

Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 6, 8146-8172
https://doi.org/10.28919/jmcs/6783
ISSN: 1927-5307

G-ATOMIC SUBMODULES FOR OPERATORS IN HILBERT C^{*}-MODULES

Abstract

FAKHR-DINE NHARI ${ }^{1}$, MOHAMED ROSSAFI ${ }^{2, *}$ ${ }^{1}$ Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty Of Sciences, University of Ibn Tofail, Kenitra, Morocco ${ }^{2}$ LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract. In this paper, we introduce the notion of g-atomic submodule for an adjointable operator and resolution of the identity operator on Hilbert C^{*}-modules, also we give some properties. Finally, we study the concept of frame operator for a pair of g-fusion Bessel sequences.

Keywords: g-fusion frame; K-g-fusion frame; C^{*}-algebra; Hilbert C^{*}-modules.
2010 AMS Subject Classification: Primary 41A58; Secondary 42C15.

1. Introduction

Basis is one of the most important concepts in Vector Spaces study. However, Frames generalise orthonormal bases and were introduced by Duffin and Schaefer [6] in 1952 to analyse some deep problems in nonharmonic Fourier series by abstracting the fundamental notion of Gabor [9] for signal processing. In 2000, Frank-larson [8] introduced the concept of frames in Hilbet C^{*}-modules as a generalization of frames in Hilbert spaces. The basic idea was to consider modules over C^{*}-algebras of linear spaces and to allow the inner product to take values

[^0]in the C^{*}-algebras [12]. Many generalizations of the concept of frame have been defined in Hilbert C^{*}-modules $[11,13,14,15,16,17,18]$.

The paper is organized as follows, we continue this introductory section we briefly recall the definitions and basic properties of C^{*}-algebra and Hilbert C^{*}-modules. In section 2 , we introduce the concept of g-fusion frame and $K-g$-fusion frame. In section 3, we introduce the concept of resolution of the identity operator on Hilbert C^{*}-modules and gives some properties. In section 4, we introduce the concept of g-atomic submodule for an adjointable operator, also prove some results. Finally in section 5 we study the concept of frame operator for a pair of g-fusion bessel sequences.

Throughout this paper, H is considered to be a countably generated Hilbert \mathscr{A}-module. Let $\left\{H_{i}\right\}_{i \in I}$ are the collection of Hilbert \mathscr{A}-module and $\left\{W_{i}\right\}_{i \in I}$ is a collection of closed orthogonally complemented submodules of H, where I be finite or countable index set. $E n d_{\mathscr{A}}^{*}\left(H, H_{i}\right)$ is the set of all adjointable operator from H to H_{i}. In particular $E n d_{\mathscr{A}}^{*}(H)$ denote the set of all adjointable operators on $H . P_{W_{i}}$ denote the orthogonal projection onto the closed submodule orthogonally complemented W_{i} of H. Define the module

$$
l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)=\left\{\left\{x_{i}\right\}_{i \in I}: x_{i} \in H_{i},\left\|\sum_{i \in I}\left\langle x_{i}, x_{i}\right\rangle\right\|<\infty\right\}
$$

with \mathscr{A}-valued inner product $\langle x, y\rangle=\sum_{i \in I}\left\langle x_{i}, y_{i}\right\rangle$, where $x=\left\{x_{i}\right\}_{i \in I}$ and $y=\left\{y_{i}\right\}_{i \in I}$, clearly $l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ is a Hilbert \mathscr{A}-module.

In the following we briefly recall the definitions and basic properties of C^{*}-algebra, Hilbert \mathscr{A}-modules. Our reference for C^{*}-algebras is [5, 4]. For a C^{*}-algebra \mathscr{A} if $a \in \mathscr{A}$ is positive we write $a \geq 0$ and \mathscr{A}^{+}denotes the set of positive elements of \mathscr{A}.

Definition 1.1. [4]. If \mathscr{A} is a Banach algebra, an involution is a map $a \rightarrow a^{*}$ of \mathscr{A} into itself such that for all a and b in \mathscr{A} and all scalars α the following conditions hold:
(1) $\left(a^{*}\right)^{*}=a$.
(2) $(a b)^{*}=b^{*} a^{*}$.
(3) $(\alpha a+b)^{*}=\bar{\alpha} a^{*}+b^{*}$.

Definition 1.2. [4]. A C^{*}-algebra \mathscr{A} is a Banach algebra with involution such that :

$$
\left\|a^{*} a\right\|=\|a\|^{2}
$$

for every a in \mathscr{A}.

Example 1.3. $\mathscr{B}=B(H)$ the algebra of bounded operators on a Hilbert space, is a C^{*}-algebra, where for each operator A, A^{*} is the adjoint of A.

Definition 1.4. [10]. Let \mathscr{A} be a unital C^{*}-algebra and H be a left \mathscr{A}-module, such that the linear structures of \mathscr{A} and U are compatible. H is a pre-Hilbert \mathscr{A}-module if H is equipped with an \mathscr{A}-valued inner product $\langle.,\rangle:. H \times H \rightarrow \mathscr{A}$, such that is sesquilinear, positive definite and respects the module action. In the other words,
(i) $\langle x, x\rangle \geq 0$ for all $x \in H$ and $\langle x, x\rangle=0$ if and only if $x=0$.
(ii) $\langle a x+y, z\rangle=a\langle x, z\rangle+\langle y, z\rangle$ for all $a \in \mathscr{A}$ and $x, y, z \in H$.
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for all $x, y \in H$.

For $x \in H$, we define $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$. If H is complete with $\|$.$\| , it is called a Hilbert \mathscr{A}$ module or a Hilbert C^{*}-module over \mathscr{A}. For every a in C^{*}-algebra \mathscr{A}, we have $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$ and the \mathscr{A}-valued norm on H is defined by $|x|=\langle x, x\rangle^{\frac{1}{2}}$ for $x \in H$.

Lemma 1.5. [2]. Let H and K two Hilbert \mathscr{A}-modules and $T \in E n d_{\mathscr{A}}^{*}(H, K)$. Then the following statements are equivalent:
(i) T is surjective.
(ii) T^{*} is bounded below with respect to norm, i.e., there is $m>0$ such that $\left\|T^{*} x\right\| \geq m\|x\|$ for all $x \in K$.
(iii) T^{*} is bounded below with respect to the inner product, i.e., there is $m^{\prime}>0$ such that $\left\langle T^{*} x, T^{*} x\right\rangle \geq m^{\prime}\langle x, x\rangle$ for all $x \in K$.

Lemma 1.6. [1]. Let U and H two Hilbert \mathscr{A}-modules and $T \in E n d_{\mathscr{A}}^{*}(U, H)$. Then:
(i) If T is injective and T has closed range, then the adjointable map $T^{*} T$ is invertible and

$$
\left\|\left(T^{*} T\right)^{-1}\right\|^{-1} \leq T^{*} T \leq\|T\|^{2}
$$

(ii) If T is surjective, then the adjointable map $T T^{*}$ is invertible and

$$
\left\|\left(T T^{*}\right)^{-1}\right\|^{-1} \leq T T^{*} \leq\|T\|^{2}
$$

Lemma 1.7. [2] Let H be a Hilbert \mathscr{A}-module over a C^{*}-algebra \mathscr{A}, and $T \in E n d_{\mathscr{A}}^{*}(H)$ such that $T^{*}=T$. The following statements are equivalent:
(i) T is surjective.
(ii) There are $m, M>0$ such that $m\|x\| \leq\|T x\| \leq M\|x\|$, for all $x \in H$.
(iii) There are $m^{\prime}, M^{\prime}>0$ such that $m^{\prime}\langle x, x\rangle \leq\langle T x, T x\rangle \leq M^{\prime}\langle x, x\rangle$ for all $x \in H$.

