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Abstract. In this paper, for n≥ 1, we initiate the notion of Hankel operators on the polydisk Dn and slant Hankel

operators on L2(Tn) where Tn denotes the n-torus. We give the necessary and sufficient condition for a bounded

operator on L2(Tn) to be a slant Hankel operator and study some algebraic properties of slant Hankel operators.

Also, we extend our study on the Bergman space.
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1. INTRODUCTION

Let D be the open unit disk and T denotes the unit circle in the complex plane C. For n≥ 1,

let Dn and Tn be respectively the polydisk in Cn and n-torus having a distinct boundary of Dn.

Let ε j = (y1, . . . ,yn) where yi = δi j, j = 1,2, . . . ,n. Throughout this paper, z denotes the vector

z = (z1,z2, . . . ,zn) ∈ Cn, r = (r1,r2, . . . ,rn) ∈ Zn, zr = zr1
1 · · · zrn

n and |r| = r1 + · · ·+ rn. For

m = (m1,m2, . . . ,mn) ∈ Zn, m is even if each mi is even for i = 1,2,3, . . . ,n. Otherwise, m is

said to be odd. Also, for z ∈ Zn, z = z1z2 · · ·zn = z−1
1 z−1

2 · · ·z−1
n = z−1. Let dσ be the Haar
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measure on Tn. The space L2(Tn) is given by

L2(Tn) =

{
g : Tn 7→ C | g(z) = ∑

r∈Zn
fr zr, ∑

r∈Zn
| fr |2 < ∞

}
.

The inner product for any two functions f , g in L2(Tn) is given by 〈g, h〉=
∫
Tn

g(z)h(z)dσ(z). If

em(z) = zm for m ∈ Zn, then {em}m∈Zn is an orthonormal basis for L2(Tn) and R = {em}m∈Zn
+

is an orthonormal basis for H2(Dn). The Hardy space H2(Dn) consists of all the analytic func-

tions g ∈Dn such that sup
0<a<1

∫
Tn
|g(az)|2dσ(z)< ∞. Let R[m j,...,mn] = {e(m1,...,mn) : mi ∈ Z+,1≤

i < j} for j ∈ [2,n] ∩ Z+ and arbitrarily fixed m j,m j+1, . . . ,mn ∈ Z+. So, R[m j,...,mn] is an or-

thonormal basis for H2(D j−1). For 1 < i ≤ j and mi ∈ Z+ with j ≤ i ≤ n, G j−1,(m j,...,mn) is

used to denote the space H2(D j−1) to convey that the basis being considering is R[m j,...,mn]. Any

function g ∈H2(Dn), the radial limit lim
a→1−

g(az) exists for almost every z ∈ Tn [12]. The notion

of Toeplitz operators was initiated by Toeplitz [16] in the year 1911. Ho [5, 6] defined the slant

Toeplitz operators on L2(T) as those operators whose matrix representation for an orthonormal

basis can be obtained by eliminating every other row of a doubly infinite Toeplitz matrix. Han-

kel operators are the formal companions of Toeplitz operators that have occurred in realization

problems for certain discrete-time linear systems and in determining which systems are exactly

controllable [11]. The study of Hankel and slant Hankel operators has various applications

in Hamburger’s moment problem, rational approximation theory, interpolation problems, and

stationary process. In 2006, Arora et al. [1] developed the notion of slant Hankel Operators

which is motivated by the matricial definition of slant Toeplitz operators on L2(T) as given by

Ho [5, 6]. Recently, Hazarika and Marik [4] initiated the idea of Toeplitz and slant Toeplitz

operators in the polydisk and discussed several properties. For relevant results on Hankel, slant

Hankel operators, Toeplitz, slant Toeplitz operators, and the concept of polydisk we refer the

readers to [2, 3, 7, 10, 12, 13, 14, 18].

Motivated by the works of Ho [5, 6] we introduce Hankel operators of level n on H2(Dn) and

slant Hankel operators of level n on L2(Tn) for n ≥ 1. We show in this paper that a bounded

linear operator S on L2(Tn) is a slant Hankel operator of level n iff S can be expressed as

slant Hankel matrix of level n and discuss the properties of V and V ∗. In the later part, we give

the notion of slant Hankel operators of level n on the Bergman space of the polydisk.
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Definition 1.1. [4] For φ ∈ L∞(Tn), the Laurent operator Mφ is defined as Mφ f = φ f ∀ f ∈

L2(Tn).

Remark 1.2. [4]

(i) For φ ∈ L∞(Tn), M∗
φ
= M

φ
.

