CONTINUOUS CONTROLLED K-FRAME FOR HILBERT C^\ast-MODULES

HAMID FARAJ1,*, SAMIR KABBAJ1, HATIM LABRIGUI1, ABDESLAM TOURI1, MOHAMED ROSSAFI2

1Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco

2LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce and study the concept of continuous controlled K-frame for Hilbert C^\ast-modules which is a generalization of discrete controlled K-frame.

Keywords: controlled frame; controlled K-frame; continuous controlled K-frame; C^\ast-algebra; Hilbert \mathcal{A}-modules.

2010 AMS Subject Classification: 41A58, 42C15.

1. INTRODUCTION AND PRELIMINARIES

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [9] in 1952 to study some deep problems in nonharmonic Fourier series. After the fundamental paper [7] by Daubechies, Grossman and Meyer, frame theory began to be widely used, particularly in the more specialized context of wavelet frames and Gabor frames [11]. Frames have been used in signal processing, image processing, data compression and sampling theory. The concept of a generalization of frames to a family indexed by some locally compact space endowed with a
Radon measure was proposed by G. Kaiser [14] and independently by Ali, Antoine and Gazeau [5]. These frames are known as continuous frames. Gabardo and Han in [10] called these frames associated with measurable spaces, Askari-Hemmat, Dehghan and Radjabalipour in [3] called them generalized frames and in mathematical physics they are referred to as coherent states [5]. In 2012, L. Gavruta [12] introduced the notion of K-frames in Hilbert space to study the atomic systems with respect to a bounded linear operator K. Controlled frames in Hilbert spaces have been introduced by P. Balazs [4] to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Rahimi [17] defined the concept of controlled K-frames in Hilbert spaces and showed that controlled K-frames are equivalent to K-frames due to which the controlled operator C can be used as preconditions in applications. Controlled frames in C^*-modules were introduced by Rashidi and Rahimi [15], and the authors showed that they share many useful properties with their corresponding notions in a Hilbert space. We extended the results of frames in Hilbert spaces to Hilbert C^*-modules (see [13], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]).

Motivated by the above literature, we introduce the notion of a continuous controlled K-frame in Hilbert C^*-modules.

In the following we briefly recall the definitions and basic properties of C^*-algebra, Hilbert \mathcal{A}-modules. Our references for C^*-algebras as [8, 6]. For a C^*-algebra \mathcal{A} if $a \in \mathcal{A}$ is positive we write $a \geq 0$ and \mathcal{A}^+ denotes the set of positive elements of \mathcal{A}.

Definition 1.1. [18] Let \mathcal{A} be a unital C^*-algebra and \mathcal{H} be a left \mathcal{A}-module, such that the linear structures of \mathcal{A} and \mathcal{H} are compatible. \mathcal{H} is a pre-Hilbert \mathcal{A}-module if \mathcal{H} is equipped with an \mathcal{A}-valued inner product $\langle \ldots \rangle_{\mathcal{A}} : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$, such that is sesquilinear, positive definite and respects the module action. In the other words,

1. $\langle x, x \rangle_{\mathcal{A}} \geq 0$ for all $x \in \mathcal{H}$ and $\langle x, x \rangle_{\mathcal{A}} = 0$ if and only if $x = 0$.
2. $\langle ax + y, z \rangle_{\mathcal{A}} = a \langle x, z \rangle_{\mathcal{A}} + \langle y, z \rangle_{\mathcal{A}}$ for all $a \in \mathcal{A}$ and $x, y, z \in \mathcal{H}$.
3. $\langle x, y \rangle_{\mathcal{A}} = \langle y, x \rangle_{\mathcal{A}}^{\ast}$ for all $x, y \in \mathcal{H}$.

For $x \in \mathcal{H}$, we define $||x|| = ||\langle x, x \rangle_{\mathcal{A}}||^{\frac{1}{2}}$. If \mathcal{H} is complete with $||.||$, it is called a Hilbert \mathcal{A}-module or a Hilbert C^*-module over \mathcal{A}. For every a in C^*-algebra \mathcal{A}, we have $|a| = (a^* a)^{\frac{1}{2}}$ and the \mathcal{A}-valued norm on \mathcal{H} is defined by $|x| = \langle x, x \rangle_{\mathcal{A}}^{\frac{1}{2}}$ for $x \in \mathcal{H}$.
Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A}-modules. A map $T: \mathcal{H} \to \mathcal{K}$ is said to be adjointable if there exists a map $T^*: \mathcal{K} \to \mathcal{H}$ such that $\langle Tx, y \rangle_{\mathcal{A}} = \langle x, T^*y \rangle_{\mathcal{A}}$ for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$.

We reserve the notation $\text{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K})$ for the set of all adjointable operators from \mathcal{H} to \mathcal{K} and $\text{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{H})$ is abbreviated to $\text{End}^*_{\mathcal{A}}(\mathcal{H})$.

Lemma 1.2. [2]. Let \mathcal{H} and \mathcal{K} two Hilbert \mathcal{A}-modules and $T \in \text{End}^*_{\mathcal{A}}(\mathcal{H})$. Then the following statements are equivalent:

(i) T is surjective.

(ii) T^* is bounded below with respect to norm, i.e, there is $m > 0$ such that $\|T^*x\| \geq m\|x\|$, $x \in \mathcal{K}$.

(iii) T^* is bounded below with respect to the inner product, i.e, there is $m' > 0$ such that,

$$\langle T^*x, T^*x \rangle_{\mathcal{A}} \geq m' \langle x, x \rangle_{\mathcal{A}}, x \in \mathcal{K}$$

Lemma 1.3. [18] Let \mathcal{H} and \mathcal{K} two Hilbert \mathcal{A}-modules and $T \in \text{End}^*_{\mathcal{A}}(\mathcal{H})$. Then the following statements are equivalent,

(i) The operator T is bounded and \mathcal{A}-linear.

