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Abstract: The nonlinear reaction-diffusion model, which represents the steady-state behaviour of a cationic glucose-

sensitive membrane with consideration of oxygen limitation and swelling-dependent diffusivities of involved species 

inside the membrane, is discussed. Analytical expressions of substrate concentration of oxygen, glucose, and gluconic 

acid in planar coordinates at steady-state conditions are derived for all kinetic parameters, and hence the effect of 

various factors on the responsiveness of the membrane is analysed. Efficient approaches based on the hyperbolic 

function and Taylor’s series methods are used to derive the approximate analytical solutions of the nonlinear boundary 

value problem. A numerical simulation was generated by highly accurate and widely used computer generated routines. 
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The derived analytical expressions are shown to be in strong agreements with the numerical results established in the 

literature. It is concluded that each method is a powerful tool for solving high-order boundary value problem in 

engineering and science. 

Keywords: boundary value problem; cationic glucose; hyperbolic function; reaction-diffusion equation; sensitive 

membrane; Taylor’s series. 

2010 AMS Subject Classification: 34A34, 41A58. 

 

1. INTRODUCTION 

Insulin-dependent diabetes has been a leading health concern worldwide because of the serious 

complications that are associated with it, such as retinopathy, neuropathy, and vascular disease. 

As the ultimate goal of having a self-regulated insulin delivery system requires substantial time 

and effort to be fulfilled, it has not been fully achieved.  However, there have been some 

remarkable developed strategies to reproduce the usual pattern of insulin kinetics. Testing whether 

a good metabolic control can prevent the long-term complications of diabetes includes intensified 

conventional therapy with multiple daily injections and continuous subcutaneous insulin infusion 

with external or implanted pumps [1]. 

Glucose-sensitive membranes are made using immobilized glucose oxidase (GOD) in pH-sensitive 

polymers [2], where in the presence of glucose; they swell and become more permeable to insulin.  

Glucose-sensitive membranes have been employed in insulin delivery systems as they deliver 

insulin in response to glucose [3–5]. In the presence of glucose and oxygen, these systems produces 

gluconic acid and hydrogen peroxide inside the copolymer [6–10]. At elevated glucose levels, 

cationic hydrogels, which consists of pH and amino groups decrease [7]. Several researchers 

studied the behavior of cationic hydrogels made from dimethyaminoethyl methacrylate, 

diethyaminoethyl methacrylate, 2-hydroxyethyl methacrylate and poly (ethylene glycol) grafts [8–

17]. 

As it is unlikely to attain optimal design of Glucose-sensitive membranes without setting up proper 

mathematical models for which approximate analytical solutions are determined, there has been 
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some remarkable advances in theoretical modeling. Abdekhodaie and Wu [7] presented a theory 

describing the steady state behavior of a cationic glucose-sensitive membrane while taking into 

account oxygen limitation and swelling-dependent diffusivities of species inside the membrane. 

Albin et al. [5] developed a mathematical model describing the steady-state behavior of two types 

of glucose sensitive membranes that are both synthetic hydrogels containing immobilized glucose 

oxidase enzyme. Leypoldt et al. [17]developed a model of two-substrate enzyme electrode for 

glucose.  Klumb et al. [18] proposed a theoretical model to evaluate possible designs for an 

insulin delivery system based upon a glucose sensitive hydrogel containing immobilized glucose 

oxidase and catalase.  Other theoretical models discussions can be found in [19,20]. 

Analytical solutions for nonlinear boundary value problems are more desired than numerical 

solutions because they provide a more accurate sensitive analysis of kinetic parameters on the 

governing system and hence facilitate the development of optimized models.  The nonlinear 

mathematical model discussed in this paper has been solved analytically using the homotopy 

analysis method, Genocchi Polynomials and Adomian decomposition method [21,22].  Other 

widely used methods that are prone to deliver accurate analytical results for solving this kind of 

system include Green’s function iterative method [23,24], variational iteration method [25,26], 

and homotopy perturbation method [27–29].  

In this communication, we present efficient and reliable approaches to analytically solve a system 

of nonlinear differential equation in the cationic glucose-sensitive membrane. The simplicity and 

efficiency of the proposed approaches stem from the fact that basic conceptual mathematics is 

being used. Therefore, these approaches are easily accessible to researchers for further 

investigation of the effect of kinetic parameters and possibly obtain an optimal glucose-sensitive 

membranes. The reliability of the proposed methods will be investigated by direct comparison with 

numerical simulations from the literature and software built-in functions.  