Lemma 1.8. [7] Let \mathscr{A} be a C^{*}-algebra, U, H and L be Hilbert \mathscr{A}-modules. Let $T \in$ $E n d_{\mathscr{A}}^{*}(U, L)$ and $T^{\prime} \in E n d_{\mathscr{A}}^{*}(H, L)$ be such that $\overline{\mathscr{R}\left(T^{*}\right)}$ is orthogonally complemented. Then the following statements are equivalent:
(1) $T^{\prime}\left(T^{\prime}\right)^{*} \leq \mu T T^{*}$ for some $\mu>0$;
(2) There exists $\mu>0$ such that $\left\|\left(T^{\prime}\right)^{*} z\right\| \leq \mu\left\|T^{*} z\right\|$, for any $z \in L$;
(3) There exists a solution $X \in E n d_{\mathscr{A}}^{*}(H, U)$ of the so-called Douglas equation $T^{\prime}=T X$;
(3) $\mathscr{R}\left(T^{\prime}\right) \subseteq \mathscr{R}(T)$.

2. $K-g$-Fusion Frame in Hilbert C^{*}-Modules

Definition 2.1. Let $\left\{W_{i}\right\}_{i \in I}$ be a sequence of closed orthogonally complemented submodules of $H,\left\{v_{i}\right\}_{i \in I}$ be a familly of positive weights in \mathscr{A}, i.e., each v_{i} is a positive invertible element from the center of the C^{*}-algebra \mathscr{A} and $\Lambda_{i} \in \operatorname{End}_{\mathscr{A}}^{*}\left(H, H_{i}\right)$ for all $i \in I$. We say that $\Lambda=$ $\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a g-fusion frame for H if and only if there exists two constants $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\langle x, x\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H \tag{2.1}
\end{equation*}
$$

The constants A and B are called the lower and upper bounds of g-fusion frame, respectively. If $A=B$ then Λ is called tight g-fusion frame and if $A=B=1$ then we say Λ is a Parseval g-fusion frame. If Λ satisfies the inequality

$$
\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H
$$

then it is called a g-fusion bessel sequence with bound B in H.

Lemma 2.2. let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion bessel sequence for H with bound B. Then for each sequence $\left\{x_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$, the series $\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i}$ is converge unconditionally.

Proof. let J be a finite subset of I, then

$$
\begin{aligned}
\left\|\sum_{i \in J} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i}\right\| & =\sup _{\|y\|=1}\left\|\left\langle\sum_{i \in J} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i}, y\right\rangle\right\| \\
& \leq\left\|\sum_{i \in J}\left\langle x_{i}, x_{i}\right\rangle\right\|^{\frac{1}{2}} \sup _{\|y\|=1}\left\|\sum_{i \in J} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} y, \Lambda_{i} P_{W_{i}} y\right\rangle\right\|^{\frac{1}{2}} \\
& \leq \sqrt{B}\left\|\sum_{i \in J}\left\langle x_{i}, x_{i}\right\rangle\right\|^{\frac{1}{2}}
\end{aligned}
$$

And it follows that $\sum_{j \in I} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j}$ is unconditionally convergent in H.

Now, we can define the synthesis operator by lemma 2.2

Definition 2.3. let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion bessel sequence for H. Then the operator $T_{\Lambda}: l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right) \rightarrow H$ defined by

$$
T_{\Lambda}\left(\left\{x_{i}\right\}_{i \in I}\right)=\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i}, \quad \forall\left\{x_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)
$$

Is called synthesis operator. We say the adjoint T_{Λ}^{*} of the synthesis operator the analysis operator and it is defined by $T_{\Lambda}^{*}: \mathscr{H} \rightarrow l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ such that

$$
T_{\Lambda}^{*}(x)=\left\{v_{i} \Lambda_{i} P_{W_{i}}(x)\right\}_{i \in I}, \quad \forall x \in H
$$

The operator $S_{\Lambda}: H \rightarrow H$ defined by

$$
S_{\Lambda} x=T_{\Lambda} T_{\Lambda}^{*} x=\sum_{j \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}(x), \quad \forall x \in H
$$

Is called g-fusion frame operator. It can be easily verify that

$$
\begin{equation*}
\left\langle S_{\Lambda} x, x\right\rangle=\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}}(x), \Lambda_{i} P_{W_{i}}(x)\right\rangle, \quad \forall x \in H \tag{2.2}
\end{equation*}
$$

Furthermore, if Λ is a g-fusion frame with bounds A and B, then

$$
A\langle x, x\rangle \leq\left\langle S_{\Lambda} x, x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H
$$

It easy to see that the operator S_{Λ} is bounded, self-adjoint, positive, now we proof the inversibility of S_{Λ}. Let $x \in H$ we have

$$
\left\|T_{\Lambda}^{*}(x)\right\|=\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}}(x)\right\}_{i \in I}\right\|=\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}}(x), \Lambda_{i} P_{W_{i}}(x)\right\rangle\right\|^{\frac{1}{2}} .
$$

Since Λ is g-fusion frame then

$$
\sqrt{A}\|\langle x, x\rangle\|^{\frac{1}{2}} \leq\left\|T_{\Lambda}^{*} x\right\| .
$$

Then

$$
\sqrt{A}\|x\| \leq\left\|T_{\Lambda}^{*} x\right\|
$$

Frome lemma 1.5, T_{Λ} is surjective and by lemma 1.6, $T_{\Lambda} T_{\Lambda}^{*}=S_{\Lambda}$ is invertible. We now, $A I_{H} \leq$ $S_{\Lambda} \leq B I_{H}$ and this gives $B^{-1} I_{H} \leq S_{\Lambda}^{-1} \leq A^{-1} I_{H}$

Theorem 2.4. Let H be a Hilbert \mathscr{A}-module over C^{*}-algebra. Then $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a g-fusion frame for H if and only if there exist two constants $0<A \leq B<\infty$ such that for all $x \in H$

$$
A\|\mid\langle x, x\rangle\| \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \leq B\|\langle x, x\rangle\| .
$$

Proof. Suppose Λ is g-fusion frame for H, since there is $\langle x, x\rangle \geq 0$ then for all $x \in H$,

$$
A \|\left\langle\langle x, x\rangle\|\leq\| \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\|\leq B\|\langle x, x\rangle \|\right.
$$

Conversely, for each $x \in H$ we have

$$
\begin{aligned}
\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| & =\left\|\sum_{i \in I}\left\langle v_{i} \Lambda_{i} P_{W_{i}} x, v_{i} \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \\
& =\left\|\left\langle\left\{v_{i} \Lambda_{i} P_{W_{i}} x\right\}_{i \in I},\left\{v_{i} \Lambda_{i} P_{W_{i}} x\right\}_{i \in I}\right\rangle\right\| \\
& =\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}} x\right\}_{i \in I}\right\|^{2} .
\end{aligned}
$$

We define the operator $L: \mathscr{H} \rightarrow l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ by $L(x)=\left\{v_{i} \Lambda_{i} P_{W_{i}} x\right\}_{i \in I}$, then

$$
\|L(x)\|^{2}=\left\|\left(v_{i} \Lambda_{i} P_{W_{i}} x\right)_{i \in I}\right\|^{2} \leq B\|x\|^{2} .
$$

L is \mathscr{A}-linear bounded operator, then there exist $C>0$ sutch that

$$
\langle L(x), L(x)\rangle \leq C\langle x, x\rangle, \quad \forall x \in \mathscr{H} .
$$

So

$$
\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle \leq C\langle x, x\rangle, \quad \forall x \in H
$$

Therefore Λ is a g-fusion bessel sequence for \mathscr{H}. Now we cant define the g-fusion frame operator S_{Λ} on \mathscr{H}. So

$$
\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle=\left\langle S_{\Lambda} x, x\right\rangle, \quad \forall x \in H
$$

Since S_{Λ} is positive, self-adjoint, then

$$
\left\langle S_{\Lambda}^{\frac{1}{2}} x, S_{\Lambda}^{\frac{1}{2}} x\right\rangle=\left\langle S_{\Lambda} x, x\right\rangle, \quad \forall x \in H
$$

That implies

$$
A\|\langle x, x\rangle\| \leq\left\|\left\langle S_{\Lambda}^{\frac{1}{2}} x, S_{\Lambda}^{\frac{1}{2}} x\right\rangle\right\| \leq B\|\langle x, x\rangle\|, \quad \forall x \in H
$$

Frome lemma 1.7 there exist two canstants $A^{\prime}, B^{\prime}>0$ such that

$$
A^{\prime}\langle x, x\rangle \leq\left\langle S_{\Lambda}^{\frac{1}{2}} x, S_{\Lambda}^{\frac{1}{2}} x\right\rangle \leq B^{\prime}\langle x, x\rangle, \quad \forall f \in H
$$

So

$$
A^{\prime}\langle x, x\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle \leq B^{\prime}\langle x, x\rangle, \quad \forall x \in H
$$

Hence Λ is a g-fusion frame for H.