(ii) There exist $0 \leq k$ such that

$$\langle Tx, Tx \rangle_{\mathcal{A}} \leq k \langle x, x \rangle_{\mathcal{A}} \quad x \in \mathcal{H}.$$

For the following theorem, $R(T)$ denote the range of the operator T.

Theorem 1.4. [30] Let \mathcal{H} be a Hilbert \mathcal{A}-module over a C^*-algebra \mathcal{A} and let T, S two operators for $\text{End}^*_{\mathcal{A}}(\mathcal{H})$. If $R(S)$ is closed, then the following statements are equivalent:

(i) $R(T) \subset R(S)$.

(ii) $TT^* \leq \lambda^2 SS^*$ for some $\lambda \geq 0$.

(iii) There exists $Q \in \text{End}^*_{\mathcal{A}}(\mathcal{H})$ such that $T = SQ$.

2. **Continuous Controlled K-Frame for Hilbert C*-Modules**

Let X be a Banach space, (Ω, μ) a measure space, and $f: \Omega \to X$ a measurable function. Integral of the Banach-valued function f has been defined by Bochner and others. Most properties of this integral are similar to those of the integral of real-valued functions. Since every
Let \mathcal{H} and \mathcal{K} be two Hilbert C^*-modules, $\{\mathcal{K}_w : w \in \Omega\}$ is a family of subspaces of \mathcal{K}, and $End_{A^*}(\mathcal{H}, \mathcal{K}_w)$ is the collection of all adjointable A-linear maps from \mathcal{H} into \mathcal{K}_w. We define

$$\bigoplus_{w \in \Omega} \mathcal{K}_w = \{x = \{x_w \}_{w \in \Omega} : \text{for all } w \in \Omega, \int_{\Omega} \|x_w\|^2 d\mu(w) < \infty\}.$$

For any $x = \{x_w : w \in \Omega\}$ and $y = \{y_w : w \in \Omega\}$, if the A-valued inner product is defined by

$$\langle x, y \rangle_A = \int_{\Omega} \langle x_w, y_w \rangle_A d\mu(w),$$

the norm is defined by $\|x\| = \|(x, x)_{A}\|^{\frac{1}{2}}$. Therefore, $\bigoplus_{w \in \Omega} \mathcal{K}_w$ is a Hilbert C^*-module (see [14]).

Let A be a C^*-algebra, $l^2(\mathcal{A})$ is defined by,

$$l^2(\mathcal{A}) = \{\{a_\omega \}_{w \in \Omega} \subseteq \mathcal{A} : \int_{\Omega} a_\omega a_\omega^* d\mu(\omega) < \infty\}.$$

$l^2(\mathcal{A})$ is a Hilbert C^*-module (Hilbert \mathcal{A}-module) with pointwise operations and the inner product defined as,

$$\langle \{a_\omega \}_{w \in \Omega}, \{b_\omega \}_{w \in \Omega} \rangle_{\mathcal{A}} = \int_{\Omega} a_\omega b_\omega^* d\mu(\omega), \{a_\omega \}_{w \in \Omega}, \{b_\omega \}_{w \in \Omega} \in l^2(\mathcal{A}),$$

and,

$$\|\{a_\omega \}_{w \in \Omega}\| = (\int_{\Omega} a_\omega a_\omega^* d\mu(\omega))^{\frac{1}{2}}.$$

Definition 2.1. Let \mathcal{H} be a Hilbert \mathcal{A}-module over a unital C^*-algebra, and $K \in End_{A^*}(\mathcal{H})$. A mapping $F : \Omega \rightarrow \mathcal{H}$ is called a continuous K-Frame for \mathcal{H} if :

- F is weakly-measurable, ie, for any $f \in \mathcal{H}$, the map $w \rightarrow \langle f, F(w) \rangle_{\mathcal{A}}$ is measurable on Ω.

- There exist two strictly positive constants A and B such that

$$(2.1) \quad A \langle K^* f, K^* f \rangle_{\mathcal{A}} \leq \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{A}} \langle F(w), f \rangle_{\mathcal{A}} d\mu(w) \leq B \langle f, f \rangle_{\mathcal{A}}, f \in \mathcal{H}.$$

The elements A and B are called continuous K-frame bounds.

If $A = B$ we call this Continuous K-Frame a continuous tight K-Frame, and if $A = B = 1$ it is called a continuous Parseval K-Frame. If only the right-hand inequality of (2.1) is satisfied, we
call F a continuous bessel mapping with Bessel bound B.

Let F be a continuous bessel mapping for Hilbert C^*-module \mathcal{H} over \mathcal{A}.

The operator $T : \mathcal{H} \to l^2(\mathcal{A})$ defined by,

$$T f = \{ \langle f, F(\omega) \rangle_\mathcal{A} \}_{\omega \in \Omega},$$

is called the analysis operator.

There adjoint operator $T^*: l^2(\mathcal{A}) \to \mathcal{H}$ given by,

$$T^* (\{ a_\omega \}_{\omega \in \Omega}) = \int_{\Omega} a_\omega F(\omega) d\mu(\omega),$$

is called the synthesis operator.

By composing T and T^*, we obtain the continuous K-frame operator, $S : \mathcal{H} \to \mathcal{H}$ defined by

$$S f = \int_{\Omega} \langle f, F(\omega) \rangle_\mathcal{A} F(\omega) d\mu(\omega).$$

It’s clear to see that S is positive, bounded and selfadjoint (see [5]).

For the following definition we need to introduce, $GL^+(\mathcal{H})$ be the set of all positive bounded linear invertible operators on \mathcal{H} with bounded inverse.

Definition 2.2. Let \mathcal{H} be a Hilbert \mathcal{A}-module over a unital C^*-algebra and $K \in End^*_{\mathcal{A}}(\mathcal{H})$, $C \in GL^+(\mathcal{H})$. A mapping $F : \Omega \to \mathcal{H}$ is called a continuous C-controlled K-Frame in \mathcal{H} if:

- F is weakly-measurable, ie, for any $f \in \mathcal{H}$, the map
 $$w \to \langle f, F(w) \rangle_\mathcal{A}$$
 is measurable on Ω.