 

2. BOUNDARY VALE PROBLEM TO GLUCOSE-SENSITIVE MEMBRANE 

The chemical reaction scheme inside a glucose-sensitive membrane is described by [7]  
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22

oxidaseGlucose

2 OH+ acid GluconicOGlucose ⎯⎯⎯⎯ →⎯+                           (1) 

The incorporated catalase then implies the conversion  

222

Catalase

22 O
2

1
+OHOH ⎯⎯⎯ →⎯

.                            (2) 

When the excess of catalase is immobilized with glucose oxidase, the overall mechanism of the 

reaction is described by 

 acid GluconicO
2

1
Glucose 2 →+

                             (3) 

 

Figure 1. Schematic diagram illustrating the structure of glucose conversion to gluconic acid by 

glucose oxidase 

It is evident from the reaction, that in the presence of catalase, only one-half of an oxygen molecule 

is consumed per molecule of glucose [7]. For the completion and self-consistency of the research, 

the derivation of the governing nonlinear differential equations in planar coordinates inside the 

cationic glucose-sensitive membrane is given in Appendix D of the supplementary material. 

2.1 Relation between the concentrations of species  

Algebraic manipulations of Eqs. (D6)–(D7) and Eqs. (D7)–(D8) lead to Eqs. (4) and (5), 

respectively (See Appendix D for details) 

𝑑2

𝑑𝜒2
(
2𝑢 (𝜒)

𝜇2
−
𝛾 𝑣 (𝜒)

𝜇1
) = 0,                                                                                                                    (4) 

𝑑2

𝑑𝜒2
(𝑣 (𝜒) + 𝑤 (𝜒)) = 0.                                                                                                                          (5) 

Using boundary conditions (D9), concentrations of glucose and gluconic acid are obtained in terms 

of the concentration of oxygen 
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𝑣 (𝜒) = 1 +
2𝜇1(𝑢 (𝜒)−1)

𝛾 𝜇2
,                                                                                                                            (6)  

𝑤 (𝜒) = 1 − 𝑣 (𝜒) = −
2𝜇1(𝑢 (𝜒) − 1)

𝛾 𝜇2
.                                                                                               (7) 

The main objective now is to obtain an analytical expression for the concentration profile ( )u  

of oxygen, which will immediately lead to analytical expressions for the concentration profiles 

𝑣(𝜒) and 𝑤(𝜒). The relation between glucose, oxygen and gluconic acid concentrations for all 

values of kinetics parameters is given by  

𝑢(𝜒) (
4𝜇1
𝛾𝜇2

) − 𝑣(𝜒) + 𝑤(𝜒) =  (
4𝜇1
𝛾𝜇2

) − 1.                                                                                            (8) 

 

3. DERIVATION OF ANALYTICAL EXPRESSIONS OF CONCENTRATIONS 

In this section, we introduce simple, efficient and reliable techniques to derive analytical 

expressions of concentration for oxygen, which will immediately lead to the determination of 

analytical expressions for glucose and gluconic acid.    

3.1 A modified hyperbolic function method 

Special functions, in general, have always been used as an effective tool to solve nonlinear 

differential systems. For example, J. He utilized the exponential function to solve a nonlinear wave 

equation [30]. Furthermore, a recent research article used the gamma function to derive a semi-

analytic solution to a small amplitude oscillator equation[31]. The modified hyperbolic function 

method, considered a special case of the exponential function method [30] , is reliable and highly 

accurate in obtaining semi-analytic solutions of nonlinear models [32,33]. 

Employing the hyperbolic function method to solve the boundary value problem (D6)–(D9) yields 

the analytical expression for the normalized concentration of oxygen (see details in Appendix B) 

𝑢(𝜒) = cosh(𝑏𝜒) − tanh(𝑏 2)                                                                                                               (9)⁄  

Using equations (6) and (7) lead to the following analytical expressions for the normalized 

concentration of glucose and gluconic acid 

𝑣(𝜒) = 1 +
2𝜇1
𝛾𝜇2

(cosh(𝑏𝜒) − tanh (
𝑏

2
) sinh(𝑏𝜒) −1),                                                                 (10) 
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𝑤(𝜒) =
2𝜇1
𝛾𝜇2

(1 − cosh(𝑏𝜒) − tanh (
𝑏

2
) sinh(𝑏𝜒)),                                                                       (11) 

where the unknown parameter 𝑏 satisfies the equation  

𝑏2

(

 
 
1 +

𝛼 sech(𝛽 2⁄

𝛾 (1 + 2𝜇1 (
sech(𝑏 2⁄ ) − 1

𝛾𝜇2
))

+
𝛽 sech(𝛽 2)⁄

𝛾

)

 
 
=
𝜇2
𝛾
.                                               (12) 

Numerical values of 𝑏 for various values of the fundamental parameters can be obtained easily 

by using any computer algebra software. In Table S.1, the numerical values of 𝑏, which are used 

in Figures 2-6, are computed for various values of parameters. 

3.2 Taylor series method 

Taylor series method (TSM) is one of the simplest and most effective methods to solve nonlinear 

equations. Moreover, TSM is accessible to the broader research community because it requires no 

robust mathematical analysis background. Although some obstacles might emerge when using 

TSM, like in the case of strong nonlinear differential equations, the way around these obstacles is 

usually easy such as using more derivatives, and getting higher degreed polynomials or using Padé 

approximant. In recent years, TSM has been intensively employed to solve nonlinear ordinary and 

fractional differential equations such as Lane-Emden, third-order boundary value problems, 

fractional Bratu-type equations, and nonlinear oscillator problems [34–43]. 

