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Abstract. In this work, we introduce the notion of K-operator frame for the set of all adjointable operators

Hom∗A (X ) on a Hilbert pro-C∗-module X . We also study the tensor product of K-operator frame for Hilbert

pro-C∗-modules. Finally, we establish its dual and some properties.
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1. INTRODUCTION

In 1952, Duffin and Schaeffer [2] introduced the notion of frame in nonharmonic Fourier

analysis. In 1986 the work of Duffin and Schaeffer was continued by Grossman and Meyer [6].

After their works, the theory of frame was developed and has been popular.

The notion of frame on Hilbert space has already been successfully extended to pro-C∗-

algebras and Hilbert modules. In 2008, Joita [8] proposed frames of multipliers in Hilbert
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pro-C∗-modules and showed that many properties of frames in Hilbert C∗-modules are valid for

frames of multipliers in Hilbert modules over pro-C∗-algebras.

Operator frames for B(H ) is a new notion of frames that Li and Cio introduced in [10] and

generalized by Rossafi in [14]. In this article we introduce the notion of K-operator frame for

the space Hom∗A (X ) of all adjointable operators on a Hilbert pro-C∗-module for X .

This article is organized as follows: In section 2, we recall some fundamental definitions and

notations of Hilbert pro-C∗-modules. In section 3, we give the defintion of K-operator frame and

some properties. In section 4, we investigate the tensor product of Hilbert pro-C∗-modules, we

show that tensor product of K-operator frames for Hilbert pro-C∗-modules X and Y , present

K-operator frame for X ⊗Y . Lastly, the dual of K-operator frame and some properties are

discussed.

2. PRELIMINARIES

The basic information about pro-C∗-algebras can be found in the works [3, 4, 5, 11, 7, 12, 13].

Recall that a pro-C∗-algebra is a generalization of the notion of a C∗-algebra and it is defined

as a complete Hausdorff complex topological ∗-algebra A whose topology is determined by

its continuous C∗-seminorms in the sens that a net {aα} converges to 0 if and only if p(aα)

converges to 0 for all continuous C∗-seminorm p on A (see [7, 9, 13]), and we have:

1) p(ab)≤ p(a)p(b)

2) p(a∗a) = p(a)2

for all a,b ∈A

If the topology of pro-C∗-algebra is determined by only countably many C∗-seminorms, then

it is called a σ -C∗-algebra.

We denote by sp(a) the spectrum of a such that: sp(a) = {λ ∈ C : λ1A −a is not invertible}

for all a ∈A . Where A is unital pro-C∗-algebra with unite 1A .

The set of all continuous C∗-seminorms on A is denoted by S(A ). If A + denotes the set of

all positive elements of A , then A + is a closed convex C∗-seminorms on A .

Example 2.1. Every C∗-algebra is a pro-C∗-algebra.
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Proposition 2.2. Let A be a unital pro-C∗-algebra with an identity 1A . Then for any p∈ S(A ),

we have:

(1) p(a) = p(a∗) for all a ∈ A

(2) p(1A ) = 1

(3) If a,b ∈A + and a≤ b, then p(a)≤ p(b)

(4) If 1A ≤ b, then b is invertible and b−1 ≤ 1A

(5) If a,b ∈A + are invertible and 0≤ a≤ b, then 0≤ b−1 ≤ a−1

(6) If a,b,c ∈A and a≤ b then c∗ac≤ c∗bc

(7) If a,b ∈A + and a2 ≤ b2, then 0≤ a≤ b

Definition 2.3. [13] A pre-Hilbert module over pro-C∗-algebra A , is a complex vector space

E which is also a left A -module compatible with the complex algebra structure, equipped with

an A -valued inner product 〈., .〉 E×E → A which is C-and A -linear in its first variable and

satisfies the following conditions:

1) 〈ξ ,η〉∗ = 〈η ,ξ 〉 for every ξ ,η ∈ E

2) 〈ξ ,ξ 〉 ≥ 0 for every ξ ∈ E

3) 〈ξ ,ξ 〉= 0 if and only if ξ = 0

for every ξ ,η ∈ E. We say E is a Hilbert A -module (or Hilbert pro-C∗-module over A ). If E

is complete with respect to the topology determined by the family of seminorms

p̄E(ξ ) =
√

p(〈ξ ,ξ 〉) ξ ∈ E, p ∈ S(A )

Let A be a pro-C∗-algebra and let X and Y be Hilbert A -modules and assume that I and J

be countable index sets. A bounded A -module map from X to Y is called an operators from

X to Y . We denote the set of all operator from X to Y by HomA (X ,Y ).