- There exists two strictly positive constants A and B such that

 \begin{equation}
 (2.2) \quad A \langle C^{\frac{1}{2}} K^* f, C^{\frac{1}{2}} K^* f \rangle_\mathcal{A} \leq \int_{\Omega} \langle f, F(w) \rangle_\mathcal{A} \langle CF(w), f \rangle_\mathcal{A} d\mu(w) \leq B \langle f, f \rangle_\mathcal{A}, f \in \mathcal{H}.
 \end{equation}

The elements A and B are called continuous C-controlled K-frame bounds.

If $A = B$ we call this continuous C-controlled K-Frame a continuous tight C-Controlled K-Frame, and if $A = B = 1$ it is called a continuous Parseval C-Controlled K-Frame. If only the right-hand inequality of (2.2) is satisfied, we call F a continuous C-controlled bessel mapping with Bessel bound B.
Example 2.3.

\[H = \mathcal{A} = l^2(\mathbb{C}) \]

\[= \left\{ \{a_n\}_{n=1}^{\infty} \subseteq \mathbb{C} / \sum_{n=1}^{\infty} |a_n|^2 < +\infty \right\}. \]

\(\mathcal{A} \) is recognized as a Hilbert \(\mathcal{A} \)-Module with the \(\mathcal{A} \)-inner product

\[< \{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} > \mathcal{A} = \{ a_n \overline{b_n} \}_{n=1}^{\infty}. \]

Consider now the borned linear operator

\[C : H \rightarrow H \]

\[\{a_n\}_{n=1}^{\infty} \mapsto \{ \alpha a_n\}_{n=1}^{\infty} \]

where \(\alpha \in \mathbb{R}_{+}^* \). Then \(C \) is positive invertible and

\[C^{-1}(\{a_n\}_{n=1}^{\infty}) = \{ \alpha^{-1} a_n\}_{n=1}^{\infty}. \]

Let \((\Omega, \mu)\) the measure space where \(\Omega = [0, 1] \) and \(\mu \) is the lebesgue measure and let

\[F : \Omega \rightarrow H \]

\[w \mapsto F_w = \{ \frac{w}{n} \}_{n=1}^{\infty}. \]

In the author hand, consider the projection

\[K : H \rightarrow H \]

\[\{a_n\}_{n=1}^{\infty} \mapsto (a_1, \ldots, a_r, 0, \ldots) \]

where \(r \) is an integer \((r \geq 2)\).

It’s clair that \(K^* = K \) and for each \(f = \{a_n\}_{n=1}^{\infty} \in H = l^2(\mathbb{C}), \) one has

\[
\int_{\Omega} < f, F_w >_\mathcal{A} < CF_w, f >_\mathcal{A} d\mu(w) = \int_{[0,1]} \left\{ \frac{w}{n} a_n \right\}_{n=1}^{\infty} \cdot \left\{ \frac{\alpha w}{n} \overline{a_n} \right\}_{n=1}^{\infty} d\mu(w)
\]

\[= \int_{[0,1]} \left\{ \frac{\alpha \overline{a_n}}{n} |a_n|^2 \right\}_{n=1}^{\infty} d\mu(w)
\]

\[= \frac{\alpha}{3} \left\{ \frac{|a_n|^2}{n^2} \right\}_{n=1}^{\infty}. \]

Hence

\[
\int_{\Omega} < f, F_w >_\mathcal{A} < CF_w, f >_\mathcal{A} d\mu(w) \leq \frac{\alpha \pi^2}{18} < \{a_n\}_{n=1}^{\infty}, \{a_n\}_{n=1}^{\infty} >_\mathcal{A}.
\]
Furthermore,

\[
\langle CK^* f, K^* f \rangle_{A} = \langle (\alpha a_1, \ldots, \alpha a_r, 0, \ldots), (a_1, \ldots, a_r, 0, \ldots) \rangle_{A} \\
= (\alpha |a_1|^2, \ldots, \alpha |a_r|^2, 0, \ldots).
\]

Then for \(A = \frac{1}{3r^2} \), one obtain

\[
\frac{\alpha}{3r^2} (|a_1|^2, \ldots, |a_r|^2, 0, \ldots) \leq \left\{ \frac{\alpha |a_n|^2}{3n^2} \right\}_{n=1}^\infty.
\]

The conclusion is

\[
\frac{1}{3r^2} < C^{1/2} K^* f, C^{1/2} K^* f >_{A} \leq \int \langle f, F_w \rangle_{A} \langle CF_w, f \rangle_{A} \, d\mu(w) \leq \frac{\alpha \pi^2}{18} < f, f >_{A}
\]

Let \(F \) be a continuous \(C \)-controlled bessel mapping for Hilbert \(C^* \)-module \(\mathcal{H} \) over \(\mathcal{A} \).

We define the operator frame

\[
S_C : \mathcal{H} \rightarrow \mathcal{H} \text{ by,} \\
S_C f = \int \langle f, F(\omega) \rangle_{A} CF(\omega) \, d\mu(\omega).
\]

Remark 2.4. From definition of \(S \) and \(S_C \), we have, \(S_C = CS \).

Using [16], \(S_C \) is \(\mathcal{A} \)-linear and bounded. Thus, it is adjointable.

Since \(\langle S_C x, x \rangle_{A} \geq 0 \), for any \(x \in \mathcal{H} \), it result, again from [16], that \(S_C \) is positive and selfadjoint.