Definition 2.5. Let $K \in E n d_{\mathscr{A}}^{*}(H),\left\{W_{i}\right\}_{i \in I}$ be a sequence of closed orthogonally complemented submodules of $H,\left\{v_{i}\right\}_{i \in I}$ be a familly of positive weights in \mathscr{A}, i.e., each v_{i} is a positive invertible element from the center of the C^{*}-algebra \mathscr{A} and $\Lambda_{i} \in E n d_{\mathscr{A}}^{*}\left(H, H_{i}\right)$ for all $i \in I$. We say that $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a $K-g$-fusion frame for H if and only if there exists two constants $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\left\langle K^{*} x, K^{*} x\right\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H \tag{2.3}
\end{equation*}
$$

The constants A and B are called a lower and upper bounds of $K-g$-fusion frame, respectively.

Proposition 2.6. Let $K \in E n d_{\mathscr{A}}^{*}(H)$ and $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion bessel sequence for
 $A K K^{*} \leq S_{\Lambda}$, where S_{Λ} is the frame operator for Λ.

Proof. We have for each $x \in H$,

$$
\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle=\left\langle S_{\Lambda} x, x\right\rangle
$$

Suppose that Λ is a $K-g-$ fusion frame for H, then there exist $A>0$ such that,

$$
A\left\langle K^{*} x, K^{*} x\right\rangle \leq\left\langle S_{\Lambda} x, x\right\rangle
$$

so,

$$
A K K^{*} \leq S_{\Lambda}
$$

Assume that there exist $A>0$ such that $A K K^{*} \leq S_{\Lambda}$, then

$$
A\left\langle K^{*} x, K^{*} x\right\rangle \leq\left\langle S_{\Lambda} x, x\right\rangle=\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle,
$$

since, Λ is g-fusion bessel sequence for H, therefore Λ is a K - g-fusion frame for H.

3. Resolution of the Identity Operator in g-Fusion Frame

The resolution of the identity operator it was introduced in [3] to study frames of subspaces, similarly we define the resolution of the identity operator for adjointable operators on Hilbert C^{*}-modules.

Definition 3.1. A family of adjointable operators $\left\{T_{i}\right\}_{i \in I}$ on H is called a resolution of identity operator on H if for all $x \in H$ we have $x=\sum_{i \in I} T_{i} x$, provided the series converges unconditionally for all $x \in H$.

Theorem 3.2. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for H with frame bounds C, D and S_{Λ} be its associated g-fusion frame operator. Then the familly $\left\{v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i}\right\}_{i \in I}$ is a resolution of the identity operator on H, where $T_{i}=\Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1}$, for all $i \in I$. Furthermore, for each $x \in H$, we have

$$
\frac{C}{D^{2}}\langle x, x\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle \leq \frac{D}{C^{2}}\langle x, x\rangle .
$$

Proof. Since Λ is a g-fusion frame for H, then for all $x \in H$,

$$
x=\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}} S^{-1} x=\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x
$$

so, $\left\{v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i}\right\}_{i \in I}$ is a resolution of the identity operator on H.

And we have for each $x \in H$,

$$
\begin{align*}
\sum_{i \in I} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle & =\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1} x\right\rangle \\
& \leq D\left\langle S_{\Lambda}^{-1} x, S_{\Lambda}^{-1} x\right\rangle \\
& \leq D\left\|S_{\Lambda}^{-1}\right\|^{2}\langle x, x\rangle \\
& \leq \frac{D}{C^{2}}\langle x, x\rangle . \tag{3.1}
\end{align*}
$$

On the other hand, for each $x \in H$,

$$
\langle x, x\rangle=\left\langle S_{\Lambda} S_{\Lambda}^{-1} x, S_{\Lambda} S_{\Lambda}^{-1} x\right\rangle \leq\left\|S_{\Lambda}\right\|^{2}\left\langle S_{\Lambda}^{-1} x, S_{\Lambda}^{-1} x\right\rangle
$$

then,

$$
\begin{align*}
\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1} x\right\rangle & \geq C\left\langle S_{\Lambda}^{-1} x, S_{\Lambda}^{-1} x\right\rangle \\
& \geq C\left\|S_{\Lambda}\right\|^{-2}\langle x, x\rangle \\
& \geq \frac{C}{D^{2}}\langle x, x\rangle \tag{3.2}
\end{align*}
$$

From inequality (3.1) and (3.2), we have for each $x \in H$,

$$
\frac{C}{D^{2}}\langle x, x\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{W_{i}} S_{\Lambda}^{-1} x\right\rangle \leq \frac{D}{C^{2}}\langle x, x\rangle
$$

Theorem 3.3. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for H with frame bounds C, D and
 such that $\left\{v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i}\right\}_{i \in I}$ is a resolution of the identity operator on H. Then,

$$
\frac{1}{D}\left\|\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x\right\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\|, \quad \forall x \in H
$$

Proof. Asume $J \subset I$ with $|J|<\infty$, let $x \in H$ and set $y=\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x$. Then,

$$
\begin{aligned}
\|y\|^{4} & =\|\langle y, y\rangle\|^{2} \\
& =\left\|\left\langle y, \sum_{i \in J} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x\right\rangle\right\|^{2} \\
& =\left\|\sum_{i \in J}\left\langle v_{i} \Lambda_{i} P_{W_{i}} y, v_{i} T_{i} x\right\rangle\right\|^{2} \\
& \leq\left\|\sum_{i \in J} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} y, \Lambda_{i} P_{W_{i}} y\right\rangle\right\| \times\left\|\sum_{i \in J} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\| \\
& \leq D\|y\|^{2} \times\left\|\sum_{i \in J} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\|
\end{aligned}
$$

so,

$$
\frac{1}{D}\|y\|^{2} \leq\left\|\sum_{i \in J} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\|
$$

then,

$$
\frac{1}{D}\left\|\sum_{i \in J} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x\right\|^{2} \leq\left\|\sum_{i \in J} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\|
$$

Since the inequality holds for any finite subset $J \subset I$, we have

$$
\frac{1}{D}\left\|\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x\right\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\| .
$$

Theorem 3.4. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for H with frame bounds C, D and let $T_{i}: H \rightarrow H_{i}$ be a adjointable operator such that $\left\{v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i}\right\}_{i \in I}$ is a resolution of the operator on H. If $T_{i}^{*} \Lambda_{i} P_{W_{i}}=T_{i}$, then

$$
\frac{1}{D}\|x\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\| \leq D E\|x\|^{2}, \quad \forall x \in H
$$

where $E=\sup _{i \in I}\left\|T_{i}\right\|^{2}<\infty$

Proof. We have for each $x \in H, x=\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} T_{i} x$.

Let $x \in H$, we get by theorem 3.3

$$
\begin{aligned}
\frac{1}{D}\|x\|^{2} & \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle T_{i} x, T_{i} x\right\rangle\right\| \\
& \leq\left\|\sum_{i \in I} v_{i}^{2}\right\| T_{i}\left\|^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \\
& \leq\left\|E \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \\
& \leq E D\|x\|^{2}
\end{aligned}
$$

Theorem 3.5. Let $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed orthogonally complemented submodules of H and $\left\{v_{i}\right\}_{i \in I}$ be a collection of bounded weights and $\Lambda_{i} \in E n d_{\mathscr{A}}^{*}\left(H, H_{i}\right)$ for each $i \in I$. Then $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a g-fusion frame for H if the following conditions are hold:
(1) For all $x \in H$, there exists $A>0$ such that

$$
\left\|\sum_{i \in I}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \leq \frac{1}{A}\|x\|^{2} .
$$

(2) $\left\{v_{i} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}\right\}_{i \in I}$ is a resolution of the identity operator on H.