Using Taylor series approach, analytical expressions for normalized concentrations are obtained 

for the general case (details in Appendix C).  For example, the analytical expressions for 

normalized concentrations for the experimental values 𝛽 = 0.5, 𝛾 = 5, 𝜇0 = 𝜇1 = 𝜇2 = 10, 𝛼 =

0.1 and 𝑝 = −1.6749 are given by 

𝑢(𝜒) = 1 − 1.6749𝜒 + 2.2321𝜒2 − 1.1216𝜒3 + 0.6579𝜒4 − 0.0935𝜒5,                           (13) 

𝑣(𝜒) = 1 −
2𝜇1
𝛾𝜇2

(1.6749𝜒 + 2.2321𝜒2 − 1.1216𝜒3 + 0.6579𝜒4 − 0.0935𝜒5),                 (14) 

𝑤(𝜒) =
2𝜇1
𝛾𝜇2

(1.6749𝜒 + 2.2321𝜒2 − 1.1216𝜒3 + 0.6579𝜒4 − 0.0935𝜒5).                        (15) 

3.3 Previous analytical expression of concentrations  

Sevukaperumal et al. [21] employed the homotopy analysis method (HAM) to derive the following 



8360 

MARY, DEVI, MEENA, RAJENDRAN, ABUKHALED 

analytical expressions for the concentration of oxygen inside the cationic glucose-sensitive 

membrane  

𝑢(𝜒) = cosh(𝐶𝜒) + 𝐵 cosh(𝐶𝜒) + ℎ𝐷 cosh(𝐶𝜒) + 𝐷/ sinh(𝐶),                                           (16) 

where  

𝐶 = √
𝜇2
2
,  

𝐵 =
(1 − cosh(𝐶))

sinh(𝐶)
, and                                                                                                                                

𝐷 = 𝑀1 [
2𝐵 sinh(2𝐶) + (1 + 𝐵2) cosh(2𝐶)

+3(𝐵2 − 1) + 2(1 − 2𝐵2) cosh(𝐶)
]

+ 𝑀2 [

𝐵(3 + 𝐵2) sinh(3𝐶)

+(1 + 3𝐵2)(cosh(3𝐶) − cosh(𝐶))          

+12𝐶(1 − 𝐵2)(sinh(𝐶) + 𝐵 cosh(𝐶))

]                                            (17) 

in which 

𝑀1 =
𝛾𝜇2(𝛼 + 𝛽) − 2𝛽𝜇1
6𝛾(𝛾𝜇2 − 2𝜇1)

 and 𝑀2 =
𝛽𝜇1

16𝛾(𝛾𝜇2 − 2𝜇1)
 , 

and ℎ  is the convergence control parameter. Analytical expressions for the concentration of 

glucose and gluconic acid are obtained by substituting Eq. (16) into Eqs. (6) and (7), respectively. 

3.4 Determination of pH profile inside the membrane 

The pH in gluconic acid is determined by the concentration of buffer ions and gluconic acid in the 

microsphere. Gluconic acid production with a concentration of 𝐶a inside the membrane changes 

pH to pH
2
 via [8] 

pH
2
= p𝐾 + log{

10pH1−p𝐾 −
𝐶a

[buffer]
(1 + 10pH1−p𝐾)

1 +
𝐶a

[buffer]
(1 + 10pH1−p𝐾)

}.                                                          (18) 

From Eq. (D.5), we have 𝐶𝑎 =
𝑤𝐶𝑎

∗

[buffer]
 and hence from Eq. (11) pH is determined by 

exp(pH
2
− p𝐾) =

10pH1−p𝐾 − ((
2𝜇1(1 − 𝑢(𝜒))

𝛾𝜇2
)

𝐶𝑎
∗

[buffer]
) (1 + 10pH1−p𝐾)

1 + ((
2𝜇1(1 − 𝑢(𝜒))

𝛾𝜇2
)

𝐶𝑎∗

[buffer]
) (1 + 10pH1−p𝐾)

                        (19) 

3.5 Estimation of kinetics parameters  
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From Eq. (D2), the following is easily obtained 

1

𝑅
=

1

𝑣max

+
1

𝐶g

(
𝐾g

𝑣max

) +
1

𝐶ox

(
𝐾ox

𝑣max

)                                                                                              (20) 

where 𝑅, 𝐶g and 𝐶ox are known while the remaining parameters are unknown. Using multiple 

recursion analysis, we can obtain the kinetic parameter 𝑣max and the Michaelis-Menten 𝐾𝑔 and 

𝐾ox. 

 

4. NUMERICAL SIMULATION 

The nonlinear differential equations (D.6–D.9) are solved numerically using the MATLAB 

function pdex4 (see Appendix E in the supplementary material). The numerical solutions are 

compared to the derived analytical expressions and the results for the concentration of species are 

summarized in Figures 2-5 and Tables S.2-S.4.  Strong agreements between analytical and 

numerical results are noted. 

 

5. DISCUSSION 

By employing a modified hyperbolic function method, we derived Eqs. (9–11) as approximate 

analytical expressions for the concentrations of oxygen, glucose and gluconic acid for all 

experimental values of parameters. Using the same experimental values of        
1

 ,,, and 
2

  

used in [8], the derived analytical results are shown to strongly agree with numerical results as 

depicted in Figure 2.  

Figures 3–5 illustrate the concentration profiles of oxygen u , glucose v , and gluconic acid w  

for various values of the dimensionless parameters. In addition to strong agreement with numerical 

results, it is inferred from these figures that for all possible cases of Thiele modulus (
21

 = ,

21
    and 

21
   ),  the concentrations of oxygen ( )u   and glucose ( )v   decrease 

gradually before they start to increase when the dimensionless length reaches half of the thickness 

of the membrane. However, the behavior of the concentration of the gluconic acid is exactly 
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opposite to that of the concentration of oxygen and glucose as seen in Figure 5. 

 

Figure 2. Dimensionless concentration profiles of oxygen u , glucose v  and gluconic acid w  

against dimensionless distance. Solid line represent the analytical solution using Eq. (9-11) 

whereas dotted line represents the numerical solution in [8]. 

 

 

 

Figure 3. Dimensionless concentration profiles of oxygen u  against the dimensionless distance 

  using Eq. (9). 
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Figure 4. Dimensionless concentration profiles of glucose v  against the dimensionless distance 

  using Eq. (10). 

 

Figure 5. Dimensionless concentration profiles of gluconic acid w   against the dimensionless 

distance   using Eq. (11). 
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5.1 Effects of the constants 𝜶,𝜷 and 𝜸 

As mentioned in the supplementary material, the constant 𝛼  is defined as the ratio of the 

Michaelis constants 𝐾g  and 𝐾ox , while the constant 𝛽  represents the ratio of the bulk 

concentration 𝐶g
∗ and Michaelis constant 𝐾ox.  Figures 3(a) and 4(a) show that 𝛼 (𝛽) is directly 

proportional to the concentration of oxygen (glucose).  However, the kinetic parameters 𝛼 and 

𝛽 are inversely proportional to the concentration of gluconic acid as shown in Figures 5(a–b).  

The kinetic parameter 𝛾  represents the ratio of the concentration of oxygen and glucose in 

external solution. From Figures 3(c), 4(c) and 5(c), it is inferred that as 𝛾 decreases, the gradients 

of the concentration profiles of oxygen and gluconic acid increase while the gradient of the 

concentration profile of glucose decreases. 

5.2 Effects of membrane thickness ( 𝒍 ,  maximal reaction velocity (𝒗max , and diffusion 

coefficients (𝑫 and 𝑫ox,  

As introduced in the supplementary material, 𝜇1 and 𝜇2 are referred to as Thiele modulus for 

the oxygen and glucose, respectively.  They are both directly proportional to the product of 

thickness of membrane 𝑙 and maximal reaction velocity 𝑣𝑚𝑎𝑥. But 𝜇1 is inversely proportional 

to diffusion parameter 𝐷  and 𝜇2  is indirectly proportional to diffusion parameter 𝐷ox . The 

influence of parameters 𝜇1 and 𝜇2 can be studied from Figures 3(d–f), 4(d–f) and 5(d–f). It is 

observed from Figure 3(d) that an increase in 𝜇1 (i.e. increase of the maximal reaction velocity, 

thickness of the membrane and/or decrease of the diffusion parameter) implies an increase in the 

concentration of oxygen.   Figure 3(e) states that the effect of 𝜇2 on the concentration of oxygen 

is opposite to that of 𝜇1. Figure 3(f) points out that a decrease in the common value of both Thiele 

modulus 𝜇1 and 𝜇2 results in an increase in the concentration of oxygen. Figures 4(d–f) show 

that the effect of 𝜇1 and 𝜇2 on the concentration of glucose is exactly opposite to their effect on 

the concentration of oxygen. Figures 5(d–e) show that when 𝜇1 is increasing or 𝜇2 is decreasing, 

then the concentration of gluconic acid is increasing in its gradient at the center of the length of 

the membrane. When 𝜇1  and 𝜇2  are equal and increase, the concentration of gluconic acid 

increases as depicted in Figure 5(f). The effect of 𝜇1 on the concentration of gluconic acid is 
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evidently stronger than the effect of 𝜇2. In each enzymatic reaction, the maximal reaction velocity 

𝑣max  is proportional to the concentration of the enzyme in the microsphere and the maximum 

reaction rate is determined by the overall kinetics. 

 

Figure 6. Plot of exp (pH
2
− p𝐾) against pH

1
− p𝐾 using Eq. (19) 

 

5.3 Effect of kinetic parameters on the pH profile 

Figure 6, which plots the curve exp (pH
2
− p𝐾)  against pH

1
− p𝐾  shows that exp (pH

2
−

p𝐾)  uniformly increases for increasing values of pH
1
− p𝐾. From this figure, we observe that 

exp (pH
2
− p𝐾) approaches zero when the pH of a buffer remains fixed in the presence or the 
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absence of gluconic acid. It is also observed that increasing the values of 𝛼, 𝛽, 𝛾, 𝜇2 and [buffer] 

will result in increasing the gradient of exp (pH
2
− p𝐾).  Moreover, decreasing the thickness of 

the membrane, the value of the concentration of glucose in the external solution and 𝜇1 causes 

the exp (pH
2
− p𝐾) to reach its maximal gradient. 

 

6. CONCLUSIONS  

Two efficient and reliable methods based on the modified hyperbolic function and Taylor’s series 

were employed to derive analytical expressions, in terms of kinetic parameters, for the 

concentrations of oxygen, glucose, and gluconic acid.  These analytical expressions where shown 

to be of high accuracy when compared to numerical solutions from the literature and numerical 

simulations generated by the widely used MATLAB function pdex4. The kinetic rate constants are 

determined and its effect on the concentration profiles were discussed. The derived analytical 

results can be further utilized to determine the effect of different parameters on the governing 

system and hence optimize the design of a glucose membrane. The simplicity of the approaches 

used in this research make them accessible to the wider natural science community to solve other 

nonlinear reaction-diffusion equations that arise in physical and chemical sciences. 

 

 

 

 

 

 

 

 

 

 

 



8367 

SOLUTIONS OF THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION 

 

NOMENCLATURE 

Symbol Definition and units 

YD  Diffusion coefficient of catalyst ag,OX,Y =  (cm2/s) 

( )xCY  Concentration of the catalyst ag,OX,Y =  (mol/cm3) 

*

YC
 

Species concentration in the external medium gOX,Y = (mM) 

YK
 

Michaelis–Menten constant for gOX,Y =  (mol/cm3) 

maxv
 

Maximal reaction velocity (cm/s) 

x  The spatial coordinate (cm) 

l Thickness of the membrane (cm) 

u, v and w Dimensionless concentration of oxygen, glucose and gluconic acid 

 and  ,  Dimensionless constants 

21  and   Thiele modulus for the oxygen and glucose 

𝑢 Dimensionless concentration of glucose (None) 

𝑣 Dimensionless concentration of oxygen (None) 

𝑤 Dimensionless concentration of gluconic acid (None) 


 Dimensionless distance (None) 
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APPENDIX A. BASIC CONCEPT OF THE MODIFIED HYPERBOLIC FUNCTION METHOD  

 We beging by expressing a general second order differential equation kp  in the following form [28]:   

𝑝𝑘: 𝑓(𝑢𝑘, 𝑢𝑘
′ , 𝑢𝑘

′′, 𝑎𝑘 , 𝑏𝑘) = 0                 (A.1) 

where 𝑝𝑘  represents the nonlinear differential equation, 𝑢𝑘 = 𝑢𝑘(𝑥, 𝑎𝑘 , 𝑏𝑘 ,⋯ )  in which 𝑎𝑘 , 𝑏𝑘  are given 

parameters, 𝑘 = 1, 2,⋯ , 𝑛 and  𝐿 ≤ 𝑥 ≤ 𝑈. 

The boudary conditions are defined by 

At 𝑥 = 𝐿, 𝑢𝑘(𝑥) = 𝑢𝑘𝐿0  or  𝑢′𝑘(𝑥) = 𝑢𝑘𝐿1                                      (A.2) 

At 𝑥 = 𝑈, 𝑢𝑘(𝑥) = 𝑢𝑘𝑈0  or  𝑢′𝑘(𝑥) = 𝑢𝑘𝑈1                                (A.3) 

Assume that the solution of equation (A.1) is a hyperbolic function of the form 

𝑢𝑘(𝑥) = 𝐴𝑘 cosh(𝑏𝑥) + 𝐵𝑘 sinh(𝑏𝑥)                                                                                                   (A.4) 

where the constant coefficients 𝐴𝑘  and 𝐵𝑘 are determined from the boundary conditions (A.2) and (A.3) as 

follows:  

𝑢𝑘(𝐿) = 𝐴𝑘 cosh(𝑏𝐿) + 𝐵𝑘 sinh(𝑏𝐿) = 𝑢𝐿0   or   𝑢′𝑘(𝐿) = 𝑚(𝐴𝑘 cosh(𝑏𝐿) + 𝐵𝑘 sinh(𝑏𝐿)) = 𝑢𝐿0            (𝐴. 5) 