Theorem 2.5. Let \(\mathcal{H} \) be a Hilbert \(\mathcal{A} \)-module, \(K \in \text{End}^*_A(\mathcal{H}) \), and \(C \in \text{GL}^+(\mathcal{H}) \). Let \(F : \Omega \rightarrow \mathcal{H} \) a map. Suppose that \(CK = KC \), \(R(C^1) \subset R(K^*C^1) \) with \(R(K^*C^1) \) is closed. Then \(F \) is a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \) if and only if there exist two constants \(0 < A, B < \infty \) such that :

\[
A \| C^1 K^* f \|^2 \leq \left\| \int \langle f, F(w) \rangle_{A} \langle CF(w), f \rangle_{A} \, d\mu(w) \right\| \leq B \| f \|^2, f \in \mathcal{H}.
\]

Proof. \((\Longrightarrow)\) obvious.

For the converse, we suppose that \(0 < A, B < \infty \) such that :

\[
A \| C^1 K^* f \|^2 \leq \left\| \int \langle f, F(w) \rangle_{A} \langle CF(w), f \rangle_{A} \, d\mu(w) \right\| \leq B \| f \|^2, f \in \mathcal{H}.
\]
We have,

\[
\| \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w) \| = \| \langle Cf, f \rangle_{\mathcal{A}} \|
\]

\[
= \| \langle Csf, f \rangle_{\mathcal{A}} \|
\]

\[
= \| \langle (CS)_{\frac{1}{2}} f, (CS)_{\frac{1}{2}} f \rangle_{\mathcal{A}} \|
\]

\[
= \| (CS)_{\frac{1}{2}} f \|^2.
\]

Since, \(R(C^1) \subset R(K^*C^1) \) with \(R(K^*C^1) \) is closed, then by theorem 1.4, there exists \(0 \leq m \) such that,

\[
(C^1)(C^1)^* \leq m(K^*C^1)(K^*C^1)^*.
\]

Thus,

\[
\langle (C^1)(C^1)^* f, f \rangle_{\mathcal{A}} \leq m\langle (K^*C^1)(K^*C^1)^* f, f \rangle_{\mathcal{A}}.
\]

Consequently,

\[
\|C^1 f\|^2 \leq m\|K^*C^1 f\|^2.
\]

Then,

\[
A\|C^1 f\|^2 \leq Am\|K^*C^1 f\|^2 \leq m\|(CS)_{\frac{1}{2}} f\|^2.
\]

Hence,

\[
\frac{A}{m} \|C^1 f\|^2 \leq \|(CS)_{\frac{1}{2}} f\|^2.
\]

So,

\[
\sqrt{\frac{A}{m}} \|C^1 f\| \leq \|(CS)_{\frac{1}{2}} f\|.
\]

(2.4)

From lemma 1.2, we have,

\[
\sqrt{\frac{A}{m}} \langle C^1 f, C^1 f \rangle_{\mathcal{A}} \leq \langle C^1 S^1 f, C^1 S^1 f \rangle_{\mathcal{A}}.
\]

Then,

\[
\langle C^1 f, C^1 f \rangle_{\mathcal{A}} \leq \frac{m}{A} \langle Cs f, f \rangle_{\mathcal{A}}.
\]

So,

\[
\langle C^1 f, C^1 f \rangle_{\mathcal{A}} \leq \frac{m}{A} \langle Cs f, f \rangle_{\mathcal{A}}.
\]
One the deduce

\[\langle C^1K^*f, C^1K^*f \rangle_{\mathcal{A}} \leq \|K^*\|^2 \langle C^1f, C^1f \rangle_{\mathcal{A}} \leq \|K^*\|^2 \sqrt{\frac{m}{A}} \langle Scf, f \rangle_{\mathcal{A}}. \]

Hence,

\[(2.5) \quad \frac{1}{\|K^*\|^2} \sqrt{\frac{A}{m}} \langle C^1K^*f, C^1K^*f \rangle_{\mathcal{A}} \leq \langle Scf, f \rangle_{\mathcal{A}}. \]

Since \(S_C \) is positive, selfadjoint and bounded \(\mathcal{A} \)-linear map, we can write

\[\langle S_C^{-\frac{1}{2}}S_C^{-\frac{1}{2}}f, S_C^{-\frac{1}{2}}S_C^{-\frac{1}{2}}f \rangle_{\mathcal{A}} = \langle Scf, f \rangle_{\mathcal{A}} = \int_0^\infty \langle f, F(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w). \]

From lemma 1.3, there exists \(D > 0 \) such that,

\[\langle S_C^{-\frac{1}{2}}S_C^{-\frac{1}{2}}f, S_C^{-\frac{1}{2}}S_C^{-\frac{1}{2}}f \rangle_{\mathcal{A}} \leq D \langle f, f \rangle_{\mathcal{A}}, \]

hence,

\[(2.6) \quad \langle Scf, f \rangle_{\mathcal{A}} \leq D \langle f, f \rangle_{\mathcal{A}}. \]

Therefore by (2.5) and (2.6), we conclude that \(F \) is a continuous \(C \)-controlled \(K \)-frame in Hilbert \(C^* \)-module \(\mathcal{H} \) with frame bounds \(\frac{1}{\|K^*\|^2} \sqrt{\frac{A}{m}} \) and \(D \). \(\square \)

Lemma 2.6. Let \(C \in GL^+(\mathcal{H}). \) Suppose \(CS_C = S_C C \) and \(R(S_C^{\frac{1}{2}}) \subset R((CS_C)^{\frac{1}{2}}) \) with \(R((CS_C)^{\frac{1}{2}}) \) is closed. Then \(\|S_C^{\frac{1}{2}}f\|^2 \leq \lambda \|(CS_C)^{\frac{1}{2}}f\|^2 \) for some \(\lambda \geq 0. \)

Proof. By theorem 1.4, there exists some \(\lambda > 0 \) such that,

\[(S_C^{\frac{1}{2}})(S_C^{\frac{1}{2}})^* \leq \lambda (CS_C^{\frac{1}{2}})(CS_C^{\frac{1}{2}})^*. \]