Proof. We have for each $x \in H, x=\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}} x$, then

$$
\begin{aligned}
\|x\|^{4} & =\|\langle x, x\rangle\|^{2} \\
& =\left\|\left\langle x, \sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}} x\right\rangle\right\|^{2} \\
& \leq\left\|\sum_{i \in I}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \times\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \\
& \leq \frac{1}{A}\|x\|^{2} \times\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|,
\end{aligned}
$$

so,

$$
A\|x\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|
$$

On the other hand,

$$
\begin{aligned}
\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| & \leq B\left\|\sum_{i \in I}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \\
& \leq \frac{B}{A}\|x\|^{2}
\end{aligned}
$$

where $B=\sup _{i \in I}\left\{v_{i}^{2}\right\}$.
We conclude that Λ is a g-fusion frame for H.

4. g-Atomic Submodule

We begin this section with the following lemma

Lemma 4.1. Let $\left\{W_{i}\right\}_{i \in I}$ be a sequence of orthogonally complemented closed submodules of H and $T \in E n d_{\mathscr{A}}^{*}(H)$ invertible, if $T^{*} T W_{i} \subseteq W_{i}$ for each $i \in I$, then $\left\{T W_{i}\right\}_{i \in I}$ is a sequence of orthogonally complemented closed submodules and $P_{W_{i}} T^{*}=P_{W_{i}} T^{*} P_{T W_{i}}$.

Proof. Firstly for each $i \in I, T: W_{i} \rightarrow T W_{i}$ is invertible, so each $T W_{i}$ is a closed submodule of H. We show that $H=T W_{i} \oplus T\left(W_{i}^{\perp}\right)$. Since $H=T H$, then for each $x \in H$, there exists $y \in H$ sutch that $x=T y$. On the other hand $y=u+v$, for some $u \in W_{i}$ and $v \in W_{i}^{\perp}$. Hence $x=T u+T v$, where $T u \in T W_{i}$ and $T v \in T\left(W_{i}^{\perp}\right)$, plainly $T W_{i} \cap T\left(W_{i}^{\perp}\right)=(0)$, therefore $H=T W_{i} \oplus T\left(W_{i}^{\perp}\right)$. Hence for every $y \in W_{i}, z \in W_{i}^{\perp}$ we have $T^{*} T y \in W_{i}$ and therefore $\langle T y, T z\rangle=\left\langle T^{*} T y, z\right\rangle=0$, so $T\left(W_{i}^{\perp}\right) \subset\left(T W_{i}\right)^{\perp}$ and consequently $T\left(W_{i}^{\perp}\right)=\left(T W_{i}\right)^{\perp}$ witch implies that $T W_{i}$ is orthogonally complemented.

Let $x \in H$ we have $x=P_{T W_{i}} x+y$, for some $y \in\left(T W_{i}\right)^{\perp}$, then $T^{*} x=T^{*} P_{T W_{i}} x+T^{*} y$. Let $v \in W_{i}$ then $\left\langle T^{*} y, v\right\rangle=\langle y, T v\rangle=0$ then $T^{*} y \in W_{i}^{\perp}$ and we have $P_{W_{i}} T^{*} x=P_{W_{i}} T^{*} P_{T W_{i}} x+P_{W_{i}} T^{*} y$, then $P_{W_{i}} T^{*} x=P_{W_{i}} T^{*} P_{T W_{i}} x$ thus implies that for each $i \in I$ we have $P_{W_{i}} T^{*}=P_{W_{i}} T^{*} P_{T W_{i}}$.

Definition 4.2. Let $K \in \operatorname{End}_{\mathscr{A}}^{*}(H)$ and $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed submodules orthogonally complemented of H, let $\left\{v_{i}\right\}_{i \in I}$ be a collection of positive weights in \mathscr{A}, i.e., each v_{i} is a positive invertible element from the center of the C^{*}-algebra \mathscr{A} and $\Lambda_{i} \in \operatorname{End}_{\mathscr{A}}^{*}\left(H, H_{i}\right)$ for each $i \in I$. Then the family $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is said to be a g-atomic submodule of H with respect to K if the following statements hold:
(1) Λ is a g-fusion bessel sequence in H.
(2) For every $x \in H$ there exists $\left\{x_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ such that

$$
K(x)=\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i} \quad \text { and } \quad\left\|\left\{x_{i}\right\}_{i \in I}\right\| \leq C\|x\|
$$

for some $C>0$.

Theorem 4.3. Let $K \in E n d_{\mathscr{A}}^{*}(H)$ and $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed submodules orthogonally complemented of H, let $\left\{v_{i}\right\}_{i \in I}$ be a collection of positive weights, $\Lambda_{i} \in E n d_{\mathscr{A}}^{*}\left(H, H_{i}\right)$ for each $i \in I$ and suppose that the operator $L: H \rightarrow l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ define by $L(x)=\left\{v_{i} \Lambda_{i} P_{W_{i}} x\right\}_{i \in I}$ such that $\overline{\mathscr{R}(L)}$ is orthogonally commplemented, then the following statements are equivalent:
(1) $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a g-atomic submodules of H with respect to K.
(2) Λ is a $K-g-f u s i o n ~ f r a m e ~ f o r ~ H . ~$

Proof. (1) \Rightarrow (2) We have Λ is a g-fusion bessel sequence. Now let $x \in H$,

$$
\begin{aligned}
\left\|\left\langle K^{*} x, K^{*} x\right\rangle\right\| & =\left\|K^{*} x\right\|^{2} \\
& =\sup _{\|y\|=1}\left\|\left\langle K^{*} x, y\right\rangle\right\| \\
& =\sup _{\|y\|=1}\|\langle x, K(y)\rangle\| .
\end{aligned}
$$

Since $y \in H$ there exits $\left\{x_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ such that

$$
K(y)=\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} y_{i} \quad \text { and } \quad\left\|\left\{y_{i}\right\}_{i \in I}\right\| \leq C\|y\|
$$

for some $C>0$. So, for each $x \in H$,

$$
\begin{aligned}
\left\|K^{*} x\right\|^{2} & =\sup _{\|y\|=1}\left\|\left\langle x, \sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} y_{i}\right\rangle\right\|^{2} \\
& =\sup _{\|y\|=1}\left\|\sum_{i \in I}\left\langle v_{i} \Lambda_{i} P_{W_{i}}, y_{i}\right\rangle\right\|^{2} \\
& \leq \sup _{\|y\|=1}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|\left\|\sum_{i \in I}\left\langle y_{i}, y_{i}\right\rangle\right\| \\
& \leq C^{2}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|
\end{aligned}
$$

hence,

$$
\frac{1}{C^{2}}\left\|K^{*} x\right\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|
$$

therefore, Λ is a $K-g$-fusion frame for H.
$(2) \Rightarrow(1)$ Suppose that Λ is a $K-g$-fusion frame for H, then Λ is a g-fusion bessel sequence for H. Let $x \in H$, we have

$$
A\left\langle K^{*} x, K^{*} x\right\rangle \leq\langle L x, L x\rangle
$$

so,

$$
A K K^{*} \leq L^{*} L
$$

then by lemma 1.8 there exists $G \in E n d_{\mathscr{A}}^{*}\left(H, l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)\right)$ define by $G x=\left\{x_{i}\right\}_{i \in I}$ such that $K=L^{*} G$, hence for each $x \in H$

$$
\begin{aligned}
K(x) & =L^{*} G x \\
& =L^{*}\left(\left\{x_{i}\right\}_{i \in I}\right) \\
& =\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i},
\end{aligned}
$$

and

$$
\left\|\left\{x_{i}\right\}_{i \in I}\right\|=\|G x\| \leq C\|x\|
$$

for some $C>0$. We conclude that Λ is a g-atomic submodule of H with respect to K.

Theorem 4.4. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for H. Then Λ is a g-atomic submodule of H with respect to its g-fusion frame operator S_{Λ}.