Definition 2.4. An A -module map T : X −→Y is adjointable if there is a map T ∗ : Y −→X

such that 〈T ξ ,η〉= 〈ξ ,T ∗η〉 for all ξ ∈X ,η ∈ Y , and is called bounded if for all p ∈ S(A ),

there is Mp > 0 such that p̄Y (T ξ )≤Mp p̄X (ξ ) for all ξ ∈X .

We denote by Hom∗A (X ,Y ), the set of all adjointable operator from X to Y and

Hom∗A (X ) = Hom∗A (X ,X )
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Definition 2.5. Let A be a pro-C∗-algebra and X ,Y be two Hilbert A -modules. The operator

T : X → Y is called uniformly bounded below, if there exists C > 0 such that for each p ∈

S(A ),

p̄Y (T ξ )6Cp̄X (ξ ), for all ξ ∈X

and is called uniformly bounded above if there exists C′ > 0 such that for each p ∈ S(A ),

p̄Y (T ξ )>C′ p̄X (ξ ), for all ξ ∈X

‖T‖∞ = inf{M : M is an upper bound for T}

p̂Y (T ) = sup{ p̄Y (T (x)) : ξ ∈X , p̄X (ξ )6 1}

It’s clear to see that, p̂(T )6 ‖T‖∞ for all p ∈ S(A ).

Proposition 2.6. [1]. Let X be a Hilbert module over pro-C∗-algebra A and T be an invertible

element in Hom∗A (X ) such that both are uniformly bounded. Then for each ξ ∈X ,∥∥T−1∥∥−2
∞
〈ξ ,ξ 〉 ≤ 〈T ξ ,T ξ 〉 ≤ ‖T‖2

∞〈ξ ,ξ 〉.

Lemma 2.7. Let X be Hilbert A -module over a pro-C∗-algebra A . Let T,S ∈Hom∗A (X ). If

Rang(S) is closed, then the following statements are equivalent:

(i) Rang(T )⊆ Rang(S).

(ii) λT T ∗ ≤ SS∗ for some λ > 0.

(iii) There exists Q ∈ Hom∗A (X ) such that T = SQ.

Similar to C∗-algebra the ∗-homomorphism between two pro-C∗-algebra is increasing

Lemma 2.8. If ϕ : A −→B is an ∗-homomorphism between pro-C ∗-algebras, then ϕ is in-

creasing, that is, if a≤ b, then ϕ(a)≤ ϕ(b).

3. K-OPERATOR FRAME FOR Hom∗A (X )

Definition 3.1. Let X be a Hilbert module over a pro-C∗-algebra A and let {Ti}i∈I be a family

of adjointable operators for X . {Ti}i∈I is called K-operator frame for Hom∗A (X ), if there

exists positive constants A,B > 0 such that

(3.1) A〈K∗ξ ,K∗ξ 〉 ≤∑
i∈I
〈Tiξ ,Tiξ 〉 ≤ B〈ξ ,ξ 〉,∀ξ ∈X .
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The numbers A and B are called lower and upper bound of the K-operator frame, respectively.

If

A〈K∗ξ ,K∗ξ 〉= ∑
i∈I
〈Tiξ ,Tiξ 〉,

the K-operator frame is A-tight. If A = 1, it is called a normalized tight K-operator frame or a

Parseval K-operator frame.

Example 3.2. Let l∞ be the set of all bounded complex-valued sequences. For any u =

{u j} j∈N,v = {v j} j∈N ∈ l∞, we define

uv = {u jv j} j∈N,u∗ = {ū j} j∈N,‖u‖= sup
j∈N
|u j|.

Then A = {l∞,‖.‖} is a C∗-algebra, as a result A is pro-C∗-algebra.

Let X =C0 be the set of all sequences converging to zero. For any u,v ∈X we define

〈u,v〉= uv∗ = {u jū j} j∈N.

Then X is a Hilbert A -module.

Now let {e j} j∈N be the standard orthonormal basis of X . For each j ∈ N define the ad-

jointable operator

Tj : X →X , Tjξ = 〈ξ ,e j〉e j,

then for every ξ ∈X we have

∑
j∈N
〈Tjξ ,Tjξ 〉= 〈ξ ,ξ 〉.

Fix N ∈ N∗ and define

K : X →X , Ke j =


je j if j ≤ N,

0 if j > N.

It is easy to check that K is adjointable and satisfies

K∗e j =


je j if j ≤ N,

0 if j > N.