Hence,

\[\langle (S_C^{\frac{1}{2}})(S_C^{\frac{1}{2}})^* f, f \rangle_{\mathcal{A}} \leq \lambda \langle (CS_C^{\frac{1}{2}})(CS_C^{\frac{1}{2}})^* f, f \rangle_{\mathcal{A}}. \]

So,

\[\|S_C^{\frac{1}{2}}f\|^2 \leq \lambda \|(CS_C^{\frac{1}{2}})f\|^2, f \in \mathcal{H}. \] \(\square \)
Theorem 2.7. Let $F : \Omega \to \mathcal{H}$ a map and $C \in GL^+(\mathcal{H})$. Suppose $CS_C = SC_C$ and $R(S_C^2) \subset R((CS_C)^2)$ with $R((CS_C)^2)$ is closed. Then F is a continuous C-controlled Bessel mapping with bound B if and only if $U : l^2(\mathcal{A}) \to \mathcal{H}$ defined by $U(\{a_w\}_{w \in \Omega}) = \int_\Omega a_wCF(w)d\mu(w)$ is well defined bounded with $\|U\| \leq \sqrt{B}\|C^{\frac{1}{2}}\|.$

Proof. Assume that F is a continuous C-controlled Bessel with bound B. Hence ,

$$\|\int_{\Omega} \langle f, F(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w)\| \leq B\|f\|^2, f \in \mathcal{H}.$$

So,

$$\|\langle SCf, f \rangle_{\mathcal{A}}\| \leq B\|f\|^2.$$

In the beginning, we show that U is well defined .

For each $\{a_w\}_{w \in \Omega} \in l^2(\mathcal{A})$,

$$\|U(\{a_w\}_{w \in \Omega})\|^2 = \sup_{f \in \mathcal{H}, \|f\|=1} \|U(\{a_w\}_{w \in \Omega}), f\|_{\mathcal{A}}\|^2$$

$$= \sup_{f \in \mathcal{H}, \|f\|=1} \|\int_{\Omega} a_wCF(w)d\mu(w), f\|_{\mathcal{A}}\|^2$$

$$= \sup_{f \in \mathcal{H}, \|f\|=1} \|\int_{\Omega} a_w\langle CF(w), f \rangle_{\mathcal{A}} d\mu(w)\|^2$$

$$\leq \sup_{f \in \mathcal{H}, \|f\|=1} \|\int_{\Omega} \langle f, CF(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w)\| \|\int_{\Omega} a_w^*a_w d\mu(w)\|$$

$$= \sup_{f \in \mathcal{H}, \|f\|=1} \|\int_{\Omega} \langle f, CF(w) \rangle_{\mathcal{A}} CF(w) d\mu(w), f\|_{\mathcal{A}}\| \|\int_{\Omega} a_w^*a_w d\mu(w)\|$$

$$= \sup_{f \in \mathcal{H}, \|f\|=1} \|\langle SCf, f \rangle_{\mathcal{A}}\| \|\int_{\Omega} a_w^*a_w d\mu(w)\|$$

$$= \sup_{f \in \mathcal{H}, \|f\|=1} \|\langle (SC)\frac{1}{2} f, (CS_C)^{\frac{1}{2}} f \rangle_{\mathcal{A}}\| \|\{a_w\}_{w \in \Omega}\|$$

$$\leq \sup_{f \in \mathcal{H}, \|f\|=1} \|\langle C\rangle^{\frac{1}{2}}\| \|\langle SCf \rangle_{\mathcal{A}}\| \|\{a_w\}_{w \in \Omega}\|^2$$

$$\leq B\|\langle C\rangle^{\frac{1}{2}}\|^2 \|\{a_w\}_{w \in \Omega}\|^2.$$

Then,

$$\|U\| \leq \sqrt{B}\|C\|^\frac{1}{2}.$$
Hence U is well defined and bounded.

Now, suppose that U is well defined, and

$$\|U\| \leq \sqrt{B}\|C\|^{\frac{1}{2}}.$$

For any $f \in \mathcal{H}$ and $\{a_w\}_{\omega \in \Omega} \in l^2(\mathcal{A})$, we have,

$$\langle f, U(\{a_w\}_{\omega \in \Omega}) \rangle_{\mathcal{A}} = \langle f, \int_{\Omega} a_w CF(w) d\mu(w) \rangle_{\mathcal{A}}$$

$$= \int_{\Omega} \langle a_w^* C f(w) \rangle_{\mathcal{A}} d\mu(w)$$

$$= \int_{\Omega} \langle C f(w) \rangle_{\mathcal{A}} a_w^* d\mu(w)$$

$$= \langle \{\langle C f(w) \rangle_{\mathcal{A}}\}_{\omega \in \Omega}, \{a_w\}_{\omega \in \Omega} \rangle_{\mathcal{A}}.$$

Then, U has an adjoint, and

$$U^* f = \{\langle C f(w) \rangle_{\mathcal{A}}\}_{\omega \in \Omega}.$$

Also,

$$\|U\|^2 = \sup_{\|\{a_w\}_{\omega \in \Omega}\| = 1} \|U(\{a_w\}_{\omega \in \Omega})\|^2$$

$$= \sup_{\|\{a_w\}_{\omega \in \Omega}\| = 1, \|f\| = 1} \|\langle U(\{a_w\}_{\omega \in \Omega}), f \rangle_{\mathcal{A}}\|^2$$

$$= \sup_{\|\{a_w\}_{\omega \in \Omega}\| = 1, \|f\| = 1} \|\{a_w\}_{\omega \in \Omega}, U^* f \rangle_{\mathcal{A}}\|^2$$

$$= \sup_{\|f\| = 1} \|U^* f\|^2$$

$$= \|U^*\|^2$$

So,

$$\|U^* f\|^2 = \|\langle U^* f, U^* f \rangle_{\mathcal{A}}\| = \|\langle UU^* f, f \rangle_{\mathcal{A}}\| = \|\langle CS C f, f \rangle_{\mathcal{A}}\|.$$

Then,

$$\langle U^* f \rangle_{\mathcal{A}}^2 = \|CS C f\|^{\frac{1}{2}} f\|^{\frac{1}{2}} \leq B\|C\|^{\frac{1}{2}}\|f\|^2.$$

(2.7)

$$\|U^* f\|^2 = \|\langle CS C f\rangle_{\mathcal{A}}^{\frac{1}{2}} f\|^{\frac{1}{2}} \leq B\|C\|^{\frac{1}{2}}\|f\|^2.$$

From lemma 2.6, we have,

$$\|\langle SC C f\rangle_{\mathcal{A}}^{\frac{1}{2}} f\|^2 \leq \lambda\|\langle CS C f\rangle_{\mathcal{A}}^{\frac{1}{2}} f\|^2,$$
for some $\lambda > 0$.