Proof. We have Λ is a g-fusion bessel sequence for H, and we have for each $x \in H$,

$$
\begin{aligned}
S_{\Lambda} x & =\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}} x \\
& =\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*}\left(v_{i} \Lambda_{i} P_{W_{i}} x\right)
\end{aligned}
$$

now we put $x_{i}=v_{i} \Lambda_{i} P_{W_{i}} x$, for each $i \in I$, hence,

$$
\begin{aligned}
\left\|\left\{x_{i}\right\}_{i \in I}\right\| & =\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}} x\right\}_{i \in I}\right\| \\
& =\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|^{\frac{1}{2}} \\
& \leq \sqrt{B}\|x\| .
\end{aligned}
$$

Therefore, Λ is a g-atomic submodule of H with respect to its g-fusion frame operator S_{Λ}.

Theorem 4.5. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ and $\Gamma=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be two g-atomic submodules of H with respect to $K \in E n d_{\mathscr{A}}^{*}(H)$. If $U, V \in E n d_{\mathscr{A}}^{*}(H)$ such that $U+V$ is invertible operator on H with $K(U+V)=(U+V) K$, suppose that the operator $L: H \rightarrow l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ define by
$L(x)=\left\{v_{i}\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\}_{i \in I}$ such that $\overline{\mathscr{R}(L)}$ is orthogonally complemented, then

$$
\left\{(U+V) W_{i},\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*}, v_{i}\right\}_{i \in I}
$$

is a g-atomic submodule of H with respect to K.

Proof. By theorem 4.3, Λ and Γ are $K-g$-fusion frame for H, so for each $x \in H$ there exist positive constants $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ such that

$$
A_{1}\left\|K^{*} x\right\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \leq B_{1}\|x\|^{2}
$$

and

$$
A_{2}\left\|K^{*} x\right\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Gamma_{i} P_{W_{i}} x, \Gamma_{i} P_{W_{i}} x\right\rangle\right\| \leq B_{2}\|x\|^{2}
$$

Since $U+V$ is invertible, then

$$
\begin{aligned}
\left\langle K^{*} x, K^{*} x\right\rangle & =\left\langle\left((U+V)^{*}\right)^{-1}(U+V)^{*} K^{*} x,\left((U+V)^{*}\right)^{-1}(U+V)^{*} K^{*} x\right\rangle \\
& \leq\left\|(U+V)^{-1}\right\|^{2}\left\langle(U+V)^{*} K^{*} x,(U+V)^{*} K^{*} x\right\rangle
\end{aligned}
$$

Now, for each $x \in H$ we have

$$
\begin{align*}
& \left\|\sum_{i \in I} v_{i}\left\langle\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x,\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\rangle\right\|^{\frac{1}{2}} \\
& =\left\|\left\{v_{i}\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\}_{i \in I}\right\| \\
& =\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\}_{i \in I}+\left\{v_{i} \Gamma_{i} P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\}_{i \in I}\right\| \\
& \leq\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}}(U+V)^{*} x\right\}_{i \in I}\right\|+\left\|\left\{v_{i} \Gamma_{i} P_{W_{i}}(U+V)^{*} x\right\}_{i \in I}\right\| \\
& \leq \sqrt{B_{1}}\left\|\left\langle(U+V)^{*} x,(U+V)^{*} x\right\rangle\right\|^{\frac{1}{2}}+\sqrt{B_{2}}\left\|\left\langle(U+V)^{*} x,(U+V)^{*} x\right\rangle\right\|^{\frac{1}{2}} \\
& \leq\left(\sqrt{B_{1}}+\sqrt{B_{2}}\right)\left\|\left\langle(U+V)^{*} x,(U+V)^{*} x\right\rangle\right\|^{\frac{1}{2}} \\
& \leq\left(\sqrt{B_{1}}+\sqrt{B_{2}}\right)\|(U+V)\|\|\langle x, x\rangle\|^{\frac{1}{2}} \\
& =\left(\sqrt{B_{1}}+\sqrt{B_{2}}\right)\|(U+V)\|\|x\| . \tag{4.1}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& \left\|\sum_{i \in I} v_{i}\left\langle\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x,\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\rangle\right\|^{\frac{1}{2}} \\
& =\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\}_{i \in I}+\left\{v_{i} \Gamma_{i} P_{W_{i}}(U+V)^{*} P_{(U+V) W_{i}} x\right\}_{i \in I}\right\| \\
& \geq\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}}(U+V)^{*} x\right\}_{i \in I}\right\| \\
& \geq \sqrt{A_{1}}\left\|\left\langle((U+V) K)^{*} x,((U+V) K)^{*} x\right\rangle\right\|^{\frac{1}{2}} \\
& \geq A_{1}\left\|(U+V)^{-1}\right\|^{-1}\left\|\left\langle K^{*} x, K^{*} x\right\rangle\right\|^{\frac{1}{2}} \tag{4.2}
\end{align*}
$$

From (4.1) and (4.2), we conclude that $\left\{(U+V) W_{i},\left(\Lambda_{i}+\Gamma_{i}\right) P_{W_{i}}(U+V)^{*}, v_{i}\right\}_{i \in I}$ is a $K-$ g-fusion frame for H, therefore Λ is a g-atomic submodule of H with respect to K.

Theorem 4.6. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a g-atomic submodule for $K \in E n d_{\mathscr{A}}^{*}(H)$ and S_{Λ} be the frame operator of Λ. if $U \in E n d_{\mathscr{A}}^{*}(H)$ is a positive and invertible operator on H, suppose that the operator $L: H \rightarrow l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ define by $L(x)=\left\{v_{i} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}} x\right\}_{i \in I}$ such that $\overline{\mathscr{R}(L)}$ is orthogonally complemented, then $\theta=\left\{\left(I_{H}+U\right) W_{i}, \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}, v_{i}\right\}_{i \in I}$ is a g-atomic submodule of H with respect to K. Moreover, for any natural number $n, \theta^{\prime}=\left\{\left(I_{H}+\right.\right.$ $\left.\left.U^{n}\right) W_{i}, \Lambda_{i} P_{W_{i}}\left(I_{H}+U^{n}\right)^{*}, v_{i}\right\}_{i \in I}$ is a g-atomic submodule of H with respect to K.

Proof. We have for each $x \in H$,

$$
\begin{aligned}
& \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}}(x), \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}}(x)\right\rangle \\
& =\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}(x), \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}(x)\right\rangle \\
& \leq B\left\langle\left(I_{H}+U\right)^{*}(x),\left(I_{H}+U\right)^{*}(x)\right\rangle \\
& \leq B\left\|\left(I_{H}+U\right)\right\|^{2}\langle x, x\rangle
\end{aligned}
$$

Thus, θ is a g-bessel sequence in H, Also, for each $x \in H$ we have

$$
\begin{aligned}
& \sum_{i \in I} P_{\left(I_{H}+U\right) W_{i}}\left(\Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}\right)^{*} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}}(x) \\
& =\sum_{i \in I} v_{i}^{2} P_{\left(I_{H}+U\right) W_{i}}\left(I_{H}+U\right) P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in I} v_{i}^{2}\left(P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}}\right)^{*} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{i}}(x) \\
& =\sum_{i \in I} v_{i}^{2}\left(P_{W_{i}}\left(I_{H}+U\right)^{*}\right)^{*} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}(x) \\
& =\sum_{i \in I} v_{i}^{2}\left(I_{H}+U\right) P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}(x) \\
& =\left(I_{H}+U\right) \sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}}\left(I_{H}+U\right)^{*}(x) \\
& =\left(I_{H}+U\right) S_{\Lambda}\left(I_{H}+U\right)^{*}(x) .
\end{aligned}
$$

This shows that the frame operator of θ is $\left(I_{H}+U\right) S_{\Lambda}\left(I_{H}+U\right)^{*}$. Since U and S_{Λ} are positive, we have

$$
\left(I_{H}+U\right) S_{\Lambda}\left(I_{H}+U\right)^{*} \geq S_{\Lambda} \geq A K K^{*}
$$

Then by proposition 2.6, we can conclude that θ is a $K-g$-fusion frame for H, so by theorem 4.3, θ is a g-atomic submodule of H with respect to K. According to the preceding procedure, for any natural number n, the frame operator of θ^{\prime} is $\left(I_{H}+U^{n}\right) S_{\Lambda}\left(I_{H}+U^{n}\right)^{*}$ and similary, it can be shown that θ^{\prime} is a g-atomic submodule of H with respect to K.