For any ξ ∈X we have

1
N2 〈K

∗
ξ ,K∗ξ 〉 ≤ ∑

j∈N
〈Tjξ ,Tjξ 〉= 〈ξ ,ξ 〉.
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This shows that {Tj} j∈N is a K-operator frame with bounds
1

N2 ,1.

Let {Ti}i∈I be a K-operator frame for Hom∗A (X ). Define an operator

R : X → l2(X ) by Rξ = {Tiξ}i∈I,∀ξ ∈X .

The operator R is called the analysis operator of the K-operator frame {Ti}i∈I .

The adjoint of the analysis operator R,

R∗({ξi}i∈I) : l2(X )→X

is defined by

R∗({ξi}i∈J) = ∑
i∈I

T ∗i ξi,∀{ξi}i∈I ∈ l2(X ).

The operator R∗ is called the synthesis operator of the K-operator frame {Ti}i∈I .

By composing R and R∗, the frame operator ST : X →X for the K-operator frame is given

by

ST (ξ ) = R∗Rξ = ∑
i∈I

T ∗i Tiξ .

Proposition 3.3. Let {Ti}i∈I be a K-operator frame for Hom∗A (X ) with frame bounds A and

B. Then {Ti}i∈I is an operator frame for Hom∗A (X ) if K is bounded, surjective and K = K∗.

Proof. Since K is surjective, there exists m > 0 such that

〈K∗ξ ,K∗ξ 〉 ≥ m〈ξ ,ξ 〉, ∀ξ ∈X .

Also, since {Ti}i∈I is a K-operator frame for Hom∗A (X ), we have

mA〈ξ ,ξ 〉 ≤ A〈K∗ξ ,K∗ξ 〉 ≤∑
i∈I
〈Tiξ ,Tiξ 〉 ≤ B〈ξ ,ξ 〉,∀ξ ∈X .

Hence {Ti}i∈I is an operator frame for Hom∗A (X ) with frame bounds mA and B. �

Theorem 3.4. For an operator Bessel sequence {Ti}i∈I ⊂Hom∗A (X ), the following statements

are equivalent:

(1) {Ti}i∈I is K-operator frame for Hom∗A (X ).

(2) There exists A > 0 such that S≥ AKK∗, where S is the frame operator for {Ti}i∈I .

(3) K = S
1
2 Q, for some Q ∈ Hom∗A (X ).
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Proof. (1)⇒ (2) Note that {Ti}i∈I is a K-operator frame for Hom∗A (X ) with frame bounds A

and B and frame operator S if and only if

A〈K∗ξ ,K∗ξ 〉 ≤∑
i∈J
〈Tiξ ,Tiξ 〉 ≤ B〈ξ ,ξ 〉,∀ξ ∈X .

Thus, we have

〈AKK∗ξ ,ξ 〉 ≤ 〈Sξ ,ξ 〉 ≤ 〈Bξ ,ξ 〉,∀ξ ∈X .

Hence S≥ AKK∗.

(2)⇒ (3) Suppose there is A > 0 such that AKK∗ ≤ S.

This give AKK∗ ≤ S
1
2 S

1
2
∗
. Then by the Lemma 2.7, K = S

1
2 Q, for some Q ∈ Hom∗A (X ).

(3)⇒ (1) Let K = S
1
2 Q, for some Q ∈ Hom∗A (X ). Then by the Lemma 2.7, there exists

A > 0 such that AKK∗ ≤ S
1
2 S

1
2
∗
. This give AKK∗ ≤ S. Hence {Ti}i∈I is a K-operator frame for

Hom∗A (X ). �

Theorem 3.5. Let Q ∈ Hom∗A (X ) an invertible map such that both are uniformly bounded

and {Ti}i∈I is a K-operator frame for Hom∗A (X ). Then {TiQ}i∈I is a Q∗K-operator frame for

Hom∗A (X ).

Proof. Note that {Ti}i∈I is a K-operator frame for Hom∗A (X ) with frame bounds A and B and

frame operator S if and only if

A〈K∗ξ ,K∗ξ 〉 ≤∑
i∈I
〈Tiξ ,Tiξ 〉 ≤ B〈ξ ,ξ 〉,∀ξ ∈X .

Thus, we have

A〈K∗Qξ ,K∗Qξ 〉 ≤∑
i∈I
〈TiQξ ,TiQξ 〉 ≤ B〈Qξ ,Qξ 〉,∀x ∈X .

This give

A〈(Q∗K)∗ξ ,(Q∗K)∗ξ 〉 ≤∑
i∈I
〈TiQξ ,TiQξ 〉 ≤ B‖Q‖2

∞〈ξ ,ξ 〉,∀ξ ∈X .

Hence {TiQ}i∈I is a Q∗K-operator frame for Hom∗A (X ). �

Theorem 3.6. Let K ∈ Hom∗A (X ) and {Ti}i∈I ⊂ Hom∗A (X ) is a tight K-operator frame for

Hom∗A (X ) with frame bound A1. Then {Ti}i∈I is a tight operator frame for Hom∗A (X ) with

frame bound A2 if and only if K−1 = A1
A2

K∗.
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Proof. Suppose that {Ti}i∈I ⊂ Hom∗A (X ) is a tight K-operator frame for Hom∗A (X ) with

frame bound A1. If {Ti}i∈I is a tight operator frame for Hom∗A (X ) with frame bound A2. Then

∑
i∈I
〈Tiξ ,Tiξ 〉= A2〈ξ ,ξ 〉,∀ξ ∈X

So, for each ξ ∈X , we have A1〈K∗ξ ,K∗ξ 〉= A2〈ξ ,ξ 〉. This gives

〈KK∗ξ ,ξ 〉= 〈A2

A1
ξ ,ξ 〉,∀ξ ∈X .

Then KK∗ = A2
A1

I, Hence K−1 = A1
A2

K∗.

Conversely, suppose that K−1 = A1
A2

K∗. Then KK∗ = A2
A1

I. Thus

〈KK∗ξ ,ξ 〉= 〈A2

A1
ξ ,ξ 〉,∀ξ ∈X .

Since {Ti}i∈I is a tight K-operator frame for Hom∗A (X ), we have

∑
i∈I
〈Tiξ ,Tiξ 〉= A2〈ξ ,ξ 〉,∀ξ ∈X

Hence {Ti}i∈I is a tight operator frame for Hom∗A (X ). �

Remark 3.7. Let K ∈ Hom∗A (X ).

1) If {Ti}i∈I is a K-tight operator frame for Hom∗A (X ) with frame bound A, then

{Ti(KN)∗}i∈I ⊂ Hom∗A (X ) is KN+1-tight operator frame for Hom∗A (X ) with frame

bound A.

2) If {Ti}i∈I is a tight operator frame for Hom∗A (X ) with frame bound A, then, for all

K ∈Hom∗A (X ) an ivertible element such that both are uniformly bounded {TiK∗}i∈I is

K-tight operator frame for Hom∗A (X ) with frame bound A.

Next, we show that K-operator frame for X is invariant under a adjointable operator, pro-

vided K∗ commutes with the inverse of a given operator. A relation between the best bounds

of a given K-operator frame and the best bounds of K-operator frame obtained by the action of

adjointable operator is given in the following theorem

Theorem 3.8. Let {Ti}i∈I be a K-operator frame for X with best frame bounds A and B. If

Q : X →X is a adjointable and inversible operator such that both are uniformly bounded and
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Q−1 commutes with K∗ , then {TiQ}i∈I is a K-operator frame for X with best frame bounds C

and D satisfying the inequalities

(3.2) A‖Q−1‖−2
∞ ≤C ≤ A‖Q‖2

∞ and B‖Q−1‖−2
∞ ≤ D≤ B‖Q‖2

∞

Proof. Since B is an upper bound for {Ti}i∈J , for all ξ ∈X , we have

∑
i∈I
〈TiQξ ,TiQξ 〉 ≤ B〈Qξ ,Qξ 〉 ≤ B‖Q‖2

∞〈ξ ,ξ 〉,ξ ∈X .

Also, we have

A〈K∗ξ ,K∗ξ 〉= A〈K∗Q−1Qξ ,K∗Q−1Qξ 〉

= A〈Q−1K∗Qξ ,Q−1K∗Qξ 〉

≤ ‖Q−1‖2
∞ ∑

i∈I
〈TiQξ ,TiQξ 〉,ξ ∈X .

Therefore, we obtain

A‖Q−1‖−2
∞ 〈K∗ξ ,K∗ξ 〉 ≤∑

i∈I
〈TiQξ ,TiQξ 〉 ≤ B‖Q‖2

∞〈ξ ,ξ 〉

Hence, {TiQ}i∈I is a K-operator frame for X with bounds A‖Q−1‖−2
∞ and B‖Q‖2

∞. Now let C

and D be the best bounds of the K-operator frame {TiQ}i∈I . Then

(3.3) A‖Q−1‖−2
∞ ≤C and D≤ B‖Q‖2

∞

Also, {TiQ}i∈I is a K-operator frame for Hom∗A (X ) with frame bounds C and D and

〈K∗ξ ,K∗ξ 〉= 〈QQ−1K∗ξ ,QQ−1K∗ξ 〉 ≤ ‖Q‖2
∞〈K∗Q−1

ξ ,K∗Q−1
ξ 〉,ξ ∈X .

Hence

C‖Q‖−2
∞ 〈K∗ξ ,K∗ξ 〉 ≤C〈K∗Q−1

ξ ,K∗Q−1
ξ 〉

≤∑
i∈I
〈TiQQ−1

ξ ,TiQQ−1
ξ 〉(= ∑

i∈I
〈Tiξ ,Tiξ 〉)

≤ D‖Q−1‖2
∞〈ξ ,ξ 〉.

Since A and B are the best bounds of K-operator frame {Ti}i∈I , we have

(3.4) C‖Q‖−2
∞ ≤ A and B≤ D‖Q−1‖2

∞
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Hence the inequality (3.2) follows from (3.3) and (3.4). �

Theorem 3.9. A sequence {Ti}i∈I ⊂ Hom∗A (X ) is a K-operator frame for X if and only if

Ran(K)⊂ Ran(R∗) , where R is the analysis operator of K-operator frame.

Proof. Let {Ti}i∈I be a K-operator frame for Hom∗A (X ). Then there exists A > 0 such that

S≥ AKK∗, where S is the frame operator for {Ti}i∈I .

Since S = RR∗ then R∗(R∗)∗ > AKK∗.Therefore by Lemma 2.7 Ran(K)⊆ Ran(R∗).

Conversely, suppose that Ran(K) ⊆ Ran(R∗). Then KK∗ ≤ λ 2R∗(R∗)∗.Thus KK∗ ≤ λ 2S.

Therefore by Theorem 3.4 {Ti}i∈I is a K-operator frame for Hom∗A (X ) �

Theorem 3.10. Let K ∈ Hom∗A (X ) and {Ti}i∈I be K-operator frame for Hom∗A (X ). If Q ∈

Hom∗A (X ) is bounded surjective operator with Q = Q∗ and QK = KQ, then {TiQ}i∈I is K-

operator frame for Hom∗A (X ).

Proof. We have

A〈K∗Q∗ξ ,K∗Q∗ξ 〉= A〈Q∗K∗ξ ,Q∗K∗ξ 〉

Suppose that Q is surjective. Then by Proposition ?? there are m,M > 0 such that

mA〈K∗ξ ,K∗ξ 〉 ≤ A〈Q∗K∗ξ ,Q∗K∗ξ 〉 ≤∑
i∈I
〈TiQ∗ξ ,TiQ∗ξ 〉 ,ξ ∈X .

and

∑
i∈I
〈TiQ∗ξ ,TiQ∗ξ 〉 ≤ B〈Q∗ξ ,Q∗ξ 〉

= B〈Qξ ,Qξ 〉

≤ BM 〈ξ ,ξ 〉

Therefore, we obtain

mA〈K∗ξ ,K∗ξ 〉 ≤∑
i∈I
〈TiQξ ,TiQξ 〉≤BM 〈ξ ,ξ 〉

Hence, {TiQ}i∈I is a K-operator frame for Hom∗A (X ). �

Theorem 3.11. Let K ∈ Hom∗A (X ) and {Ti}i∈I be K-operator frame for Hom∗A (X ). If Q ∈

Hom∗A (X ) be an isometry with K∗Q = QK∗, then {TiQ} is K-operator frame for Hom∗A (X ).
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Proof. Suppose {Ti}i∈I is K-operator frame for Hom∗A (X ). Then, for each ξ ∈X , we have

∑
i∈I
〈TiQξ ,TiQξ 〉 ≥ A〈K∗Qξ ,K∗Qξ 〉

= A〈QK∗ξ ,QK∗ξ 〉

= A〈K∗ξ ,K∗ξ 〉

Also,

∑
i∈I
〈TiQξ ,TiQξ 〉 ≤ B‖Q‖2

∞〈ξ ,ξ 〉

Hence {TiQ} is a K-operator frame for Hom∗A (X ). �

Theorem 3.12. Let {Ti}i∈I and {Ri}i∈I be K-operator frame for Hom∗A (X ) with frame oper-

ator ST and SR respectively. Then K = PS1/2
T +QS1/2

R for some P,Q ∈ Hom∗A (X )

Proof. Let {Ti}i∈I and {Ri}i∈I be K-operator frames for Hom∗A (X ) with frame operator ST

and SR respectively. Then by Lemma 2.7, there exist A1,A2 > 0 such that ST ≥ A1KK∗ and

SR ≥ A2KK∗. Therefore, by Douglas Theorem, we get Ran(K) ⊂ Ran
(

S1/2
T

)
and Ran(K) ⊂

Ran
(

S1/2
R

)
. Hence Ran(K) ⊂ Ran

(
S1/2

T

)
+Ran

(
S1/2

R

)
. Thus, we obtain K = PS1/2

T +QS1/2
R

for some P,Q ∈ Hom∗A (X ). �

Theorem 3.13. Let {Ti}i∈I be a K-operator frame for Hom∗A (X ) with the frame operator S

and let P be a positive operator such that SP∗ = P∗S. Then {Ti +TiP} is a K-operator frame

for Hom∗A (X ). Moreover, for any natural number n,{Ti +TiPn} is a K-operator frame for

Hom∗A (X ).

Proof. Let {Ti}i∈I be a K-operator frame for Hom∗A (X ) with the frame operator S. Then,

there exist λ > 0 such that S≥ λKK∗. The frame operator for {Ti +TiP} is given by

∑
i∈I

(Ti +TiP)
∗ (Ti +TiP)(ξ ) = ∑

i∈I
T ∗i (Ti(ξ )+TiP(ξ ))+P∗T ∗i (Ti(ξ )+TiP(ξ ))

= S(I +P)∗(I +P)(ξ )

Since S (I +P∗)(I +P)≥ S≥ λKK∗,{Ti +TiP} is a K-operator frame for Hom∗A (X ).

Similarly, for any natural number n, {Ti +TiPn} is a K-operator frame for Hom∗A (X ). �
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Theorem 3.14. Let (X ,A ,〈., .〉A ) and (X ,B,〈., .〉B) be two Hilbert C ∗-modules and let

ϕ : A −→B be a ∗-homomorphism and θ be a map on X such that 〈θξ ,θη〉B = ϕ(〈ξ ,η〉A )

for all ξ ,η ∈ X . Also, suppose that {Ti}i∈I ⊂ Hom∗A (X ) is a K-operator frame for

(X ,A ,〈., .〉A ) with frame operator SA and lower and upper operator frame bounds A, B

respectively. If θ is surjective, θK∗ = K∗θ , θTi = Tiθ and θT ∗i = T ∗i θ for each i in I, then

{Ti}i∈I is a K-operator frame for (X ,B,〈., .〉B) with frame operator SB and lower and upper

operator frame bounds A, B respectively, and 〈SBθξ ,θη〉B = ϕ(〈SA ξ ,η〉A ).

Proof. Let η ∈X then there exists ξ ∈X such that θξ = η (θ is surjective). By the definition

of K-operator frames we have

A〈K∗ξ ,K∗ξ 〉A ≤∑
i∈I
〈Tiξ ,Tiξ 〉A ≤ B〈ξ ,ξ 〉A .

By lemma 2.8 we have

ϕ(A〈K∗ξ ,K∗ξ 〉A )≤ ϕ(∑
i∈I
〈Tiξ ,Tiξ 〉A )≤ ϕ(B〈ξ ,ξ 〉A ).

By the definition of ∗-homomorphism we have

Aϕ(〈K∗ξ ,K∗ξ 〉A )≤∑
i∈I

ϕ(〈Tiξ ,Tiξ 〉A )≤ Bϕ(〈ξ ,ξ 〉A ).

By the relation betwen θ and ϕ we get

A〈θK∗ξ ,θK∗ξ 〉B ≤∑
i∈I
〈θTiξ ,θTiξ 〉B ≤ B〈θξ ,θξ 〉B.

By the relation betwen θ , K∗ and Ti we have

A〈K∗θξ ,K∗θξ 〉B ≤∑
i∈I
〈Tiθξ ,Tiθξ 〉B ≤ B〈θξ ,θξ 〉B.

Then

A〈K∗η ,K∗η〉B ≤∑
i∈I
〈Tiη ,Tiη〉B ≤ B〈η ,η〉B,∀η ∈X .
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On the other hand we have

ϕ(〈SA ξ ,η〉A ) = ϕ(〈∑
i∈I

T ∗i Tiξ ,η〉A )

= ∑
i∈I

ϕ(〈Tiξ ,Tiη〉A )

= ∑
i∈I
〈θTiξ ,θTiη〉B

= ∑
i∈I
〈Tiθξ ,Tiθη〉B

= 〈∑
i∈I

T ∗i Tiθξ ,θη〉B

= 〈SBθξ ,θη〉B.

Which completes the proof. �

4. TENSOR PRODUCT

The minimal or injective tensor product of the pro-C∗-algebras A and B, denoted by A ⊗

B, is the completion of the algebraic tensor product A ⊗alg B with respect to the topology

determined by a family of C∗-seminorms. Suppose that X is a Hilbert module over a pro-C∗-

algebra A and Y is a Hilbert module over a pro-C∗-algebra B. The algebraic tensor product

X ⊗alg Y of X and Y is a pre-Hilbert A ⊗B-module with the action of A ⊗B on X ⊗alg Y

defined by

(ξ ⊗η)(a⊗b) = ξ a⊗ηb for all ξ ∈X ,η ∈ Y ,a ∈A and b ∈B

and the inner product

〈·, ·〉 :
(
X ⊗alg Y

)
×
(
X ⊗alg Y

)
→A ⊗alg B. defined by

〈ξ1⊗η1,ξ2⊗η2〉= 〈ξ1,ξ2〉⊗〈η1,η2〉

We also know that for z = ∑
n
i=1 ξi⊗ ηi in X ⊗alg Y we have 〈z,z〉A⊗B = ∑i, j〈ξi,ξ j〉A ⊗

〈ηi,η j〉B ≥ 0 and 〈z,z〉A⊗B = 0 iff z = 0.

The external tensor product of X and Y is the Hilbert module X ⊗Y over A ⊗B obtained

by the completion of the pre-Hilbert A ⊗B-module X ⊗alg Y .
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If P ∈ M(X ) and Q ∈ M(Y ) then there is a unique adjointable module morphism P⊗Q :

A ⊗B→X ⊗Y such that (P⊗Q)(a⊗b)=P(a)⊗Q(b) and (P⊗Q)∗(a⊗b)=P∗(a)⊗Q∗(b)

for all a ∈ A and for all b ∈ B (see, for example, [8]).

Let I and J be countable index sets.

Theorem 4.1. Let X and Y be two Hilbert pro-C∗-modules over unital pro-C∗-algebras A

and B, respectively. Let {Ti}i∈I ⊂ Hom∗A (X ) be a K1-operator frame for X and {R j} j∈J ⊂

Hom∗B(Y ) be a K2-operator frame for Y with frame operators ST and SR and operator frame

bounds (A,B) and (C,D) respectively. Then {Ti⊗R j}i∈I, j∈J is a K1⊗K2-operator frame for

Hibert A ⊗B-module X ⊗Y with frame operator ST ⊗ SR and lower and upper operator

frame bounds AC and BD, respectively.

Proof. By the definition of K1-operator frame {Ti}i∈I and K2-operator frame {R j} j∈J we have

A〈K∗1 ξ ,K∗1 ξ 〉A ≤∑
i∈I
〈Tiξ ,Tiξ 〉A ≤ B〈ξ ,ξ 〉A ,∀ξ ∈X .

C〈K∗2 η ,K∗2 η〉B ≤ ∑
j∈J
〈R jη ,R jη〉B ≤ D〈η ,η〉B,∀η ∈K .

Therefore
(A〈K∗1 ξ ,K∗1 ξ 〉A )⊗ (C〈K∗2 η ,K∗2 η〉B)

≤∑
i∈I
〈Tiξ ,Tiξ 〉A ⊗∑

j∈J
〈R jη ,R jη〉B

≤ (B〈ξ ,ξ 〉A )⊗ (D〈η ,η〉B),∀ξ ∈X ,∀η ∈ Y .

Then
AC(〈K∗1 ξ ,K∗1 ξ 〉A ⊗〈K∗2 η ,K∗2 η〉B)

≤ ∑
i∈I, j∈J

〈Tiξ ,Tiξ 〉A ⊗〈R jη ,R jη〉B

≤ BD(〈ξ ,ξ 〉A ⊗〈η ,η〉B),∀ξ ∈X ,∀η ∈ Y .

Consequently we have

AC〈K∗1 ξ ⊗K∗2 η ,K∗1 ξ ⊗K∗2 η〉A⊗B

≤ ∑
i∈I, j∈J

〈Tiξ ⊗R jη ,Tiξ ⊗R jη〉A⊗B

≤ BD〈ξ ⊗η ,ξ ⊗η〉A⊗B,∀ξ ∈X ,∀η ∈ Y .
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Then for all ξ ⊗η in X ⊗Y we have

AC〈(K1⊗K2)
∗(ξ ⊗η),(K1⊗K2)

∗(ξ ⊗η)〉A⊗B

≤ ∑
i∈I, j∈J

〈(Ti⊗R j)(ξ ⊗η),(Ti⊗R j)(ξ ⊗η)〉A⊗B

≤ BD〈ξ ⊗η ,ξ ⊗η〉A⊗B.

The last inequality is satisfied for every finite sum of elements in X ⊗alg Y and then it’s sat-

isfied for all z ∈X ⊗Y . It shows that {Ti⊗R j}i∈I, j∈J is a K1⊗K2-operator frame for Hilbert

A ⊗B-module X ⊗Y with lower and upper operator frame bounds AC and BD, respectively.

By the definition of frame operator ST and SR we have

ST ξ = ∑
i∈I

T ∗i Tiξ ,∀ξ ∈X .

SRη = ∑
j∈J

R∗jR jη ,∀η ∈K .

Therefore
(ST ⊗SR)(ξ ⊗η) = ST ξ ⊗SRη

= ∑
i∈I

T ∗i Tiξ ⊗∑
j∈J

R∗jR jη

= ∑
i∈I, j∈J

T ∗i Tiξ ⊗R∗jR jη

= ∑
i∈I, j∈J

(T ∗i ⊗R∗j)(Tiξ ⊗R jη)

= ∑
i∈I, j∈J

(T ∗i ⊗R∗j)(Ti⊗R j)(ξ ⊗η)

= ∑
i∈I, j∈J

(Ti⊗R j)
∗)(Ti⊗R j)(ξ ⊗η).

Now by the uniqueness of frame operator, the last expression is equal to ST⊗R(ξ ⊗η). Con-

sequently we have (ST ⊗ SR)(ξ ⊗η) = ST⊗R(ξ ⊗η). The last equality is satisfied for every

finite sum of elements in X ⊗alg Y and then it’s satisfied for all z ∈X ⊗Y . It shows that

(ST ⊗SR)(z) = ST⊗R(z). So ST⊗R = ST ⊗SR. �

5. DUAL OF K-OPERATOR FRAME

In the following we define the Dual K-operator frame and we give some properties
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Definition 5.1. Let K ∈ Hom∗A (X ) and {Ti ∈ Hom∗A (X ), i ∈ I} be a K-operator frame for

the Hilbert A -module X . An operator Bessel sequences {Ri ∈ Hom∗A (X ), i ∈ I} is called a

K-dual operator frame for {Ti}i∈I if Kξ = ∑i∈I T ∗i Riξ for all ξ ∈X .

Example 5.2. Let K∈ HomA
∗(X ) be a surjective operator and {Ti ∈ Hom∗A (X ), i ∈ I} be a

K-operator frame for X with frame operator S, then S is invertible.

For all ξ ∈X we have :

Sξ = ∑i∈I T ∗i Riξ .

So Kξ = ∑i∈I T ∗i RiS−1Kξ .

Then the sequence {TiS−1K ∈ Hom∗A (X ), i ∈ I} is a dual K-operator frame of {Ti ∈

Hom∗A (X ), i ∈ I}

Theorem 5.3. Let K ∈ Hom∗A (X ) be an invertible element such that both are uniformly

bounded and Rang(K) is closed, and let {Ti}i∈I be K-operator frame for Hom∗A (X ) with

frame operator S and frame bounds A and B respectively. Then {TiπS(Rang(K))

(
S−1
|Rang(K)

)∗
K}

is a K-dual of {Ti}i∈I

Proof. Let {Ti} be a K-operator frame for Hom∗A (X ). Since S : Rang(K)→ S(Rang(K)) is

invertible, we have

Kξ =
(

S−1
|Rang(K)S|Rang(K)

)∗
Kξ

= S|Rang(K)

(
S−1
|Rang(K)

)∗
Kξ

= SπS(Rang(K))

(
S−1
|Rang(K)

)∗
Kξ

= ∑
i∈I

T ∗i TiπS(Rang(K))

(
S−1
|Rang(K)

)∗
Kξ , for all ξ ∈X .

Also, we have

∑
i∈I
〈TiπS(Rang(K))

(
S−1)∗Kξ ,TiπS(Rang(K))

(
S−1)∗Kξ 〉= ∑

i∈I
〈T ∗i TiπS(Rang(K))

(
S−1)∗Kξ ,

(
S−1)∗Kξ 〉

=
〈

S
(
S−1)∗Kξ ,

(
S−1)∗Kξ

〉
=
〈

Kξ ,
(
S−1)∗Kξ

〉
≤ A−1‖K−1‖2

∞ ‖K‖
2
∞
〈ξ ,ξ 〉,ξ ∈X
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Hence
{

TiπRang(K)

(
S−1)∗K

}
is a dual of the K-operator frame {Ti}. �
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