Using (2.7) we get,

$$\|(SC)^{\frac{1}{2}}f\|^2 \leq \lambda \|(CSC)^{\frac{1}{2}}f\|^2$$

$$\leq \lambda B\|C^{\frac{1}{2}}\|^2\|f\|^2.$$

Hence F is a continuous C-controlled Bessel mapping with Bessel bound $\lambda B\|C^{\frac{1}{2}}\|^2$. \hfill \qed

Proposition 2.8. Let F be a continuous C-controlled K-frame for \mathcal{H} with bounds A and B. Then:

$$ACKK^* I \leq SC \leq BI.$$

Proof. Suppose F is a continuous C-controlled K-frame with bounds A and B. Then,

$$A\langle C^{\frac{1}{2}}K^* f, C^{\frac{1}{2}}K^* f \rangle_{\mathcal{H}} \leq \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{H}} \langle CF(w), f \rangle_{\mathcal{H}} d\mu(w) \leq B\langle f, f \rangle_{\mathcal{H}}.$$

Hence,

$$A\langle CKK^* f, f \rangle_{\mathcal{H}} \leq \langle SCf, f \rangle_{\mathcal{H}} \leq B\langle f, f \rangle_{\mathcal{H}}.$$

So,

$$ACKK^* I \leq SC \leq BI.$$

\hfill \qed

Proposition 2.9. Let F be a continuous C-controlled Bessel mapping for \mathcal{H}, and $C \in GL^+(\mathcal{H})$. Then F is a continuous C-controlled K-frame for \mathcal{H} if and only if there exists $A > 0$ such that:

$$ACKK^* \leq CS.$$

Proof. (\Rightarrow) obvious.

(\Leftarrow) Assume that there exists $A > 0$ such that: $ACKK^* \leq CS$,

then,

$$A\langle CKK^* f, f \rangle_{\mathcal{H}} \leq \langle SCf, f \rangle_{\mathcal{H}}.$$

Hence,

$$A\langle C^{\frac{1}{2}}K^* f, C^{\frac{1}{2}}K^* f \rangle_{\mathcal{H}} \leq \langle SCf, f \rangle_{\mathcal{H}}.$$
Therefore,
\[A(C^1K^*f, C^1K^*f)_{\mathcal{A}} \leq \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w). \]

Hence \(F \) is a continuous \(C \)-controlled \(K \)-frame.

\[\square \]

Proposition 2.10. Let \(C \in GL^+(\mathcal{H}), K \in \text{End}_{\mathcal{A}}^*(\mathcal{H}) \) and \(F \) be a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \) with lower and upper frames bounds \(A \) and \(B \) respectively. Suppose \(KC = CK \) and \(R(C^1) \subset R(K^*C^1) \) with \(R(K^*C^1) \) is closed. Then \(F \) is continuous \(K \)-frame for \(\mathcal{H} \) with lower and upper frames bounds \(A\|C^{-1}\|^2\|C\|^2 \) and \(B\|C^{-1}\|^2 \) respectively.

Proof. Assume that \(F \) is a continuous \(C \)-controlled \(K \)-frame with lower and upper frames bounds \(A \) and \(B \). From theorem 2.5, we have:
\[A\|C^1K^*f\|^2 \leq \| \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w) \| \leq B\|f\|^2, f \in \mathcal{H}. \]

Then,
\[A\|K^*f\|^2 = A\|C^{-1}C^1K^*f\|^2 \leq A\|C^{-1}\|^2\|C^1K^*f\|^2 \leq \|C^{-1}\|^2\| \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{A}} \langle CF(w), f \rangle_{\mathcal{A}} d\mu(w) \|. \]

So,
\[(2.8) \quad A\|K^*f\|^2 \leq \|C^1\|^2\|\langle Sf, f \rangle_{\mathcal{A}}\|. \]

Moreover,
\[\langle Sf, f \rangle_{\mathcal{A}} = \langle CSf, f \rangle_{\mathcal{A}} \]
\[= \langle (CS)^{1/2}f, (CS)^{1/2}f \rangle_{\mathcal{A}} \]
\[= \| (CS)^{1/2}f \|^2 \]
\[\leq \|C^{1/2}\|^2\| (S)^{1/2}f \|^2 \]
\[= \|C^{1/2}\|^2\| \langle S, (S)^{1/2}f \rangle_{\mathcal{A}} \| \]
\[= \|C^{1/2}\|^2\| \langle f, f \rangle_{\mathcal{A}} \|, \]
then,

$$\langle Scf, f \rangle_{sA} \leq \|(C)^{1/2}\|^2 \langle Sf, f \rangle_{sA}. \tag{2.9}$$

From (2.8) and (2.9), we have,

$$A \|K^* f\|^2 \leq \|C^{-1/2}\|^2 \|(C)^{1/2}\|^2 \langle Sf, f \rangle_{sA}$$

$$= \|C^{-1/2}\|^2 \|(C)^{1/2}\|^2 \int_\Omega \langle f, F(w) \rangle_{sA} \langle F(w), f \rangle_{sA} d\mu(w).$$

Hence,

$$\|C^{-1/2}\|^{-2} \|(C)^{1/2}\|^{-2} A \|K^* f\|^2 \leq \int_\Omega \langle f, F(w) \rangle_{sA} \langle F(w), f \rangle_{sA} d\mu(w).$$

Moreover,

$$\|\int_\Omega \langle f, F(w) \rangle_{sA} \langle F(w), f \rangle_{sA} d\mu(w)\| = \|\langle Sf, f \rangle_{sA}\|$$

$$= \|\langle C^{-1}CSf, f \rangle_{sA}\|$$

$$= \|\langle (C^{-1}CS)^{1/2}f, (C^{-1}CS)^{1/2}f \rangle_{sA}\|$$

$$= \|(C^{-1}CS)^{1/2}f\|^2$$

$$\leq \|C^{-1}\|^2 \|(CS)^{1/2}f\|^2$$

$$= \|C^{-1}\|^2 \langle (CS)^{1/2}f, (CS)^{1/2}f \rangle_{sA}$$

$$= \|C^{-1}\|^2 \langle CSf, f \rangle_{sA}$$

$$\leq \|C^{-1}\|^2 B \|f\|^2.$$

Then F is a continuous K-frame for \mathcal{H} with lower and upper frames bounds $A\|C^{-1/2}\|^{-2} \|(C)^{1/2}\|^{-2}$ and $B\|C^{-1/2}\|^2$.

\[\square\]

Proposition 2.11. Let $C \in GL^+(\mathcal{H})$ and $K \in \text{End}_{sA}(\mathcal{H})$. We suppose that $KC = CK$, $R(C^{1/2}) \subset R(K^*C^{1/2})$ with $R(K^*C^{1/2})$ is closed and F is a continuous K-frame for \mathcal{H} with lower and upper frames bounds A and B respectively.

Then F is continuous C-controlled K-frame for \mathcal{H} with lower and upper frames bounds A and $\|C\|\|S\|$.
Proof. Assume that F is a continuous K-frame for \mathcal{H} with lower and upper frames bounds A and B. Then we have:

$$A\langle K^* f, K^* f \rangle_A \leq \int_{\Omega} \langle f, F(w) \rangle_A \langle F(w), f \rangle_A d\mu(w) \leq B\langle f, f \rangle_A,$$

Since $\langle K^* f, K^* f \rangle_A > 0$ and $\langle f, f \rangle_A > 0$ then,

$$A\|K^* f\|^2 \leq \|\int_{\Omega} \langle f, F(w) \rangle_A \langle F(w), f \rangle_A d\mu(w)\| \leq B\|f\|^2.$$

Then for every $f \in \mathcal{H}$,

$$A\|C^{1/2}K^* f\|^2 = A\|K^*C^{1/2} f\|^2 \leq \|\int_{\Omega} \langle C^{1/2} f, F(w) \rangle_A \langle F(w), C^{1/2} f \rangle_A d\mu(w)\|$$

$$= \|\int_{\Omega} \langle C^{1/2} f, F(w) \rangle_A F(w) d\mu(w), C^{1/2} f \rangle_A \|$$

$$= \|\langle C^{1/2}S f, C^{1/2} f \rangle_A \|$$

$$= \|\langle CS f, f \rangle_A \|$$

$$= \|\langle S f, Cf \rangle_A \|$$

$$\leq \|S f\| \|C f\|,$$

then

$$(2.11) \quad A\|C^{1/2}K^* f\|^2 \leq \|\langle S f, f \rangle_A \| \leq \|S\| \|C\| \|f\|^2.$$

By (2.11) and theorem 2.5, we conclude that F is continuous C-controlled K-frame for \mathcal{H} with lower and upper frames bounds A and $\|C\|\|S\|$.

\[\square\]

Theorem 2.12. Let $C \in GL^+(\mathcal{H})$, and F be a continuous C-controlled K-frame for \mathcal{H} with bounds A and B. Let $M, K \in \text{End}^*_{SA}(\mathcal{H})$ such that $R(M) \subset R(K)$, $R(K)$ is closed and C commutes with M^* and K^*. Then F is continuous C-controlled M-frame for \mathcal{H}.
Proof. Assume that F be a continuous C-controlled K-frame for \mathcal{H} with bounds A and B, then,

$$A(C^{\frac{1}{2}}K^* f, C^{\frac{1}{2}}K^* f)_{\mathcal{H}} \leq \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{H}} \langle CF(w), f \rangle_{\mathcal{H}} d\mu(w) \leq B\langle f, f \rangle_{\mathcal{H}}, f \in \mathcal{H}.$$

Since $R(M) \subseteq R(K)$, by theorem 1.4, there exists some $0 \leq \lambda$ such that

$$MM^* \leq \lambda KK^*.$$

Hence,

$$\langle MM^* C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_{\mathcal{H}} \leq \lambda \langle KK^* C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_{\mathcal{H}};$$

then,

$$\frac{A}{\lambda} \langle MM^* C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_{\mathcal{H}} \leq A \langle KK^* C^{\frac{1}{2}} f, C^{\frac{1}{2}} f \rangle_{\mathcal{H}}.$$

By (2.12), we have,

$$\frac{A}{\lambda} \langle M^* C^{\frac{1}{2}} f, M^* C^{\frac{1}{2}} f \rangle_{\mathcal{H}} \leq \int_{\Omega} \langle f, F(w) \rangle_{\mathcal{H}} \langle CF(w), f \rangle_{\mathcal{H}} d\mu(w) \leq B\langle f, f \rangle_{\mathcal{H}}.$$

Then F is continuous C-controlled M-frame for \mathcal{H} with bounds $\frac{A}{\lambda}$ and B. \qed

The following results gives the invariance of a continuous C-controlled Bessel mapping by an adjointable operator.

Proposition 2.13. Let $T \in \text{End}^*_\sigma(\mathcal{H})$ such that $TC = CT$ and F be a continuous C-controlled Bessel mapping with bound D. Then TF is also a continuous C-controlled Bessel mapping with bound $D\|T^*\|$.

Proof. Assume that F is a continuous C-controlled Bessel mapping with bound D. Hence we have,

$$\int_{\Omega} \langle f, F(w) \rangle_{\mathcal{H}} \langle CF(w), f \rangle_{\mathcal{H}} d\mu(w) \leq D\langle f, f \rangle_{\mathcal{H}}, f \in \mathcal{H}. $$
We have,

\[\int_{\Omega} \langle f, TF(w) \rangle d\mu(w) = \int_{\Omega} \langle T^* f, F(w) \rangle d\mu(w) \]

\[\leq D \langle T^* f, T^* f \rangle \]

\[\leq D \left\| T^* \right\|^2 < f, f >. \]

The result holds.

Now, we study the invariance of a continuous C-controlled K-frame mapping by adjointable operator.

Theorem 2.14. Let \(C \in \text{GL}^+(\mathcal{H}) \), and \(F \) be a continuous C-controlled K-frame for \(\mathcal{H} \) with bounds \(A \) and \(B \). If \(T \in \text{End}_A(\mathcal{H}) \) with closed range such that \(R(K^* T^*) \) is closed and \(C, K, T \) commute with each other. Then \(T F \) is a continuous C-controlled K-frame for \(R(T) \).

Proof. Assume that \(F \) is a continuous C-controlled K-frame with bounds \(A \) and \(B \). Then,

\[A \langle C^{1/2} K^* f, C^{1/2} K^* f \rangle \leq \int_{\Omega} \langle f, F(w) \rangle \langle C F(w), f \rangle d\mu(w) \leq B \langle f, f \rangle, f \in \mathcal{H}. \]

Since \(T \) has a closed range, then \(T \) has Moore-Penrose inverse \(T^\dagger \) such that \(TT^\dagger T = T \) and \(T^\dagger TT^\dagger = T^\dagger \), so \(TT^\dagger_{/R(T)} = I_{R(T)} \) and \((TT^\dagger)^* = I^* = I = TT^\dagger \).

We have,

\[\langle K^* C^{1/2} f, K^* C^{1/2} f \rangle \leq \langle (TT^\dagger)^* K^* C^{1/2} f, (TT^\dagger)^* K^* C^{1/2} f \rangle \]

\[= \langle (T^\dagger)^* T^* K^* C^{1/2} f, (T^\dagger)^* T^* K^* C^{1/2} f \rangle. \]

So,

\[\langle K^* C^{1/2} f, K^* C^{1/2} f \rangle \leq \left\| (T^\dagger)^* \right\|^2 \langle T^* K^* C^{1/2} f, T^* K^* C^{1/2} f \rangle. \]

Therefore,

\[\left\| (T^\dagger)^* \right\|^2 \langle K^* C^{1/2} f, K^* C^{1/2} f \rangle \leq \langle T^* K^* C^{1/2} f, T^* K^* C^{1/2} f \rangle. \]
Consequently, from theorem 1.4, and \(R(T^*K^*) \subset R(K^*T^*) \), there exists some \(\lambda \geq 0 \) such that,

\[
(T^*K^*C^2 f, T^*K^*C^2 f) \leq \lambda (K^*T^*C^2 f, K^*T^*C^2 f).
\]

Hence, using (2.14) and (2.15) we have,

\[
\int \Omega \langle f, TF(w) \rangle \langle CTF(w), f \rangle d\mu(w) = \int \Omega \langle T^*f, F(w) \rangle \langle TCF(w), f \rangle d\mu(w) = \int \Omega \langle T^*f, F(w) \rangle \langle CF(w), T^*f \rangle d\mu(w) \geq A \langle C^2 K^*T^*f, C^2 K^*T^*f \rangle \geq \frac{A}{\lambda} \langle T^*C^2 K^*f, T^*C^2 K^*f \rangle,
\]

then,

\[
\int \Omega \langle f, TF(w) \rangle \langle CTF(w), f \rangle d\mu(w) \geq \frac{A}{\lambda} \|(T^*)_c\|^2 \langle C^2 K^*f, C^2 K^*f \rangle.
\]

Using (2.16) and proposition 2.13, the result holds.

\[\square \]

Theorem 2.15. Let \(C \in GL^*_c(\mathcal{H}) \) and \(F \) be a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \) with bounds \(A \) and \(B \).

If \(T \in End^*_{af}(\mathcal{H}) \) is a isometry such that \(R(T^*K^*) \subset R(K^*T^*) \) with \(R(K^*T^*) \) is closed and \(C, K, T \) commute with each other, then \(TF \) is a continuous \(C \)-controlled \(K \)-frame for \(\mathcal{H} \).

Proof. Using theorem 1.4, there exists some \(\lambda \geq 0 \) such that,

\[
\|T^*K^*C^2 f\|^2 \leq \lambda \|K^*T^*C^2 f\|^2.
\]
Assume A the lower bound for the continuous C-controlled K-frame F and T is an isometry then,

$$
\frac{A}{\lambda} \|C^1 K^* f\|^2 = \frac{A}{\lambda} \|T^* C^1 K^* f\|^2 \\
\leq A \|K^* T^* C^1 f\|^2 \\
= A \|C^1 K^* T^* f\|^2 \\
\leq \int_{\Omega} \langle T^* f, F(w) \rangle \langle CF(w), T^* f \rangle d\mu(w) \\
= \int_{\Omega} \langle f, TF(w) \rangle \langle TCF(w), f \rangle d\mu(w),
$$

then,

$$
(2.17) \quad \frac{A}{\lambda} \|C^1 K^* f\|^2 \leq \int_{\Omega} \langle f, TF(w) \rangle \langle CTF(w), f \rangle d\mu(w).
$$

Hence, from proposition 2.13 and inequality (2.17), we conclude that TF is a continuous C-controlled K-frame for \mathcal{H} with bounds $\frac{A}{\lambda}$ and $B \|T^*\|^2$. □

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES