n-1)/2 + 1 : e = v_{n-1} v_{n-2}, \\
 h + 1 : e = v_{n-2} v_{n-3}, \\
 h + (n-1)/2 + 2 : e = v_{n-3} v_{n-4}, \\
 h + 2 : e = v_{n-4} v_{n-5}, \\
 \vdots \\
 h + (n-1)/2 - 1 : e = v_3 v_2, \\
 h + n - 1 : e = v_2 v_1.
\end{cases}$$

One can get that $g(E(G)) = [h, h + n - 1]$ and $g^*(v_1) > g^*(v_2) > \cdots > g^*(v_n)$. Hence, g is a required SC-labelling of G. Now, consider the case $k = 1$ and $h = n + 1$, one then gets
A CONSTRUCTION OF BALANCED DEGREE-MAGIC GRAPHS

\[
f(e) = \begin{cases}
1 + (n-1)/2 : e = v_n v_1, \\
1 : e = v_1 v_2, \\
2 + (n-1)/2 : e = v_2 v_3, \\
2 : e = v_3 v_4, \\
3 + (n-1)/2 : e = v_4 v_5, \\
3 : e = v_5 v_6, \\
\vdots \\
(n-1)/2 : e = v_{n-2} v_{n-1}, \\
n : e = v_{n-1} v_n,
\end{cases}
\]

and

\[
g(e) = \begin{cases}
n + 1 + (n-1)/2 : e = v_1 v_n, \\
n + 1 : e = v_n v_{n-1}, \\
n + 2 + (n-1)/2 : e = v_{n-1} v_{n-2}, \\
n + 2 : e = v_{n-2} v_{n-3}, \\
n + 3 + (n-1)/2 : e = v_{n-3} v_{n-4}, \\
n + 3 : e = v_{n-4} v_{n-5}, \\
\vdots \\
n + (n-1)/2 : e = v_3 v_2, \\
2n : e = v_2 v_1.
\end{cases}
\]

Evidently, \(f \) and \(g \) are balanced complementary labellings. \(\square \)

In the next results, one is able to prove some sufficient conditions for balanced \(d \)-magic graphs.

Theorem 2.5. Let \(G \) be a graph which can be decomposable into two spanning cycle subgraphs of order 4. Then \(G \) is a balanced \(d \)-magic graph.

Proof. Suppose that two spanning cycle subgraphs of \(G \) have vertices \(v_1, v_2, v_3, v_4 \). Thus, by Lemma 2.3, there are two balanced complementary SC-labellings \(f, g \) of these cycles such that \(f^*(v_1) < f^*(v_2) < f^*(v_3) < f^*(v_4) \) and \(g^*(v_1) > g^*(v_2) > g^*(v_3) > g^*(v_4) \). Since these two
cycles are regular and form its decomposition, G is a regular graph. Therefore, according to Proposition 2.2, G is a balanced d-magic graph.

Combining Theorem 1.2 and Theorem 2.5, one immediately has

Corollary 2.6. For any positive integer k, if a graph G can be decomposable into $2k$ spanning cycle subgraphs of order 4, then G is a balanced d-magic graph.

Joining Theorem 1.1 and Corollary 2.6, one absolutely has

Corollary 2.7. For any positive integer k, if a graph G can be decomposable into $2k$ spanning cycle subgraphs of order 4, then G is a supermagic graph.

Theorem 2.8. Let G be a graph which can be decomposable into two spanning cycle subgraphs of odd order $n \geq 3$. Then G is a balanced d-magic graph.

Proof. Assume that two spanning cycle subgraphs of G of odd order $n \geq 3$ have vertices v_1, v_2, \ldots, v_n. Hence by Lemma 2.4, there are two balanced complementary SC-labellings f, g of these cycles such that $f^*(v_1) < f^*(v_2) < \cdots < f^*(v_n)$ and $g^*(v_1) > g^*(v_2) > \cdots > g^*(v_n)$. It is clear that these two cycles are regular and they form its decomposition, so G is a regular graph. Therefore, according to Proposition 2.2, G is a balanced d-magic graph.