𝑢𝑘(𝑈) = 𝐴𝑘 cosh(𝑏𝑈) + 𝐵𝑘 sinh(𝑏𝑈) = 𝑢𝑈0   or   𝑢′𝑘(𝑈) = 𝑚(𝐴𝑘 cosh(𝑏𝑈) + 𝐵𝑘 sinh(𝑏𝑈)) = 𝑢𝑈0       (𝐴. 6)    

The unknown parameter 𝑏 can be obtained by substituting Eq. (A.4) into Eq. (A.1) for any prescribed value 

𝑥 = 𝐾, where 𝐿 ≤ 𝐾 ≤ 𝑈. That is 𝑏 is obtained by solving the equation 

𝑝𝑘: 𝑓(𝑢𝑘(𝐾, 𝐴𝑘 , 𝐵𝑘 , 𝑏), 𝑢𝑘
′ (𝐾, 𝐴𝑘, 𝐵𝑘 , 𝑏), 𝑢𝑘

″(𝐾, 𝐴𝑘 , 𝐵𝑘 , 𝑏)) = 0                                                               (A.7) 

 

APPENDIX B. ANALYTICAL SOLUTION OF THE EQUATIONS (D6-D9) USING THE 

MODIFIED HYPERBOLIC FUNCTION METHOD 

 Consider the following dimensionless nonlinear boundary value problem (D.6) and (D.9), renamed here as 

(B.1) and (B.2), respectively 

𝑑2𝑢

𝑑𝑥2
−
𝜇2

2

𝑢

(1+
𝛼𝑢

𝛾𝑣
+
𝛽𝑢

𝛾
)
= 0                                                                                                                   (𝐵. 1) 
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𝑢(𝜒) = 1 for 𝜒 = 0 and 𝜒 = 1                                                                                                                  (𝐵. 2) 

As described in Appendix A, we assume that the approximate solution of Eqs. (B.1)–(B2) is given by 

𝑢(𝜒) = 𝐴 cosh(𝑏𝜒) + 𝐵 sinh(𝑏𝜒)                                                                                                                (𝐵. 3) 

where 𝐴,𝐵 and 𝑏  are constants. From boundary conditions (B.2), it immediately follows that 𝐴 = 1 , 𝐵 =

− tanh(𝑏 2⁄ ) and hence 

𝑢(𝜒) = cosh(𝑏𝜒) − tanh (𝑏 2)sinh (𝑏𝜒)⁄                                                                                                  (𝐵. 4) 

To find 𝑏, rewrite Eq. (B.1) as follows, 

𝔽(𝜒) =
𝑑2𝑦

𝑑𝑥2
−
𝜇2

2

𝑢

(1+
𝛼𝑢

𝛾𝑣
+
𝛽𝑢

𝛾
)
= 0                                                                                                        (𝐵. 5) 

Substituting (B.4) into (B.5) and then letting 𝜒 = 1 2⁄  gives 

𝔽(𝜒) = 𝑏2sech (𝑏 2)⁄ −
𝜇2
2

sech (𝑏 2)⁄

(1 + (
𝛼

𝛾 +
2𝜇1(sech(𝑏 2⁄ ) − 1)

𝜇2

+
𝛽
𝛾)
sech(𝑏 2⁄ ))

= 0                         (𝐵. 6) 

Simple algebraic manipulation implies the 𝑏  can be computed for various values of the parameters 

𝛼, 𝛽, 𝛾, and 𝜇 from the implicit relation 

𝑏2(1+
𝛼 sech (𝑏 2)⁄

𝛾 (1 +
2𝜇1(sech(𝑏 2⁄ ) − 1)

𝛾𝜇2
)
+
𝛽 sech (𝑏 2)⁄

𝛾
) =

𝜇2
2
.                                                                 (𝐵. 7) 

Eqs. (B.4) and (B.7) yield a semi-analytical expression of the concentration of oxygen for all kinetic parameters.  

Semi-analytical expressions of concentrations of glucose and gluconic acid are readily obtained from Eqs. (10) 

and (11).   

APPENDIX C. ANALYTICAL SOLUTION OF NONLINEAR EQUATIONS (D6-D9) USING 

TAYLOR SERIES METHOD   

For Eq. (B.1), consider the Maclaurin series (Taylor's series at χ = 0) for the dimensionless concentration of 

( )u  given by  
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𝑢(𝜒) = ∑(
𝑑𝑞𝑢

𝑑𝜒𝑞
|
𝜒=0

)
𝜒𝑞

𝑞!
.

𝑟

𝑞=0

                                                                                                                                         (𝐶. 1) 

From boundary conditions (Eq. (D.9)), it is concluded that 𝑢(0) = 0. Now consider 𝑢′(0) = 𝑝, where 𝑝 is a 

constant and let 
𝑑𝑞𝑢

𝑑𝜒𝑞
|
𝜉=0

= 𝐴𝑞  and 
𝑑𝑞𝑣

𝑑𝜒𝑞
|
𝜉=0

= 𝐵𝑞, then   

𝑢(𝜒) = ∑𝐴𝑞

𝑟

𝑞=0

𝜒𝑞

𝑞!
.                                                                                                                                                            (𝐶. 2) 

As a natural consequence of Eq. (B.1), we obtain  

𝐴0 = 1,𝐴1 = 𝑝, 𝐴2 =
1

2

𝜇2
𝑎0
, 𝐴3 = 𝐴2 (𝑝 −

𝑎1
𝑎0
) , 𝐴4 = 𝐴2

2 − 2𝐴3
𝑎1
𝑎0
− 𝐴2

𝑎2
𝑎0

 

𝐴5 = 𝐴2

(

 
 
𝐴3 + 6

𝑎1
𝑎0
2 (𝑝𝑎1 + 𝑎2 −

𝑎1
2

𝑎0
−
1

4
𝜇2) − 3

𝑎2
𝑎0
−
𝐴3
𝑎0

𝛼 + 𝛽

𝛾

+
𝛼

𝑎0
(
6𝐵1

3 − 𝑝𝐵1
2 + 3𝐴2𝐵1 − 6𝐵1𝐵2 + 3𝑝𝐵2 + 6𝐵3

𝛾
)
)

 
 
.                                                              (𝐶. 3) 

  

 Also, from Eq. (6), we obtain  

𝐵1 =
2𝑝𝜇1
𝛾𝜇2

, 𝐵2 =
𝜇1
𝑟𝑎0

, 𝐵3 =
𝑝𝜇1
𝑎02

(1 +
2𝛼𝜇1
𝛾2𝜇2

),                                                                                                     (𝐶. 5) 

in which 

𝑎0 = 1+
𝛼

𝛾
+
𝛽

𝛾
; 𝑎1 = 𝑝

(𝛼 + 𝛽)

𝛾
+
𝛼𝐵1
𝛾
; 𝑎2 = 𝐴2 (

𝛼 + 𝛽

𝛾
) + 𝛼 (

2𝐵1(𝐵1 − 𝑝) − 𝐵2
𝛾

).                           (𝐶. 6) 

Using Eqs. (C.4–C.6) in Eq. (C.3) leads to the analytical expression 

𝑢(𝜒) = 1 + 𝑝𝜒 +
1

4

𝜇2
𝑎0
𝜒2 +

𝐴2
6
(𝑝 −

𝑎1
𝑎0
)𝜒3 +

1

24
(𝐴2

2 − 2𝐴3
𝑎1
𝑎0
− 𝐴2

𝑎2
𝑎0
)𝜒4

+

(

  
 𝐴2
120

(

 
 
𝐴3 + 6

𝑎1

𝑎0
2 (𝑝𝑎1 + 𝑎2 −

𝑎1
2

𝑎0
−
1

4
𝜇2) − 3

𝑎2
𝑎0
−
𝐴3
𝑎0

𝛼 + 𝛽

𝛾

+
𝛼

𝑎0
(
6𝐵1

3 − 𝑝𝐵1
2 + 3𝐴2𝐵1 − 6𝐵1𝐵2 + 3𝑝𝐵2 + 6𝐵3

𝛾
)
)

 
 

)

  
 
𝜒5.                 (𝐶. 7) 

The unknown constant 𝑝 is easily computed from the boundary condition 𝑢(1) = 1. For example, using Eq. 

(C.7) we obtain that the analytical expressions for normalized concentrations using parameters 𝛽 = 0.5, 𝛾 =

5, 𝜇0 = 𝜇1 = 𝜇2 = 10, 𝛼 = 0.1 are given by 

𝑢(𝜒) = 1 + 𝑝𝜒 + 2.2321𝜒2 + 0.6696𝑝𝜒3 − (0.0319𝑝2 − 0.7474)𝜒4

+ (0.0024𝑝2 + 0.0491)𝑝𝜒5,                                                                                             (𝐶. 8) 
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𝑣(𝜒) = 1 +
2𝜇1
𝛾𝜇2

(𝑝𝜒 + 2.2321𝜒2 + 0.6696𝑝𝜒3 − (0.0319𝑝2 − 0.7474)𝜒4

+ (0.0024𝑝2 + 0.0491)𝑝𝜒5),                                                                                              (𝐶. 9) 

𝑤(𝜒) = −
2𝜇1
𝛾𝜇2

(𝑝𝜒 + 2.2321𝜒2 + 0.6696𝑝𝜒3 − (0.0319𝑝2 − 0.7474)𝜒4

+ (0.0024𝑝2 + 0.0491)𝑝𝜒5).                                                                                             (𝐶. 10) 

Using boundary condition 𝒖(𝟏) = 𝟏, we obtain from Eq. (C.8) that 𝒑 satisfies the equation 

3.9795 + 1.7178𝑝 − 0.0319𝑝2 + 0.0024𝑝3 = 1,                                                                        (𝐶. 11) 

whose real solution is 𝑝 = −1.6749. Substituting this value of 𝑝 in Eqs. (C.8–C.10) imply Eqs. 

(13-15).   

 

APPENDIX-D. MATHEMATICAL FORMULATION OF THE PROBLEM. 

The one-dimension steady- state nonlinear reaction-diffusion equations in cationic glucose-

sensitive membrane have been analyzed by Abdekhodaie and Wu [9]. For the self-consistency, the 

steady-state nonlinear equations for the concentrations of glucose, oxygen and gluconic acid are 

given below. 

0i2

i
2

i =+ Rv
dx

Cd
D where  aox,g,i =                                     (D1) 

The terms a'' and ox'',g''  provided to indicate glucose, oxygen and gluconic acid respectively, 

the stoichiometric coefficients, iv  , are -1, -1/2, 1 in turn for a andox  g,i =  ,    iC   is the 

concentration, iD   the corresponding diffusion coefficient in the membrane, x   is the spatial 

coordinate and R is the overall reaction rate of the form  

 

OXgggOX

OXgmax

)( KCCKC

CCv
R

++
=  

   

(D2) 

where maxv  is the maximum reaction rate, oxg  and  KK  are Michaelis-Menten constant for the 

glucose and glucose oxidase respectively. For the case OXgggOX )( KCCKC + , overall reaction 

rate can be simplified to: 
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OX

OX

max C
K

v
R =      (D3) 

the boundary conditions for Eq. (D1) is given by assuming that the membrane is immersed in a 

well stirred external medium with a constant concentration of each species due to continuous flow 

of a fresh medium.  

*

OXOX CC = ;  
*

gg CC = ;  0a =C  at lxx == ,0     (D4) 

where l is the thickness of the membrane and *

OXC  and 
*

gC  are the concentrations of oxygen and 

glucose in the external solution, respectively. We can assume that the diffusion coefficient of 

glucose and gluconic acid are equal ( DDD == ag ).  

The non-linear differential equations arise from Eq.(D1) for various concentrations are altered as 

dimensionless equations by using the dimensionless parameters mentioned in [38] 

    ;   ;  ; ;   ;   ;   ;  ;
OXOX

2

max
2

OX

2

max
1*

OX

*

g

OX

*

g

OX

g

*

g

a

*

g

g

*

OX

OX

kD

lv

Dk

lv

C

C

k

C

k

k

C

C
w

C

C
v

C

C
u

l

x
=========

   (D5) 

Eq. (D1) reduced to dimensionless forms for various concentrations as follows: 

0

1
2

2

2

2

=









++

−

γ

uβ

vγ

uα

uμ

dχ

ud
                       (D6) 

0

1

1

2

2

=









++

−











 u

v

u

u

d

vd
                      (D7) 

0

1

1

2

2

=









++

+











 u

v

u

u

d

wd
                         (D8) 

where u, v and w represent the dimensionless concentration of oxygen, glucose and gluconic acid. 

 and  ,  are dimensionless constant. 21  and   are the Thiele modulus for the oxygen and 

glucose. Now the boundary conditions reduced to  

;1)( =u   1)( =v ;  0)( =w  at ,0=  1=                  (D9) 



8373 

SOLUTIONS OF THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION 

APPENDIX E: NUMERICAL PROGRAM FOR THE SOLUTION OF SYSTEMS OF NON-LINEAR 

EQS. (D6)-(D8) 

function pdex4dimenless 

m = 0; 

x = linspace(0,1,21); 

t = linspace(0, 100000); 

sol = pdepe(m, @pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); u2 = sol(:,:,2); u3 = sol(:,:,3); 

plot(x,u1(end)) 

% -------------------------------------------------------- 

function [c,f,s]=pdex4pde(x,t,u,DuDx) 

c = [1; 1; 1]; 

f = [1; 1; 1].* DuDx; 

alpha = 0.1; beta  = 0.5; gamma = 5; mu2 = 10; mu1 = 10;   

F = -mu2*u(1)/(2*(1+alpha/gamma*(u(1)/u(2))+beta*(1/gamma)*u(1))); 

F1= -mu1*u(1)/(gamma*(1+alpha/gamma*(u(1)/u(2))+beta*(1/gamma)*u(1))); 

F2=  mu1*u(1)/(gamma*(1+alpha/gamma*(u(1)/u(2))+beta*(1/gamma)*u(1))); 

s = [F; F1 ;F2]; 

% -------------------------------------------------------- 

function u0 = pdex4ic(x); 

u0 = [0; 1; 0]; 

% -------------------------------------------------------- 

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) 

pl = [ul(1)-1; ul(2)-1; ul(3)]; 

ql = [0; 0; 0]; 

pr = [ur(1)-1; ur(2)-1; ur(3)]; 

qr = [0; 0; 0]; 
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