(ii) If φ(z) = zi for 16 i6 n, i ∈ Z, then Mφ f = zi f ∀ f ∈ L2(Tn).

(iii) M∗zi
= Mzi and M∗zi

em = em−ε j ∀ m ∈ Zn and i = 1,2,3, . . . ,n.

(iv) Mziem = em+ε j for 1≤ i≤ n and m ∈ Zn.

(v) Mzi M∗zi
= I = M∗zi

Mzi ∀ 1≤ i≤ n.

Definition 1.3. Flip operator : We define the flip operator J : L2(Tn)→ L2(Tn) as an operator

(J f )em(z) = (J f )(zm) = f (z−m). It is very easy to show that a flip operator is a self-adjoint

operator.

2. HANKEL OPERATOR OF LEVEL n

Let φ be a linear operator on L∞(Tn) and P be the projection from L2(Tn) onto H2(Dn). The

Hankel operator of level n, Hφ on H2(Dn) is defined as Hφ =PJMφ where J is the flip operator

on L2(Tn).

2.1. Hankel Matrix of level n. Let {um}m∈Zn
+

be a sequence of scalars. A matrix of the form

H
(1)

m2,...,mn =



. . . ...
...

...
...

. . . u(0,m2,...,mn) u(−1,m2,...,mn) u(−2,m2,...,mn) . . .

. . . u(−1,m2,...,mn) u(−2,m2,...,mn) u(−3,m2,...,mn) . . .

. . . u(−2,m2,...,mn) u(−3,m2,...,mn) u(−4,m2,...,mn) . . .
...

...
...

... . . .


is called Hankel matrix of level 1. A block matrix of the form

H
(2)

m3,...,mn =



. . . ...
...

...
...

. . . H
(1)

0,m3,...,mn
H

(1)
−1,m3,...,mn

H
(1)
−2,m3,...,mn

. . .

. . . H
(1)
−1,m3,...,mn

H
(1)
−2,m3,...,mn

H
(1)
−3,m3,...,mn

. . .

. . . H
(1)
−2,m3,...,mn

H
(1)
−3,m3,...,mn

H
(1)
−4,m3,...,mn

. . .
...

...
...

... . . .
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is called Hankel matrix of level 2. While proceeding in this manner, a block matrix

H (n) =



. . . ...
...

...
...

. . . H
(n−1)

0 H
(n−1)
−1 H

(n−1)
−2 . . .

. . . H
(n−1)
−1 H

(n−1)
−2 H

(n−1)
−3 . . .

. . . H
(n−1)
−2 H

(n−1)
−3 H

(n−1)
−4 . . .

...
...

...
... . . .


is called Hankel matrix of level n.

Theorem 2.1. If τ is a bounded linear operator on H2(Dn), then τ is a Hankel matrix of level

n iff
〈
τ em−ε j ,em′+ε j

〉
=
〈
τ em,em′

〉
∀ m, m′ ∈ Zn

+ and 1≤ j ≤ n.

Proof. Suppose
〈
τ em−ε j ,em′+ε j

〉
=
〈
τ em,em′

〉
∀ m, m′ ∈ Zn

+ and 1≤ j ≤ n.

Let {uη ,ζ}η ,ζ ∈ Zn
+

be scalars such that τeζ = ∑
η∈Zn

+

uη ,ζ eη ∀ ζ ∈ Zn
+ and m =

(m1,m2, . . . ,mn) and m′= (m′1,m
′
2, . . . ,m

′
n)∈Zn

+. Fixing (m2, . . . ,mn), (m′2, . . . ,m
′
n) and varying

m1, m′1

〈
τ em−ε1(z),em′+ε1(z)

〉
=

〈
τ em(z),em′(z)

〉
⇒
〈

∑
η∈Zn

+

uη ,m−ε1 eη(z),em′+ε1(z)
〉
=

〈
∑

η∈Zn
+

uη ,m eη(z),em′(z)
〉

⇒ ∑
η∈Zn

+

uη ,m−ε1

〈
eη(z),em′+ε1(z)

〉
= ∑

η∈Zn
+

uη ,m
〈
eη(z),em′(z)

〉
⇒ um′+ε1,m−ε1 = um′,m ∀m,m′ ∈ Z+.

This implies that τ : G1,[m2,...,mn] 7→ G1,[m′2,...,m
′
n]

can be expressed as Hankel matrix of level 1,

H
(1)
(m′2,...,m

′
n)(m2,...,mn)

. Again, if we vary m2, m′2 and fixing (m3, . . . ,mn), (m′3, . . . ,m
′
n) then

〈
τ em−ε2,em′+ε2

〉
=
〈

τ em,e′m
〉

⇒H
(1)
(m′2+1,m′3,...,m

′
n)(m2−1,m3,...,mn)

= H
(1)
(m′2,...,m

′
n)(m2,...,mn)

.
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So, τ : G2,[m3,...,mn] 7→ G2,[m′3,...,m
′
n]

can be expressed as Hankel matrix of level 2,

H
(2)
(m′3,...,m

′
n)(m3,...,mn)

. Further, if we vary m3, m′3 and fixing (m4, . . . ,mn), (m′4, . . . ,m
′
n) then

〈
τ em−ε3 ,em′+ε3

〉
=
〈

τ em,em′
〉

⇒H
(2)
(m3+1,m4,...,mn)(m′3−1,m′4,...,m

′
n)
= H

(2)
(m′3,...,m

′
n)(m3,...,mn)

.

Hence, τ : G3,[m4,...,mn] 7→ G3,[m′4,...,m
′
n]

can be expressed as Hankel matrix of level 3,

H
(3)
(m′4,...,m

′
n)(m4,...,mn)

. If we continue in this manner, we can conclude that τ : L2(Tn) 7→ H2(Dn)

can be expressed as Hankel matrix of level n after n steps. For converse part, suppose

τ can be expressed as Hankel matrix of level n. So, for arbitrary m = (m1, . . . ,mn) and

m′ = (m′1, . . . ,m
′
n), τ : G j−1,[m j,...,mn] 7→ G j,[m′j,...,m

′
n]

can be represented as a Hankel matrix of

level ( j−1), H
( j−1)
(m′j,...,m

′
n)(m j,...,mn)

for j = 1,2, . . . ,n−1. Now,

〈
τ em−ε j ,em′+ε j

〉
=

〈
∑

η∈Zn
+

uη ,m−ε j eη(z),em′+ε j(z)
〉

= ∑
η∈Zn

+

uη ,m−ε j

〈
eη(z),em′+ε j(z)

〉
= um′+ε j,m−ε j [∵ eη(z)

′s are orthonormal basis]

= um′,m ∀ j = 1,2, . . . ,n−1.

=
〈

τ em,em′
〉
.

Finally, we have to show
〈

τ em−εn,em′+εn

〉
=
〈

τ em,em′
〉

. Let’s consider the n− 1 disk

H2(Dn−1). H2(Dn−1) is an isomorphic copy of Gn−1,(mn) for each mn ∈ Z+ and hence the n

disk H2(Dn) can be decomposed as H2(Dn) = ⊕mn∈Z Gn−1,(mn). So, τ : L2(Tn) 7→ H2(Dn)

can be represented as a Hankel matrix where the (m′n,mn)
th entry is H

(n−1)
m′n,mn

and also we have

H
(n−1)

m′n+1,mn−1 = H
(n−1)

m′n,mn
. Hence,

〈
τ em−εn,em′+εn

〉
=
〈
τ em,em′

〉
. �

Theorem 2.2. An operator τ on H2(Dn) is a Hankel operator of level n if it can be expressed

as a Hankel matrix of level n.
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Proof. Let τ = Hφ = PJMφ , φ ∈ L∞(Tn). Now, for m,m′ ∈ Zn
+ and 1 ≤ j ≤ n. We have,

〈
τ em−ε j ,em′+ε j

〉
=
〈

τ em−ε j(z),em′+ε j(z)
〉

=
〈

PJMφ em−ε j(z) ,em′+ε j(z)
〉

=
〈

φ(z)em−ε j(z),J em′+ε j(z)
〉

=
〈

∑
k∈Zn

ukzk zm−ε j , z−m′−ε j
〉

= ∑
k∈Zn

uk

〈
zk+m−ε j , z−m′−ε j

〉
= ∑

k∈Zn
uk

∫
Tn

zk+m−ε j zm′+ε jdσ(z)

= ∑
k∈Zn

uk

∫
Tn

zk+m+m′dσ(z).(2.1)

Also,

〈
τ em(z),em′(z)

〉
=
〈

PJMφ em(z) ,em′(z)
〉

=
〈

φ(z)em(z), J em′(z)
〉

=
〈

∑
k∈Zn

ukzk zm , z−m′
〉

= ∑
k∈Zn

uk

〈
zk+m , z−m′

〉
= ∑

k∈Zn
uk

∫
Tn

zk+m+m′dσ(z).(2.2)

Hence, from (2.1) and (2.2)
〈

τ em−ε j ,em′+ε j

〉
=
〈

τ em(z),em′(z)
〉
.

The proof then follows from Theorem 2.1. �

Theorem 2.3. For every φ in L∞(Tn), H ∗
φ
= Hφ∗ .
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Proof. Let f and g be any two functions in H2(Dn). Then,

〈
H ∗

φ f ,g
〉
=
〈

f ,Hφ g
〉
=
〈

f ,PJMφ g
〉
=
〈

f ,Hφ g
〉
=
〈
M∗φ J f ,g

〉
=
〈
M

φ
J f ,g

〉
=
〈
JMφ∗ f ,g

〉 (
∵ M

φ
J = JMφ∗

)
=
〈
PJMφ∗ f ,g

〉
=
〈
Hφ∗ f ,g

〉
∀ f ∈ H2(Dn).

Hence, H ∗
φ
= Hφ∗ �

3. SLANT HANKEL OPERATOR OF LEVEL n

Let {um}m∈Zn be a sequence of scalars. A matrix of the expression

S
(1)

m2,...,mn =



. . . ...
...

...
...

. . . u(0,m2,...,mn) u(−1,m2,...,mn) u(−2,m2,...,mn) . . .

. . . u(−2,m2,...,mn) u(−3,m2,...,mn) u(−4,m2,...,mn) . . .

. . . u(−4,m2,...,mn) u(−5,m2,...,mn) u(−6,m2,...,mn) . . .
...

...
...

... . . .


is called a slant Hankel matrix of level 1. A block matrix of the form

S
(2)

m3,...,mn =



. . . ...
...

...
...

. . . S
(1)

0,m3,...,mn
S

(1)
−1,m3,...,mn

S
(1)
−2,m3,...,mn

. . .

. . . S
(1)
−2,m3,...,mn

S
(1)
−3,m3,...,mn

S
(1)
−4,m3,...,mn

. . .

. . . S
(1)
−4,m3,...,mn

S
(1)
−5,m3,...,mn

S
(1)
−6,m3,...,mn

. . .
...

...
...

... . . .


is called a slant Hankel matrix of level 2. Continuing in this way, we get the slant Hankel matrix

of level n as

S (n) =



. . . ...
...

...
...

. . . S
(n−1)

0 S
(n−1)
−1 S

(n−1)
−2 . . .

. . . S
(n−1)
−2 S

(n−1)
−3 S

(n−1)
−4 . . .

. . . S
(n−1)
−4 S

(n−1)
−5 S

(n−1)
−6 . . .

...
...

...
... . . .


.
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Theorem 3.1. A bounded linear operator S on L2(Tn) is a slant Hankel matrix of level n iff〈
S em−2ε j ,em′+ε j

〉
=
〈
S em,em′

〉
∀ m, m′ ∈ Zn.

Proof. The proof is trivial and it follows directly from Theorem 2.1.

�

Theorem 3.2. A bounded linear operator S on L2(Tn) is slant Hankel operator of level n iff

Mz jS = S Mz−2
j
∀ j = 1,2, . . . ,n.

Proof. We have,

Mz jS = S Mz−2
j
∀ j = 1,2, . . . ,n

⇔
〈
Mz jS em,em′

〉
=
〈
S Mz−2

j
em,em′

〉
∀ m,m′ ∈ Zn

⇔
〈
S em,M∗z j

em′
〉
=
〈
S Mz−2

j
em,em′

〉
∀ m,m′ ∈ Zn

⇔
〈
S em,em′−ε j

〉
=
〈
S em−2ε j ,em′

〉
∀ m,m′ ∈ Zn

⇔
〈
S em,em′

〉
=
〈
S em−2ε j ,em′+ε j

〉
∀ m,m′ ∈ Zn.

The proof now follows from Theorem 3.1. �

Definition 3.3. Let V be a linear operator defined on L2(Tn), then for m ∈ Zn

V em =


e−m

2
if m is even;

0 otherwise.

Let h(z) = ∑
k∈Zn

ukzk ∈ L2(Tn), then V h(z) = ∑
k∈Zn

u2kz−k. Further, the adjoint of V is given

by V ∗ em = e−2m for each m ∈ Zn . Therefore, V ∗ h(z) = ∑
k∈Zn

ukz−2k = f (z−2) for h(z) =

∑
k∈Zn

ukzk ∈ L2(Tn). For j ∈ Zn, let Pe be the projection on the closed span of
{

e2m : m ∈ Zn} in

L2(Tn). Then,

Pe ej =


e j if j is even;

0 otherwise.
(3.1)
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Also, for m,m′ ∈ Zn,

〈
V em,em′

〉
=


1 if 2m′ =−m;

0 otherwise.
(3.2)

Hence, ‖V ‖= 1.

Definition 3.4. A slant Hankel operator of level n is defined as Sφ = V Mφ where φ ∈ L∞(Tn).

Theorem 3.5. ‖Sφ‖ ≤ ‖φ‖∞ for φ ∈ L∞(Tn).

Theorem 3.6. A slant Hankel operator of level n, Sφ on L∞(Tn) has the property〈
Sφ em−2ε j ,em′+ε j

〉
=
〈
Sφ em,em′

〉
∀ m,m′ ∈ Zn,1≤ j ≤ n.

Proof. We have,

LHS =

〈
Sφ em−2ε j(z),em′+ε j(z)

〉
=

〈
V Mφ em−2ε j(z),em′+ε j(z)

〉
=

〈
φ(z)zm−2ε j ,V ∗(zm′+ε j)

〉
=

〈
∑

k∈Zn
ukzkzm−2ε j ,z−2m′−2ε j

〉
= ∑

k∈Zn
uk

〈
zk+m−2ε j ,z−2m′−2ε j

〉
= ∑

k∈Zn
uk

∫
Tn

zk+m+2m′dσ(z)

= ∑
k∈Zn

uk

〈
zk+m,z−2m′

〉
=

〈
φ(z)zm,V ∗(zm′)

〉
=

〈
V Mφ em(z),em′(z)

〉
=

〈
Sφ em(z),em′(z)

〉
= RHS.(3.3)

Hence, the theorem is proved. �
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Theorem 3.7. A bounded linear operator S on L2(Tn) is a slant Hankel operator of level n iff

S can be represented as a slant Hankel matrix of level n.

Proof. Let S be a slant Hankel operator of level n on L2(Tn). Then, by Definition 3.4, S =Sφ

for some φ ∈ L∞(Tn). If (βm,m′)m,m′∈ Zn is the matrix representation of Sφ with respect to the

given orthonormal basis, then by Theorem 3.6〈
Sφ em−2ε j ,em′+ε j

〉
=
〈
Sφ em,em′

〉
∀ m,m′ ∈ Zn,1≤ j ≤ n.

Therefore, (βm,m′)m,m′∈Zn is a slant Hankel matrix of level n.

Conversely, let the matrix (βm,m′)m,m′∈ Zn of S be a slant Hankel matrix of level n.Then,〈
S em,em′

〉
= (βm,m′)

= (βm′+ε j,m−2ε j)

=
〈
S em−2ε j ,em′+ε j

〉
.(3.4)

Now, 〈
Mz jS em,em′

〉
=
〈
S em,Mz jem′

〉
=
〈
S em,em′−ε j

〉
=
〈
S em−2ε j ,em′

〉
=
〈
S Mz−2

j
em,em′

〉
(3.5)

⇒Mz jS em = S Mz−2
j

em ∀ m ∈ Zn

⇒Mz jS = S Mz−2
j
.(3.6)

Hence, by Theorem 3.2 S is a slant Hankel operator. �

4. PROPERTIES OF V AND V ∗

Lemma 4.1. [4] Let S = {(l1, . . . , ln) ∈ Zn : each li is either 0 or 1}. Then for m ∈ Zn, m odd,

there exists unique p ∈ Zn and l 6= 0 ∈ S such that m = 2p+ l.

Lemma 4.2. [4] For m, l ∈ S with m 6= 0, l 6= 0, we have m+ l is even iff m = l.
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Theorem 4.3. For all m ∈ Zn, V Mz−2m V ∗ = Mzm and V Mz−l V ∗ = 0 if l ∈ Zn is odd.

Theorem 4.4. Let ξ ,ζ ∈ L2(Tn) such that ξ ζ ∈ L2(Tn). Then,

(a) V ∗(ξ ζ ) = V ∗(ξ )V ∗(ζ ).

(b) V (ξ ζ ) = V (ξ )V (ζ ).

(c) V [V ∗(ξ )V ∗(ζ )] = ξ ζ .

Lemma 4.5. Let ξ (z) = ∑
m ∈ Zn

umz−m, ξ ∈ L2(Tn). If ξl(z) = ∑
m ∈ Zn

u2m+l z−m for l ∈ S, then

ξ (z) = ∑
l ∈ S

z−l
ξl(z2). Also, ξ0(z2) = Peξ (z) and ξo(z) = V ξ (z).

Proof. Let ξ (z) = ∑
m ∈ Zn

umz−m. If ζ (z) = ∑
m ∈ Zn

m is even

umz−m and η(z) = ∑
m ∈ Zn

m is odd

umz−m.

Then, ξ (z) = ζ (z)+η(z). For l ∈ S, we define ξl(z) = ∑
m ∈ Zn

u2m+l z−m.

As ξ ∈ L2(Tn), so ξl ∈ L2(Tn) ∀ l ∈ S. We have,

ζ (z) = ∑
m ∈ Zn

m is even

um z−m = ∑
m ∈ Zn

u2m z−2m = ξ0(z2).

η(z) = ∑
m ∈ Zn

m is odd

umz−m = ∑
0 6= l ∈S

∑
m ∈ Zn

u2m+lz−(2m+l)

= ∑
0 6= l ∈S

z−l
∑

m ∈ Zn
u2m+l(z2)−m

= ∑
0 6= l ∈S

z−l
ξl(z2).

Thus, ξ (z) = ξ0(z2)+ ∑
0 6= l ∈S

z−l
ξl(z2) = ∑

l ∈ S
z−l

ξl(z2). Now, by Definition 3.3

V ζ (z) = V ∑
m ∈ Zn

m is even

umz−m = ∑
m ∈ Zn

u2mzm = ξ0(z), V η(z) = 0

⇒ ξo(z) = V ξ (z) and

Pe ζ (z) = ζ (z) by (3.1). Also, Pe η(z) = 0.

Therefore, Pe ξ (z) = Pe ζ (z) = ξ0(z2).

�
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Theorem 4.6. If one of ζ and η is in L∞(Tn) for ζ ,η ∈ L2(Tn), then V (ζ ,η) = (V ζ )(V η)+

∑
l ∈ S
l 6= 0

zl(V zl
ζ )(V zl

η).

Proof. We have, ζ (z) = ζ0(z2)+ ∑
0 6= l ∈S

z−l
ζl(z2) [by Lemma 4.5] and

η(z) = η0(z2)+ ∑
0 6=m ∈S

z−m
ηm(z2) [by Lemma 4.5]

where ζ0(z2) = Peζ (z) and η0(z2) = Pe η(z). So,

ζ η = ζ0(z2)η0(z2)+ζ0(z2) ∑
0 6=m ∈S

z−m
ηm(z2)+η0(z2) ∑

0 6= l ∈S
z−l

ζl(z2)

+ ∑
0 6= l ∈S

z−l
ζl(z2) ∑

0 6=m ∈S
z−m

ηm(z2).(4.1)

Now,

V

[{
ζ0(z2)

} {
η0(z2)

}]
= V

[{
V ∗ζ0(z)

} {
V ∗η0(z)

}]
[by Definition 3.3]

= ζ0(z) η0(z) [by Theorem 4.4(b)]

=
{
V ζ (z)

} {
V η(z)

}
[by Lemma 4.5].(4.2)

Since, ζ0(z2) ∑
0 6=m ∈S

z−m
ηm(z2) and η0(z2) ∑

0 6= l ∈S
z−l

ζl(z2) are the expressions which involves

only the powers of z that are odd. Therefore, by Definition 3.3

V

[
ζ0(z2) ∑

0 6=m ∈S
z−m

ηm(z2)

]
= 0 and V

[
η0(z2) ∑

0 6= l ∈S
z−l

ζl(z2)

]
= 0.(4.3)

Also,

∑
0 6= l ∈S

z−l
ζl(z2) ∑

0 6=m ∈S
z−m

ηm(z2) = ∑
0 6= l ∈S

∑
0 6=m ∈S

z−(l+m)
ζl(z2)ηm(z2).

If l+m is odd then the above expression is 0. But by Lemma 4.2, l+m is even iff l = m. Thus,

if l +m is even then so is −(l +m).
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Therefore,

V

[{
∑

0 6= l ∈S
z−l

ζl(z2)

}{
∑

0 6= l ∈S
z−l

ηl(z2)

}]
= ∑

0 6= l ∈S
V (z−2l)V

{
ζl(z2)

}
V
{

ηl(z2)
}

= ∑
0 6= l ∈S

zl V
{

ζl(z2)
}

V
{

ηl(z2)
}
.(4.4)

As, ζ (z) = ∑
m ∈ S

z−m
ζm(z2), so for any 0 6= l ∈ S , we have

z−l
ζl(z2) = ζ (z)− ∑

m ∈ S
m 6= l

z−m
ζm(z2)

⇒ ζl(z2) = zl
ζ (z)− ∑

m ∈ S
m 6= l

z−m+l
ζm(z2).

Hence,

V
{

ζl(z2)
}
= V

{
zl

ζ (z)
}
.(4.5)

Similarly,

V
{

ηl(z2)
}
= V

{
zl

η(z)
}
.(4.6)

Combining equations (4.1) - (4.6), we get

V (ζ ,η) = (V ζ )(V η)+ ∑
l ∈ S
l 6= 0

zl(V zl
ζ )(V zl

η).

�

5. SLANT HANKEL OPERATOR OF LEVEL n ON THE BERGMAN SPACE

Let D be the open unit disk in the complex plane C and let v be the Lebesgue volume measure

on Dn, normalized so that v(Dn) = 1. For 0 < p < ∞, the Bergman space Ap(Dn) consists of

analytic functions f in Lp(Dn). For simplicity, we consider the case of p = 2, which is a Banach

space of analytic functions in L2(Dn). Let φµ be the linear fractional transformation on Dn given

by φµ(w) = φµ1(w1) . . .φµn(wn
)

where φµ(w) =
µ−w

1−µw ,µ andw ∈Dn. The reproducing kernel in
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A2(Dn) is given by Kw(z) =
n

∏
j=1

1
(1−w jz j)2 and f (z) = 〈 f ,Kz〉 for all f ∈ A2(Dn), z, w ∈ Dn.

The orthogonal projection of P of A2(Dn) onto L2(Dn) is given by

(Pg)(w) = 〈g,Kw〉=
∫
Dn

g(z)
n

∏
j=1

1
(1−w jz j)2 dv(z)

for g ∈ L2(Dn) and w ∈ Dn. For a function f ∈ L∞(Dn) and g ∈ A2(Dn), the Hankel operator of

level n is defined as

H f (g) = (I−P)( f g) =
∫
Dn

[
f (w)− f (z)

]
h(z)

n

∏
j=1

1
(1−w jz j)2 dv(z).

The operator W on A2(Dn) is defined by

W em =


e m

2
i f m is even;

0 otherwise.

If φ ∈ L∞(Dn) and Hφ is the Hankel operator of level n on A2(Dn) then the slant Hankel operator

of level n on A2(Dn) is defined as Sφ =WHφ . For related results on Bergman space we refer

the readers to [8, 9, 15, 17]

Lemma 5.1. W is a bounded linear operator, and ‖W‖2 =
√

2.

Theorem 5.2. The operator W ∗ on A2(Dn) has the property W ∗(em) =
2m+ε j
m+ε j

e2m where m∈Z+
n

and ‖ f‖2 ≤ ‖W ∗ f‖2 ≤ 2‖ f‖2.

Proof. Let f (z) = ∑
m′ ∈ Zn

+

am′z
m′ ∈ A2(Dn). Then,

〈
W ∗em(z), f (z)

〉
=

〈
zm,W

(
∑

m′ ∈ Zn
+

am′z
m′
)〉

=

〈
zm, ∑

m′ ∈ Zn
+

a2m′z
m′
〉

= a2m
〈
zm,zm〉

=
a2m

m+ ε j
.
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Also, 〈
2m+ ε j

m+ ε j
e2m(z), f (z)

〉
=

2m+ ε j

m+ ε j

〈
z2m, ∑

m′ ∈ Zn
+

am′z
m′
〉

=
2m+ ε j

m+ ε j
a2m
〈
z2m,z2m〉

=
a2m

m+ ε j
.

Hence, W ∗(em) =
2m+ε j
m+ε j

e2m. Now,

‖W ∗ f‖2
2 =

∥∥W ∗ ∑
m ∈ Zn

+

amzm∥∥2
2

=
∥∥ ∑

m ∈ Zn
+

am
2m+ ε j

m+ ε j
z2m∥∥2

2

= ∑
m ∈ Zn

+

|am|2
|2m+ ε j|
|m+ ε j|2

≥ ∑
m ∈ Zn

+

|am|2
1

|m+ ε j|

= ‖ f‖2
2.(5.1)

‖W ∗ f (z)‖2
2 = ∑

m ∈ Zn
+

|am|2
〈

2m+ ε j

m+ ε j
z2m,

2m+ ε j

m+ ε j
z2m
〉

= ∑
m ∈ Zn

+

|am|2
∣∣∣∣2m+ ε j

m+ ε j

∣∣∣∣2〈z2m,z2m〉
= ∑

m ∈ Zn
+

|am|2
|2m+ ε j|
|m+ ε j|2

= 4 ∑
m ∈ Zn

+

|am|2
|2m+ ε j|
|2m+2ε j|2

≤ 4 ∑
m ∈ Zn

+

|am|2
1

|2m+ ε j|

≤ 4 ∑
m ∈ Zn

+

|am|2
1

|m+ ε j|

= 4‖ f‖2
2.(5.2)

Combining equations (5.1) and (5.2), we get ‖ f‖2 ≤ ‖W ∗ f‖2 ≤ 2‖ f‖2. �
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Definition 5.3. The Berezin transform of a bounded linear operator B on A2(Dn) is defined

to be the function B̃ defined on Dn by B̃(w) = 〈Bkw,kw〉, where kw is the normalized repro-

ducing kernel for w ∈ Dn. The kernel property of Kw implies ‖Kw‖2
2 = 〈Kw,Kw〉 = Kw(w) =

n

∏
j=1

1
1−|w j|2

. Thus, kw(z) =
n

∏
j=1

1−|w j|2

(1−w jz j)2 =
n

∏
j=1

1− |w j|2
∞

∑
m=o

(m+ 1)wm
j zm

j for z,w ∈ Dn.

Therefore, B̃(w) =
n

∏
j=1

(1−|w j|2)〈BKw,Kw〉 ∀w ∈ Dn.

Let J2
z (ς) =

∞

∑
n=0

(2n+1)zn
ς

2n =
1+ zς2

(1− zς2)2 ∀z,ς ∈ Dn. It is clear that J2
z (ς) ∈ H∞(Dn).

Theorem 5.4. Wkz(ς) =
n

∏
j=1

(
1−|z j|2

)
J2

ς j
(z j) and W̃kz(ς) =

n

∏
j=1

(
1−|z j|2

)2J2
z j
(z j)∀z,ς ∈ Dn.

Proof. We have,

Wkz(ς) =W
( n

∏
j=1

(1−|z j|2)
∞

∑
m=0

(m+1)zm
j ς

m
j

)

=
n

∏
j=1

(1−|z j|2)
∞

∑
m=0

(2m+1)z2m
j ς

m
j

=
n

∏
j=1

(
1−|z j|2

)
J2

ς j
(z j).

Also,

W̃kz(ς) = 〈Wkz(ς),kz(ς)〉

=

〈 n

∏
j=1

(
1−|z j|2

)
J2

ς j
(z j),

n

∏
j=1

(1−|z j|2)
∞

∑
m=0

(m+1)zm
j ς

m
j

〉

=
n

∏
j=1

(1−|z j|2)2
〈

J2
ς j
(z j),

∞

∑
m=0

(m+1)zm
j ς

m
j

〉

=
n

∏
j=1

(1−|z j|2)2
∞

∑
m=0

(2m+1)z2m
j
〈
ς

m
j ,(m+1)zm

j ς
m
j
〉

=
n

∏
j=1

(1−|z j|2)2
∞

∑
m=0

(2m+1)z2m
j zm

j

=
n

∏
j=1

(1−|z j|2)2J2
z j
(z j).

�
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Theorem 5.5. Let φ ∈ L∞(Dn) be a bounded linear operator on A2(Dn), then the slant Hankel

operator of level n, Sφ has the property ‖Sφ‖ ≤
√

2‖φ‖∞.

Proof. We have, ‖Sφ‖= ‖WHφ‖ ≤ ‖W‖‖Hφ‖ ≤
√

2‖φ‖∞. �

Lemma 5.6. [9] Let f and g be in L2(Dn), if there is a positive constant ε such that sup
w∈Dn
‖ f ◦

φw−P( f ◦φw)‖2+ε‖g◦φw−P(g◦φw)‖2+ε < ∞, then the product H f H
∗

g is bounded.

Theorem 5.7. Let f and g be in L2(D)n, if there is a positive constant ε such that sup
w∈Dn
‖ f ◦

φw−P( f ◦φw)‖2+ε‖g◦φw−P(g◦φw)‖2+ε < ∞, then the product S f S
∗

g is bounded.

Proof. We have,

‖S f S
∗

g ‖= ‖WH f (WHg)
∗‖= ‖WH f H

∗
g W ∗‖

≤ ‖W‖‖H f H
∗

g ‖‖W ∗‖

< ∞
[
by Lemma 5.1, Lemma 5.6 and Theorem 5.2

]
�
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