5. Frame Operator for a Pair of g-Fusion Bessel Sequences

Definition 5.1. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ and $\Gamma=\left\{V_{i}, \Gamma_{i}, w_{i}\right\}_{i \in I}$ be two g-fusion bessel sequences in H with bounds B_{1} and B_{2}. Then the operator $S_{\Gamma \Lambda}: H \rightarrow H$, defined by

$$
S_{\Gamma \Lambda}(x)=\sum_{i \in I} v_{i} w_{i} P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}}(x), \quad \forall x \in H
$$

is called the frame operator for the pair of g-fusion bessel sequences Λ and Γ.

Theorem 5.2. The frame operator $S_{\Gamma \Lambda}$ for the pair of g-fusion bessel sequences Λ and Γ is bounded and $S_{\Gamma \Lambda}^{*}=S_{\Lambda \Gamma}$.

Proof. We have for each $x \in H$,

$$
\begin{aligned}
\left\|S_{\Gamma \Lambda} x\right\| & =\sup _{\|y\|=1} \|\left\langle\sum_{i \in I} v_{i} w_{i} P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}}(x), y\right\rangle \\
& =\sup _{\|y\|=1}\left\|\sum_{i \in I} v_{i} w_{i}\left\langle\Lambda_{i} P_{W_{i}} x, \Gamma_{i} P_{V_{i}} y\right\rangle\right\| \\
& \leq \sup _{\|y\|=1}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|^{\frac{1}{2}}\left\|\sum_{i \in I} w_{i}^{2}\left\langle\Gamma_{i} P_{V_{i}} y, \Gamma_{i} P_{V_{i}} y\right\rangle\right\|^{\frac{1}{2}} \\
& \leq \sqrt{B_{1} B_{2}}\|x\|,
\end{aligned}
$$

then $S_{\Gamma \Lambda}$ is a bounded with $\left\|S_{\Gamma \Lambda}\right\| \leq \sqrt{B_{1} B_{2}}$.
Also, for each $x, y \in H$ we have

$$
\begin{aligned}
\left\langle S_{\Gamma \Lambda} x, y\right\rangle & =\left\langle\sum_{i \in I} v_{i} w_{i} P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}}(x), y\right\rangle \\
& =\sum_{i \in I} v_{i} w_{i}\left\langle x, P_{W_{i}} \Lambda_{i}^{*} \Gamma_{i} P_{V_{i}}(y)\right\rangle \\
& =\left\langle x, \sum_{i \in I} P_{W_{i}} \Lambda_{i}^{*} \Gamma_{i} P_{V_{i}}(y)\right\rangle=\left\langle x, S_{\Lambda \Gamma} y\right\rangle
\end{aligned}
$$

 Γ with bounds B_{1} and B_{2}, respectively. And $\overline{\mathscr{R}\left(S_{\Gamma \Lambda}\right)}$ is orthogonally complemented. Then the following statements are equivalent:
(1) $S_{\text {Гऽ }}$ is bounded below.
(2) there exists $K \in E n d_{\mathscr{A}}^{*}(H)$ such that $\left\{T_{i}\right\}_{i \in I}$ is a resolution of the identity operator on H, where $T_{i}=v_{i} w_{i} K P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}}, i \in I$.

If one of the given conditions holds, then Λ is a g-fusion frame.

Proof. (1) \Rightarrow (2) Suppose that $S_{\Gamma \Lambda}$ is bounded below. Then for each $x \in H$ there exists $A>0$ such that

$$
A\|x\| \leq\left\|S_{\Lambda} x\right\|
$$

hence,

$$
A\|\langle x, x\rangle\| \leq\left\|\left\langle S_{\Gamma \Lambda}^{*} S_{\Gamma \Lambda} x, x\right\rangle\right\|
$$

then,

$$
I_{H} I_{H}^{*} \leq \frac{1}{A} S_{\Gamma \Lambda}^{*} S_{\Gamma \Lambda}
$$

so, by lemma 1.8, there exists $K \in E n d_{\mathscr{A}}^{*}(H)$ such that $I_{H}=K S_{\Gamma \Lambda}$, therefore for each $x \in H$ we have

$$
\begin{aligned}
x & =K S_{\Gamma \Lambda} x \\
& =K \sum_{i \in I} v_{i} w_{i} P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}} x \\
& =\sum_{i \in I} v_{i} w_{i} K P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}} x \\
& =\sum_{i \in I} T_{i} x,
\end{aligned}
$$

thus $\left\{T_{i}\right\}_{i \in I}$ is a resolution of the identity operator on H, where $T_{i}=v_{i} w_{i} K P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}}$.
$(2) \Rightarrow(1)$ we have for each $x \in H$,

$$
\begin{aligned}
\|x\| & =\left\|\sum_{i \in I} v_{i} w_{i} K P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}} x\right\| \\
& =\left\|K \sum_{i \in I} v_{i} w_{i} P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}} x\right\| \\
& =\left\|K S_{\Gamma \Lambda} x\right\| \\
& \leq\|K\| \times\left\|S_{\Gamma \Lambda} x\right\|
\end{aligned}
$$

then,

$$
\|K\|^{-1}\|x\| \leq\left\|S_{\Gamma \Lambda} x\right\| .
$$

Hence, $S_{\Gamma \Lambda}$ is bounded below.
Last part: Suppose that $S_{\Gamma \Lambda}$ is bounded below. Then for all $x \in H$ there exists $A>0$ such that $A\|x\| \leq\left\|S_{\Gamma \Lambda} x\right\|$ and this implies that

$$
\begin{aligned}
A\|x\| & \leq \sup _{\|y\|=1}\left\|\left\langle S_{\Gamma \Lambda} x, y\right\rangle\right\| \\
& =\sup _{\|y\|=1}\left\|\left\langle\sum_{i \in I} v_{i} w_{i} P_{V_{i}} \Gamma_{i}^{*} \Lambda_{i} P_{W_{i}} x, y\right\rangle\right\| \\
& =\sup _{\|y\|=1}\left\|\sum_{i \in I} v_{i} w_{i}\left\langle\Lambda_{i} P_{W_{i}} x, \Gamma_{i} P_{V_{i}} x\right\rangle\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{\|y\|=1}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|^{\frac{1}{2}}\left\|\sum_{i \in I} w_{i}\left\langle\Gamma_{i} P_{V_{i}} x, \Gamma_{i} P_{V_{i}} x\right\rangle\right\|^{\frac{1}{2}} \\
& \leq B_{2}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|^{\frac{1}{2}},
\end{aligned}
$$

hence,

$$
\frac{A^{2}}{B_{2}}\|x\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| .
$$

So, Λ is a g-fusion frame for H.
 Γ with bounds B_{1} and B_{2}, respectively. Suppose $\lambda_{1}<1, \lambda_{2}>-1$ such that each $x \in H, \| x-$ $S_{\Gamma \Lambda} x\left\|\leq \lambda_{1}\right\| x\left\|+\lambda_{2}\right\| S_{\Gamma \Lambda} x \|$. Then Λ is a $g-$ fusion frame for H.

Proof. We have for each $x \in H$,

$$
\|x\|-\left\|S_{\Gamma \Lambda}\right\| \leq\left\|x-S_{\Gamma \Lambda} x\right\| \leq \lambda_{1}\|x\|+\lambda_{2}\left\|S_{\Gamma \Lambda} x\right\|,
$$

then,

$$
\begin{aligned}
\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)\|x\| & \leq\left\|S_{\Gamma \Lambda} x\right\| \\
& \leq \sqrt{B_{2}}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\|^{\frac{1}{2}}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{1}{B_{2}}\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2}\|x\| \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle\right\| \tag{5.1}
\end{equation*}
$$

Thus, Λ is a g-fusion frame for H with bounds $\frac{1}{B_{2}}\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2}$ and B_{1}.
Theorem 5.5. Let $S_{\Gamma \Lambda}$ be the frame operator for a pair of $g-f u s i o n ~ b e s s e l ~ s e q u e n c e s ~ \Lambda ~ a n d ~ \Gamma ~$ of bounds B_{1} and B_{2}, repectively. Assume $\lambda \in[0,1)$ such that

$$
\left\|x-S_{\Gamma \Lambda} x\right\| \leq \lambda\|x\|, \quad \forall x \in H .
$$

Then Λ and Γ are g-fusion frames for H.

Proof. We put $\lambda_{1}=\lambda$ and $\lambda_{2}=0$ in (5.1), then

$$
\left.\frac{(1-\lambda)^{2}}{B_{2}}\|x\|^{2} \leq \| \sum_{i \in I} v_{i}^{2} \Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle \|
$$

therefore, Λ is a g-fusion frame for H. Now for each $x \in H$, we have

$$
\begin{aligned}
\left\|x-S_{\Gamma \Lambda}^{*}\right\| & =\left\|\left(I_{H}-S_{\Gamma \Lambda}\right)^{*} x\right\| \\
& \leq\left\|I_{H}-S_{\Gamma \Lambda}\right\|\|x\| \\
& \leq \lambda\|x\|,
\end{aligned}
$$

then,

$$
\|x\|-\left\|S_{\Gamma \Lambda}^{*} x\right\| \leq \lambda\|x\|
$$

hence,

$$
\begin{aligned}
(1-\lambda)\|x\| & \leq\left\|S_{\Gamma \Lambda}^{*} x\right\| \\
& =\sup _{\|y\|=1}\left\|\left\langle S_{\Gamma \Lambda}^{*} x, y\right\rangle\right\| \\
& =\sup _{\|y\|=1}\left\|\left\langle v_{i} w_{i} P_{W_{i}} \Lambda_{i}^{*} \Gamma_{i} P_{V_{i}} x, y\right\rangle\right\| \\
& =\sup _{\|y\|=1}\left\|\sum_{i \in I}\left\langle w_{i} \Gamma_{i} P_{V_{i}} x, v_{i} \Lambda_{i} P_{W_{i}} y\right\rangle\right\| \\
& \leq\left\|\sum_{i \in I} w_{i}^{2}\left\langle\Gamma_{i} P_{V_{i}} x, \Gamma_{i} P_{V_{i}} x\right\rangle\right\|^{\frac{1}{2}}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} y, \Lambda_{i} P_{W_{i}} y\right\rangle\right\|^{\frac{1}{2}} \\
& \leq \sqrt{B_{1} \|} \sum_{i \in I} w_{i}^{2}\left\langle\Gamma_{i} P_{V_{i}} x, \Gamma_{i} P_{V_{i}} x\right\rangle\left\|^{\frac{1}{2}}\right\|,
\end{aligned}
$$

so,

$$
\frac{(1-\lambda)^{2}}{B_{1}}\|x\|^{2} \leq\left\|\sum_{i \in I} w_{i}^{2}\left\langle\Gamma_{i} P_{V_{i}} x, \Gamma_{i} P_{V_{i}} x\right\rangle\right\|
$$

We conclude that Γ is a $g-$ fusion frame for H with bounds $\frac{(1-\lambda)^{2}}{B_{1}}$ and B_{2}.

Definition 5.6. Let H and X be two Hilbert C^{*}-modules. Define

$$
H \oplus X=\{(x, y): x \in H, y \in X\} .
$$

Then $H \oplus X$ forms a Hilbert C^{*}-module with respect to point-wise operations and inner \mathscr{A}-valued defined by

$$
\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle=\left\langle x, x^{\prime}\right\rangle_{H}+\left\langle y, y^{\prime}\right\rangle_{X} \quad \forall x, x^{\prime} \in H \quad \text { and } \quad \forall y, y^{\prime} \in X
$$

Now, if $U \in E n d_{\mathscr{A}}^{*}(H, Z), V \in E n d_{\mathscr{A}}^{*}(X, Y)$, then for all $x \in H, y \in X$ we define

$$
U \oplus V \in E n d_{\mathscr{A}}^{*}(H \oplus X, Z \oplus Y) \quad \text { by } \quad(U \oplus V)(x, y)=(U x, V y),
$$

and $(U \oplus V)^{*}=U^{*} \oplus V^{*}$, where Z, Y are Hilbert C^{*}-modules and also we define $P_{M \oplus N}(x, y)=$ ($P_{M} x, P_{N} y$), where P_{M}, P_{N} and $P_{M \oplus N}$ are orthogonal projections onto the closed orthogonally complemented submodules $M \subset H, N \subset X$ and $M \oplus N \subset H \oplus X$, respectively.

From here we assume that for each $i \in I, W_{i} \oplus V_{i}$ are the closed orthogonally complemented submodules of $H \oplus X$ and $\Gamma_{i} \in E n d_{\mathscr{A}}^{*}\left(X, X_{i}\right)$, where $\left\{X_{i}\right\}_{i \in I}$ is the collection of Hilbert C^{*}-modules and $\Lambda_{i} \oplus \Gamma_{i} \in E n d_{\mathscr{A}}^{*}\left(H \oplus X, H_{i} \oplus X_{i}\right)$.

Theorem 5.7. Let $\Lambda=\left\{W_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for H with frame bounds A, B and $\Gamma_{i}=\left\{V_{i}, \Gamma_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for X with frame bounds C, D. Then $\Lambda \oplus \Gamma=\left\{W_{i} \oplus\right.$ $\left.V_{i}, \Lambda_{i} \oplus \Gamma_{i}, v_{i}\right\}_{i \in I}$ is a g-fusion frame for $H \oplus X$. Furthermore, if S_{Λ}, S_{Γ} and $S_{\Lambda \oplus \Gamma}$ are $g-f u s i o n$ frame operators for Λ, Γ and $\Lambda \oplus \Gamma$, respectively, then we have $S_{\Lambda \oplus \Gamma}=S_{\Lambda} \oplus S_{\Gamma}$.

Proof. Let $x \in H$ and $y \in X$, we have

$$
\begin{aligned}
& \sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y)\right\rangle \\
& =\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(P_{W_{i}} x, P_{V_{i}} y\right),\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(P_{W_{i}} x, P_{V_{i}} y\right)\right\rangle \\
& =\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} P_{W_{i}} x, \Gamma_{i} P_{V_{i}} y\right),\left(\Lambda_{i} P_{W_{i}} x, \Gamma_{i} P_{V_{i}} y\right)\right\rangle \\
& =\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{W_{i}} x, \Lambda_{i} P_{W_{i}} x\right\rangle_{H}+\sum_{i \in I} v_{i}^{2}\left\langle\Gamma_{i} P_{V_{i}} y, \Gamma_{i} P_{V_{i}} y\right\rangle_{X} \\
& \leq B\langle x, x\rangle_{H}+D\langle y, y\rangle_{X} \\
& \leq \max (B, D)\left(\langle x, x\rangle_{H}+\langle y, y\rangle_{X}\right) \\
& =\max (B, D)\langle(x, y),(x, y)\rangle
\end{aligned}
$$

Simalary, it can be shown that

$$
\begin{equation*}
\min (A, C)\langle(x, y),(x, y)\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y)\right\rangle \tag{5.3}
\end{equation*}
$$

From inequality (5.2) and (5.3), we conclude that $\Lambda \oplus \Gamma$ is a g-fusion frame for $H \oplus X$.
Furthermore, for $(x, y) \in H \oplus X$ we have

$$
\begin{aligned}
S_{\Lambda \oplus \Gamma}(x, y) & =\sum_{i \in I} v_{i}^{2} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y) \\
& =\sum_{i \in I} v_{i}^{2} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} P_{W_{i}} x, \Gamma_{i} P_{V_{i}} y\right) \\
& =\sum_{i \in I} v_{i}^{2} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i}^{*} \oplus \Gamma_{i}^{*}\right)\left(\Lambda_{i} P_{W_{i}} x, \Gamma_{i} P_{V_{i}} y\right) \\
& =\sum_{i \in I} v_{i}^{2}\left(P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}} x, P_{V_{i}} \Gamma_{i}^{*} \Gamma_{i} P_{V_{i}} y\right) \\
& =\left(\sum_{i \in I} v_{i}^{2} P_{W_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{W_{i}} x, \sum_{i \in I} P_{V_{i}} \Gamma_{i}^{*} \Gamma_{i} P_{V_{i}} y\right) \\
& =\left(S_{\Lambda} x, S_{\Gamma} y\right) \\
& =\left(S_{\Lambda} \oplus S_{\Gamma}\right)(x, y) .
\end{aligned}
$$

Therefore, $S_{\Lambda \oplus \Gamma}=S_{\Lambda} \oplus S_{\Gamma}$.

Theorem 5.8. Let $\Lambda \oplus \Gamma=\left\{W_{i} \oplus V_{i}, \Lambda_{i} \oplus \Gamma_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for $H \oplus X$ with frame operator $S_{\Lambda \oplus \Gamma}$. Then

$$
\alpha=\left\{S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}\left(W_{i} \oplus V_{i}\right),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}, v_{i}\right\}_{i \in I}
$$

is a Parseval g-fusion frame for $H \oplus X$.
Proof. Since $S_{\Lambda \oplus \Gamma}$ is a positive invertible, then $S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}} S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}=I_{H \oplus X}$, hence

$$
\begin{aligned}
(x, y) & =S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}} S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}(x, y) \\
& =\sum_{i \in I} v_{i}^{2} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}(x, y),
\end{aligned}
$$

so,

$$
\begin{aligned}
\langle(x, y),(x, y)\rangle & =\left\langle\sum_{i \in I} v_{i}^{2} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}(x, y),(x, y)\right\rangle \\
& =\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}(x, y)\right\rangle \\
& =\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}} P_{S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}}\left(W_{i} \oplus V_{i}\right)}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}} P_{S_{\Lambda \oplus \Gamma}^{-\frac{1}{2}\left(W_{i} \oplus V_{i}\right)}}(x, y)\right\rangle .
\end{aligned}
$$

This shows that α is a Parseval g-fusion frame for $H \oplus X$.

Theorem 5.9. Let $\Lambda \oplus \Gamma=\left\{W_{i} \oplus V_{i}, \Lambda_{i} \oplus \Gamma_{i}, v_{i}\right\}_{i \in I}$ be a g-fusion frame for $H \oplus X$ with frame bounds A, B and $S_{\Lambda \oplus \Gamma}$ be the corresponding frame operator. Then

$$
\alpha=\left\{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}, v_{i}\right\}_{i \in I}
$$

is a g-fusion frame for $H \oplus X$ with frame operator $S_{\Lambda \oplus \Gamma}^{-1}$.

Proof. For each $x \in H$ and $y \in X$ we have

$$
\begin{aligned}
(x, y) & =S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-1}(x, y) \\
& =\sum_{i \in I} v_{i}^{2} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y) .
\end{aligned}
$$

We have for each $(x, y) \in H \oplus X$,

$$
\begin{aligned}
& \| \sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right)}(x, y), \sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right)}(x, y)\right\rangle \|\right. \\
& =\left\|\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y)\right\rangle\right\| \\
& \leq B\left\|S_{\Lambda \oplus \Gamma}^{-1}\right\|^{2}\|(x, y)\|^{2} .
\end{aligned}
$$

On the other hand for each $(x, y) \in H \oplus X$ we have

$$
\begin{aligned}
&\|(x, y)\|^{4}=\|\langle(x, y),(x, y)\rangle\|^{2} \\
&=\left\|\left\langle\sum_{i \in I} v_{i}^{2} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y),(x, y)\right\rangle\right\|^{2} \\
&=\left\|\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y)\right\rangle\right\|^{2} \\
& \leq \| \sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y) \|\right. \\
&\left.\quad \times \| \sum_{i \in I} v_{i}^{2}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}}(x, y)\right\rangle \| \\
& \quad \quad B\|(x, y)\|^{2}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y)\right\rangle\right\|
\end{aligned}
$$

then,

$$
B^{-1}\|(x, y)\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y),\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y)\right\rangle\right\|
$$

Therefore, α is a g-fusion frame for $H \oplus X$. Let S_{α} be the g-fusion frame for α and take $G_{i}=\Lambda_{i} \oplus \Gamma_{i}$. Now, for each $(x, y) \in H \oplus X$.

$$
\begin{aligned}
S_{\alpha}(x, y) & =\sum_{i \in I} v_{i}^{2} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right)}\left(G_{i} P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}\right)^{*}\left(G_{i} P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}\right) P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right)}(x, y) \\
& =\sum_{i \in I} v_{i}^{2}\left(P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right)}\right)^{*} G_{i}^{*} G_{i}\left(P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{i} \oplus V_{i}\right)}\right)(x, y) \\
& =\sum_{i \in I} v_{i}^{2}\left(P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}\right)^{*} G_{i}^{*} G_{i}\left(P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}\right)(x, y) \\
& =\sum_{i \in I} v_{i}^{2} S_{\Lambda \oplus \Gamma}^{-1} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}\right)(x, y) \\
& =S_{\Lambda \oplus \Gamma}^{-1}\left(\sum_{i \in I} v_{i}^{2} P_{W_{i} \oplus V_{i}}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right) P_{W_{i} \oplus V_{i}} S_{\Lambda \oplus \Gamma}^{-1}(x, y)\right) \\
& =S_{\Lambda \oplus \Gamma}^{-1} S_{\Lambda \oplus \Gamma}\left(S_{\Lambda \oplus \Gamma}^{-1}(x, y)\right) \\
& =S_{\Lambda \oplus \Gamma}^{-1}(x, y) .
\end{aligned}
$$

Therefore, $S_{\alpha}=S_{\Lambda \oplus \Gamma}^{-1}$.

Acknowledgments

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] A. Alijani, M. Dehghan, $*$-frames in Hilbert \mathscr{C}^{*} modules, U. P. B. Sci. Bull. Ser. A 73 (2011), 89-106.
[2] Lj. Arambašić, On frames for countably generated Hilbert C^{*}-modules, Proc. Amer. Math. Soc. 135 (2007), 469-478.
[3] P. G. Casazza, G. Kutyniok: Frames of subspaces. Wavelets, Frames and Operator Theory. Contemporary Mathematics 345. American Mathematical Society, Providence, 2004, pp. 87-114.
[4] J. B. Conway, A Course In Operator Theory, American Mathematical Society, Vol. 21, 2000.
[5] F. R. Davidson, \mathscr{C}^{*}-algebra by example, Fields Ins. Monog. 1996.
[6] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[7] X. Fang, J. Yu and H. Yao, Solutions to operator equations on Hilbert C^{*}-modules, Linear Algebra Appl. 431 (2009), 2142-2153.
[8] M. Frank, D. R. Larson, \mathscr{A}-module frame concept for Hilbert \mathscr{C}^{*}-modules, functinal and harmonic analysis of wavelets, Contempt. Math. 247 (2000), 207-233.
[9] D. Gabor, Theory of communications, J. Elec. Eng. 93 (1946), 429-457.
[10] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
[11] A. Khorsavi, B. Khorsavi, Fusion frames and g-frames in Hilbert \mathscr{C}^{*}-modules, Int. J. Wavelet. Multiresolution Inform. Proc. 6 (2008), 433-446.
[12] E. C. Lance, Hilbert C^{*}-Modules: A Toolkit for Operator Algebraist, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1995.
[13] M. Rossafi, S. Kabbaj, *-K-operator Frame for End $_{\mathscr{A}}^{*}(\mathscr{H})$, Asian-Eur. J. Math. 13 (2020), 2050060.
[14] M. Rossafi, S. Kabbaj, Operator Frame for $E n d_{\mathscr{A}}^{*}(\mathscr{H})$, J. Linear Topol. Algebra, 8 (2019), 85-95.
[15] S. Kabbaj, M. Rossafi, *-operator Frame for End $_{\mathscr{A}}^{*}(\mathscr{H})$, Wavelet Linear Algebra, 5 (2) (2018), 1-13.
[16] M. Rossafi, S. Kabbaj, *-K-g-frames in Hilbert \mathscr{A}-modules, J. Linear Topol. Algebra, 7 (2018), 63-71.
[17] M. Rossafi, S. Kabbaj, *-g-frames in tensor products of Hilbert C^{*}-modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17-25.
[18] M. Rossafi, S. Kabbaj, Generalized Frames for $B(\mathscr{H}, \mathscr{K})$, Iran. J. Math. Sci. Inf. accepted.

[^0]: *Corresponding author
 E-mail address: rossafimohamed@gmail.com
 Received September 14, 2021