Combining Theorem 1.2 and Theorem 2.8, one suddenly has

Corollary 2.9. For any positive integer k, if a graph G can be decomposable into $2k$ spanning cycle subgraphs of odd order $n \geq 3$, then G is a balanced d-magic graph.

Joining Theorem 1.1 and Corollary 2.9, one certainly has

Corollary 2.10. For any positive integer k, if a graph G can be decomposable into $2k$ spanning cycle subgraphs of odd order $n \geq 3$, then G is a supermagic graph.

Notice that there exist SC-labellings f and g of a cycle graph of order 8 with vertices v_1, v_2, \ldots, v_8 such that $f(E(G)) = [k, k+3] \cup \{k+8, k+9, k+11, k+12\}$ and $g(E(G)) = [h, h+3] \cup \{h+6, h+9, h+10, h+11\}$ for any positive integers h, k. Moreover, if $k = 1$ and
If $h = 5$, then the SC-labellings f and g are balanced complementary. These SC-labellings f and g are shown as follows.

$$f(e) = \begin{cases}
 k &: e = v_1v_4, \\
 k+11 &: e = v_4v_6, \\
 k+2 &: e = v_6v_7, \\
 k+12 &: e = v_7v_8, \\
 k+3 &: e = v_8v_5, \\
 k+9 &: e = v_5v_3, \\
 k+1 &: e = v_3v_2, \\
 k+8 &: e = v_2v_1,
\end{cases}$$

and

$$g(e) = \begin{cases}
 h+11 &: e = v_1v_4, \\
 h &: e = v_4v_6, \\
 h+9 &: e = v_6v_7, \\
 h+1 &: e = v_7v_8, \\
 h+6 &: e = v_8v_5, \\
 h+2 &: e = v_5v_3, \\
 h+10 &: e = v_3v_2, \\
 h+3 &: e = v_2v_1.
\end{cases}$$

One can prove that $f^*(v_1) < f^*(v_2) < \cdots < f^*(v_8)$ while $g^*(v_1) > g^*(v_2) > g^*(v_3) > g^*(v_4) > g^*(v_7) > g^*(v_6) > g^*(v_5) > g^*(v_8)$. Furthermore, consider the case $k = 1$ and $h = 5$, one then obtains
\[f(e) = \begin{cases}
1 : e = v_1v_4, \\
12 : e = v_4v_6, \\
3 : e = v_6v_7, \\
13 : e = v_7v_8, \\
4 : e = v_8v_5, \\
10 : e = v_5v_3, \\
2 : e = v_3v_2, \\
9 : e = v_2v_1,
\end{cases} \]

and

\[g(e) = \begin{cases}
16 : e = v_1v_4, \\
5 : e = v_4v_6, \\
14 : e = v_6v_7, \\
6 : e = v_7v_8, \\
11 : e = v_8v_5, \\
7 : e = v_5v_3, \\
15 : e = v_3v_2, \\
8 : e = v_2v_1,
\end{cases} \]

Obviously, \(f \) and \(g \) are balanced complementary labellings. However, by the method of Proposition 2.2, one cannot construct a balanced \(d \)-magic graph by using two balanced complementary labellings of a cycle subgraph of order 8 upwardly because the condition does not hold.

For the last result, two balanced complementary of SC-labellings of some cycle graphs and their associated balanced \(d \)-magic graphs are presented as follows.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Two balanced complementary SC-labellings of a cycle graph \(C_3 \).}
\end{figure}
Figure 2. A balanced d-magic graph constructed by two spanning cycle subgraphs C_3.

Figure 3. Two balanced complementary SC-labellings of a cycle graph C_4.

Figure 4. A balanced d-magic graph constructed by two spanning cycle subgraphs C_4.

Figure 5. Two balanced complementary SC-labellings of a cycle graph C_5.
Figure 6. A balanced d-magic graph constructed by two spanning cycle subgraphs C_5.

Figure 7. Two balanced complementary SC-labellings of a cycle graph C_7.

Figure 8. A balanced d-magic graph constructed by two spanning cycle subgraphs C_7.
ACKNOWLEDGEMENTS

The author would like to thank the academic referee for the careful reading and helpful comments for improving this paper.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES