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Abstract. In this article, we will present a new form of functions called pairwise− ω− perfect functions and

pairwise M-ω−perfect functions. We will give some properties of this functions, and we will looking for home-

omorphism of different bitopological spaces under the effect these functions. Last but not least, we give the

characterizations of product theorems.
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1. INTRODUCTION AND PRELIMINARIES

Firstly, Kelly [10] established the bitopological spaces by generalised any characteris-

tics in single topology into bitopological spaces.For examples for these topices,species of Haus-

dorff space, continuous functions, lindel
..
of, compactness, countably compact, normal, and oth-

ers topices that we can,t count it. In this research it will be an abbreviation of pairwise by p-,

for example p-perfect functions, it is means pairwise perfect functions.
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If (S,η1,η2) is a bitopological space and N ⊆ S,cl1(N) and cl2(N) will denote the clo-

sure of N with respect to η1 and η2 respectively.Let (S,η) be a topological space and let N

be a subset of S. A point s ∈ (S,η1,η2) is called a condensation point of N, if for each K

∈ η with s ∈ K, the set K ∩ N is uncountable. Hdeib presented ω-closed sets and ω-open

sets as: N is called ω-closed if it contains all its condensation points. The complement of

an ω-closed set is called ω-open. also clω N will denote the intersection of all ω-closed sets

which contains N. The family of all ω−open sets in (S,η) is denoted byW (η).In [7] Datta

defined p-closed functions, p−open sets, and in [8] Fletcher presented p−continuous func-

tions, in addition of these in [9] Fora and Hdeib gived p- compact and p-lindel
..
of. Recently,

A.Atoom and H.Z.Hdeib constructed the perfect functions in the bitopological spaces by a

function Ω : (S,η1,η2)→ (T,γ1,γ2) is called p−perfect, if Ω is p−continuous, p−closed,

and for each t ∈ T , Ω−1(t) is p−compact. In this work, we will be presenting pairwise- ω−

perfect functions, and characterizations of pairwise- M- ω− perfect functions.

2. DEFINITIONS AND RESULTS

Definition 2.1. A subset N of a bitopological space (S,η1,η2) is pairwise- ω−open,(simply

p−ω−open) if for each s ∈ N there exists a pairwise−open subset Ks containing s such that

Ks−N is a countable set. The complement of a pairwise ω−open is said to be pairwise-

ω−closed set(simply p−ω−closed) .The family of all pairwise ω−open (respectively pair-

wise ω−closed) subsets of a space (S,η1,η2) is denoted by p− ω −OP(S), (respectively

p−ω −CL(S)).Also the family of all pairwise- ω−open sets of (S,η1,η2) containing s is

denoted by p−ω−OP(S;s).

Definition 2.2. A function Ω : (S,η1,η2)→ (T,γ1,γ2) is a pairwise- ω−closed function, if it

functions pairwise closed sets onto pairwise- ω−closed sets.

Definition 2.3. A function Ω : (S,η1,η2)→ (T,γ1,γ2) is p-weakly continuous function if for

every p-open set K ⊂ T , Ω−1(K) is p-ω−open.

Definition 2.4. A function Ω : (S,η1,η2)→ (T,γ1,γ2) is p-strongly−ω−continuous function

if for every p-ω−open set K ⊂ T ,Ω−1(K) is p-open.
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Definition 2.5. A function Ω : (S,η1,η2) → (T,γ1,γ2) is called p−ω−continuous at point

s ∈ (S,η1,η2), if for every p-open set Lcontaining Ω(s), there is p−ω−open set K contaning

s such that Ω(K)⊂ L.If Ωis p−ω−continuous at each point of (S,η1,η2), then Ω is said to be

p−ω−continuous on (S,η1,η2).

Definition 2.6. A function Ω : (S,η1,η2) → (T,γ1,γ2) is called p−ω−continuous ( resp.

p−ω−irresolute) if, Ω1 : (S,η1)→ (T,γ1) and Ω2 : (S,η2)→ (T,γ2) are ω−continuous (resp.

ω−irresolute) functions.

Definition 2.7. A family N̂ of subsets of a bitopological space (S,η1,η2) is called η1η2−

ω−open if N̂ ⊂W (η1)∪W (η2). If, in addition N̂ ∩W (η1) 6= φ and Â ∩W (η2) 6= φ then N̂ is

called pairwise ω−open.

Definition 2.8. A bitopological space (S,η1,η2) is said to be pairwise -ω−compact, ( resp.

pairwise M-ω−compact ) if each p.ω .open (resp. η1η2-ω−open) cover of S has a finite sub-

cover.Clearly every p.M-ω .c. space is p.ω .c., and we can easily show that the converse may not

be true.

Definition 2.9. A space (S,η1,η2) is said to be p−ω−lindel
..
of if every p−ω−open cover of

(S,η1,η2) has a countable subcover.

Definition 2.10. A function Ω : (S,η1,η2)→ (T,γ1,γ2) is said to be p-weakly continuos func-

tion if for every p-open set K ⊂ T , Ω−1(K) is p-ω−open.

Definition 2.11. A space (S,η1,η2) is said to be p−ω − I1 if for each pair of distinct points

s and t of (S,η1,η2), there exist p−ω−open sets Kand Lcontaing s and t, respectively such

that t /∈ K, and s /∈ L.

Definition 2.12. A space (S,η1,η2) is said to be p−ω − I2 if for each pair of distinct points

s and t of (S,η1,η2), there exist p−ω−open sets Kand L in (S,η1,η2)such that s ∈ K and

t ∈ L.

3. MAIN RESULTS IN PAIRWISE- ω - PERFECT FUNCTIONS

Definition 3.1. A function Ω : (S,η1,η2)→ (T,γ1,γ2) is pairwise−ω−perfect, if Ω is pairwise

−ω−continuous, pairwise −ω−closed, and for each t ∈ T , Ω−1(t) is pairwise−ω−compact.
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Definition 3.2. A function Ω : (S,η1,η2) → (T,γ1,γ2) is called pairwise −ω−M- perfect,

if Ω is pairwise −ω−continuous, pairwise −ω−closed, and for each t ∈ T ,Ω−1(t) is pair-

wise M −ω−compact.

Theorem 3.3. If Ω : (S,η1,η2) → (T,γ1,γ2) is a pairwise −ω−perfect function, then

for every pairwise −ω−compact subset Q ⊆ T , the inverse image Ω−1(Q) is a pairwise

−ω−compact .

Proof. Let K
˜
= {Kθ :θ ∈ Ψ} be a p-open cover of (S,η1,η2) , because Ω is a pairwise

−ω−perfect function, then ∀t ∈ T, Ω−1(t) is pairwise −ω− compact, there exists a finite sub-

sets Ψt ,
∗

Ψt of Ψ , s.t Ω−1(t) ⊆
⋃

θ∈Ψt

{Lθ : θ ∈ Ψt}
⋃ ⋃

θ∈
∗

Ψt

{Eθ : θ ∈
∗

Ψt}, where {Lθ : θ ∈

Ψt} is η1 −ω− open ,{Eθ : θ ∈
∗

Ψt} is η2−ω− open. Let Dt = T −Ω(S−
⋃

θ∈Ψt

Lθ ) is a γ1

−ω− open set containing t , and D∗t = T −Ω(S−
⋃

θ∈Ψt

Eθ ) is a γ2−ω− open set containing t ,

where Ω−1(Dt) ⊆
⋃

α∈Ψy

Lθ , Ω−1 (D∗t ) ⊆
⋃

α∈
∗

Ψy

Eθ . Let D
˜
= {Dt : t ∈ T }

⋃
{D∗t : t ∈ T} is a

pairwise −ω− open cover of T . D
˜

is pairwise−ω−open cover of Q .Since Q is pairwise

−ω−compact, Q⊆
n⋃

i=1

(Dti)
⋃ m⋃

i=1

(D∗t j
). �

Thus, Ω−1 (Q)⊆
n⋃

i=1

Ω−1(Dti)
⋃ m⋃

j=1

Ω−1(D∗t j
)⊆ union of finite of K

˜
, i.e Ω−1 (Q) is pairwise

−ω−compact.

Corollary 3.4. A pairwise −ω−compact space is inverse invariant under pairwise

−ω−perfect function .

Theorem 3.5. If Ω : (S,η1,η2)→ (T,γ1,γ2) is a pairwise M−ω− perfect function, then

for every pairwise −ω−compact subset Q ⊆ T , the inverse image Ω−1 (Q) is a pairwise

M−ω−compact .

Proof. We will use the same techniquein theorem [2.8]. �

Corollary 3.6. A pairwise M−ω−compact space is constant algebraic expression under pair-

wise M−ω−perfect function .
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Theorem 3.7. If Ω : (S,η1,η2) → (T,γ1,γ2),is pairwise −ω−perfect function and Θ :

(T,γ1,γ2)→ (Q,µ1,µ2)is pairwise perfect function,Θ◦Ω is pairwise −ω−perfect function .

Proof. Suppose N be any −ω− µ1− open set in Q, sinceΘ is pairwise−ω− perfect

function ,then Θ−1(N) is γ1− open set in (T,γ1,γ2). �

Because Ω is pairwise perfect function, then Ω−1(Θ−1(N)) η1− open set in S. The same

thing, let G be any be any −ω − µ2− open set in Q. Hence Θ ◦Ω is pairwise−ω− perfect

function .

Corollary 3.8. If Ω : (S,η1,η2)→ (T,γ1,γ2),is pairwise −ω−semi perfect function and Θ :

(T,γ1,γ2)→ (Q,µ1,µ2)is pairwise perfect function Θ◦Ω is pairwise M−ω−perfect function .

Proposition 3.9. If the composition Θ ◦Ω of the pairwise −ω−continuous funcion, Ω :

(S,η1,η2)
onto→ (T,γ1,γ2), and pairwise continuous Θ : (T,γ1,γ2)

onto→ (Q,µ1,µ2) is a pair-

wise −ω− closed , then the function Θ : (T,γ1,γ2)
onto→ (Q,µ1,µ2) is pairwise −ω− closed.

Proof. Let N be a γ1−ω− closed in T,then Ω−1 (N) is η1−ω− closed in S.Since Θ ◦Ω is

pairwise −ω− closed,then Θ(ΩΩ−1 (N)) is ρ1−ω− closed in Q, i.e Θ(N) is µ1−ω−closed

in Q.Simillary, we can show that if G be a γ2−ω−closed in T, then Θ(G) is γ2−ω−closed in Q

.Thus Θ is a pairwise −ω−closed function. �

Theorem 3.10. If the composition Θ◦Ω of the pairwise −ω−continuous funcion,

Ω : (S,η1,η2)
onto→ (T,γ1,γ2),and pairwise continuous Θ : (T,γ1,γ2)

onto→ (Q,µ1,µ2) is pair-

wise −ω− perfect,

then the function Θ : (T,γ1,γ2)
onto→ (Q,µ1,µ2) is pairwise −ω− perfect.

Proof. For every q ∈ Q , Θ−1(q) = Ω ((Θ ◦Ω)−1(q)) = pairwise −ω− compact, because

Θ◦Ω is pairwise −ω− perfect. Since Θ is pairwise −ω− closed by previous proposition, we

get that Θ is pairwise −ω− perfect . �

Theorem 3.11. If Ω : (S,η1,η2)
onto→ (T,γ1,γ2) is pairwise −ω−closed function , then for

any G ⊂ T the restriction ΩB : Ω −1(G) → G is pairwise −ω−closed .
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Proof. Let G ⊂ T .Consider the function Ω : (S,η1) → (T,γ1),let S be a η1 −ω−closed.

Then ΩG (S
⋂

Ω −1(G)) = Ω(S)
⋂

G is γ1−ω− closed in G. �

The same thing, we can show that if S a γ2−ω−closed, ΩG (S
⋂

Ω−1(G)) = Ω(S)
⋂

G is

σ2−ω− closed in G. Thus ΩB : Ω −1(G) → G is pairwise −ω−closed.

Theorem 3.12. If Ω : (S,η1,η2)
onto→ (T,γ1,γ2) is pairwise −ω−perfect function , then for

any G⊂ T the restriction fB : f −1(B) → B is pairwise −ω− perfect .

Proof. We will use the same technique in the above theorem . �

Theorem 3.13. A bitopological space (S,η1,η2) is p.−ω−c. if and only if each proper ηr−

ω−closed subset of (S,η1,η2) is ω−compact relative to (S,η p),where r, p = 1,2;r 6= p.

Proof. The proof comes from last thoerem. �

Theorem 3.14. If Ω : (S,η1,η2)
onto→ (T,γ1,γ2) is pairwise−ω−perfect , where (S,η1,η2) is

pairwise−ω− compact, and (T,γ1,γ2) is pairwise−ω− Hausdorff , then Ω is pairwise−ω−

closed .

Proof. If N is η1 − ω− closed subset of (S,η1,η2) ,then it is η2 − ω−compact,because

(S,η1,η2) is pairwise−ω− compact .Since Ω is pairwise−ω−continuous .Ω(N) is a γ2−ω−

compact subset of (T,γ1,γ2).Since (T,γ1,γ2) is pairwise −ω− Hausdorff, then Ω(N) is a

γ1−ω−closed .Simillary if B is a η2−ω− closed subset of S, then Ω(G) is a γ2−ω−closed

subset of (T,γ1,γ2). �

Corollary 3.15. If Ω : (S,η1,η2)
onto→ (T,γ1,γ2) is pairwise M−ω−perfect ,where

(S,η1,η2) is pairwiseM−ω−compact, and (T,γ1,γ2) is pairwise −ω− Hausdorff , then Ω is

pairwise −ω−closed .

Definition 3.16. A function Ω : (S,η1,η2) → (T,γ1,γ2) is called pairwise

−ω−homeomorphism, if Ω is pairwise continous, pairwise −ω−closed( pairwise −ω−open),

and Ωis bijection .
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Theorem 3.17. Let Ω : (S,η1,η2) → (T,γ1,γ2) be a p-continous bijection function.

If (T,γ1,γ2) is pairwise −ω− Hausdorff space, and (S,η1,η2) is pairwise −ω−compact,

then Ω is pairwise −ω− homeomorphism function.

Proof. This is enough to prove that Ω is pairwise−ω− closed.Let H be a ηr-closed proper sub-

set of S, and hence H is proper η p −ω−compact, for r, p= 1,2;r 6= p., by using theorem[3.13],

and so, Ω(H) is a γ p − ω− compact, but (T,γ1,γ2) is pairwise −ω− Hausdorff space,

Ω(H) is γr−ω− closed. Hence, Ω is pairwise−ω− homeomorphism function. �

Definition 3.18. A function Ω : (S,η1,η2) → (T,γ1,γ2) is called pairwise−ω−strongly func-

tion( pairwise −ω−weakly function), if for every pairwise −ω−open cover K
˜
= {Kθ :θ ∈

Ψ} ,there exists pairwise −ω−open cover L
˜

= {Lθ : θ ∈ Ψt}of T , s.t Ω−1(L) ⊆⋃
{Kθ : θ ∈Ψ1,Ψ1 ⊂Ψ,finite} ,∀Lθ ∈ L

˜
.

Theorem 3.19. Let Ω : (S,η1,η2) → (T,γ1,γ2) be a pairwise −ω−strongly onto function,

then (S,η1,η2) is pairwise −ω−compact, if (T,γ1,γ2)is so.

Proof. Suppose K
˜
= {Kθ :θ ∈Ψ} be a pairwise−ω− open cover (S,η1,η2) .Because Ω is pair-

wise−ω− strongly function, there exists pairwise open cover L
˜
= {Lθ : θ ∈Ψt} of (T,γ1,γ2),

such that Ω−1(L)⊆
⋃
{Kθ : θ ∈Ψ1,Ψ1 ⊂Ψ,finite},∀Lθ ∈ L

˜
,but (T,γ1,γ2) is pairwise −ω−

compact , so there exists Ψ1 ⊂ Ψ, where Ψ1is finite, such that, T =
⋃

θ∈Ψt

Lθ and so, S =⋃
Ω−1(Lθ ). Each Ω−1(Lθ ) contains of finite members of K

˜
, thus S is pairwise −ω− com-

pact. �

Definition 3.20. If K
˜

and F
˜

are pairwise −ω−open covers of the bitopological space

(S,η1,η2), then K
˜

is called a parallel refinement of F
˜
,if each K ∈ K

˜
∩W (ηr)is contained

in some F ∈ F
˜
∩W (ηr),r = 1,2.

Definition 3.21. If K
˜

and F
˜

are pairwise η1η2 −ω−open covers of the bitopological space

(S,η1,η2), then K
˜

is called a parallel refinement of F
˜
,if each K ∈ K

˜
∩W (ηr)is contained in

some F ∈ F
˜
∩W (ηr),r = 1,2.
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Definition 3.22. A family N
˜

of subsets of a space (S,η1,η2)is locally finite in (S,W (η)) if for

each s ∈ S there exists a ω− open set K such that s ∈ K and K intersects at most finitely many

elements of N
˜
.

Definition 3.23. A bitopological space (S,η1,η2) is called pairwise M−ω−paracompact, if

each pairwise −ω−open cover of S has a pairwise−ω−locally finite η1η2−ω−open refine-

ment.

Definition 3.24. A bitopological space (S,η1,η2) is called pairwise −ω−paracompact, if

each pairwise −ω−open cover of S has a pairwise −ω−ocally finite pairwise −ω−open re-

finement.

Theorem 3.25. Let Ω : (S,η1,η2) → (T,γ1,γ2) be a pairwise −ω−perfect func-

tion , and (T,γ1,γ2) is a pairwise M−ω−paracompact , then (S,η1,η2) is so.

Proof. Suppose K
˜
= {Kθ :θ ∈ Ψ} be a pairwise −ω−open cover of (S,η1,η2) , because Ω

is a pairwise−ω− perfect function,then ∀t ∈ T, Ω−1(t) is pairwise−ω−compact, Suppose K
˜
=

{Kθ :θ ∈Ψ} be a p-open cover of (S,η1,η2) , since Ω is a pairwise −ω−perfect function, then

∀t ∈ T, Ω−1(t) is pairwise−ω− compact, ∃ a finite subsets Ψt ,
∗

Ψt of Ψ , s.t Ω−1(t)⊆
⋃

θ∈Ψt

{Lθ :

θ ∈Ψt}
⋃ ⋃

θ∈
∗

Ψt

{Eθ : θ ∈
∗

Ψt}, where {Lθ : θ ∈Ψt} is η1 −ω− open ,{Eθ : θ ∈
∗

Ψt} is η2−

ω− open. Let Dt = T −Ω(S−
⋃

θ∈Ψt

Lθ ) is a γ1 −ω− open set containing t , and D∗t = T −

Ω(S−
⋃

θ∈Ψt

Eθ ) is a γ2−ω− open set containing t , where Ω−1(Dt) ⊆
⋃

α∈Ψy

Lθ , Ω−1 (D∗t ) ⊆⋃
α∈

∗
Ψy

Eθ . Let D
˜

= {Dt : t ∈ T }
⋃
{D∗t : t ∈ T} is a pairwise −ω− open cover of T . Since

(T,γ1,γ2) is pairwise M−ω− paracompact, D
˜

has a pairwise locally finite η1η2−ω−open,

refinement. say: �

I
˜
= {IZ : Z ∈ Ξ1 }

⋃
{I∗Z : Z ∈ Ξ2 }, where {IZ : Z ∈ Ξ1 } is η1−ω−locally finite paracom-

pact of Dt ,and {I∗Z : Z ∈ Ξ2 } is η2−ω− locally finite paracompact of D∗t , Ξ = Ξ1
⋃

Ξ2.

Let J1 = {Ω−1(IZ)
⋂

Lθ r ,r = 1,2, ...,n,Z ∈ Ξ1,θ ∈Ψt} is η1−ω− open locally finite refine-

ment of {Lθ : θ ∈Ψt},and let J2 = { f−1(I∗Z)
⋂

Eθ r ,r = 1,2, ...,n,Z ∈ Ξ2,θ ∈
∗

Ψt} is η2−ω−
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open locally finite refinement of {Eθ : θ ∈
∗

Ψt}. Let I
˜
= {I1

⋃
I2} ,then I

˜
is pairwise −ω−

locally finiteη1η2−ω−open refinement U
˜

.Hence (S,η1,η2) is a pairwise M−ω− paracom-

pact space .

Corollary 3.26. Let Ω : (S,η1,η2) → (T,γ1,γ2) be a pairwise −ω−perfect func-

tion , and (T,γ1,γ2) is a pairwise −ω−paracompact , then (S,η1,η2) is so.

Theorem 3.27. The pairwise −ω−Hausdorff space is constant algebraic expression un-

der pairwise −ω−perfect.

Proof. Let (S,η1,η2) be a pairwise −ω− Hausdorff space, Ω :

(S,η1,η2) → (T,γ1,γ2) be a pairwise −ω− perfect function, and t1 6=

t2 in (T,γ1,γ2), then Ω−1(t1) ,Ω−1(t2) are disjoint and pairwise −ω− com-

pact subset of (S,η1,η2) .Since (S,η1,η2) be a p-Hausdorff space ,there ex-

ists a η1−neighborhood K of S, and η2−neighborhood L, s.t Ω−1(t1) ⊆ K ,Ω−1(t2) ⊆

L ,K
⋂

L = φ .Let the sets T − Ω(S − K) be γ1 − ω− open set in (T,γ1,γ2) and con-

taining t1,T − Ω(S − L) be γ2 − ω−open set in(T,γ1,γ2) and containing t2 ,

s.t [T −Ω(S−K)
⋂

T −Ω(S−L)] = T − [Ω(S−L)
⋃

Ω(S−L)] = Y − f (X −U
⋂

V ) =

T −Ω(S) = φ .Hence (T,γ1,γ2) is pairwise −ω− Hausdorff space. �

Remark 3.28. The pairwise−ω−Hausdorff space is constant algebraic expression and inverse

constant algebraic expression under pairwise M−ω−perfect.

Lemma 3.29. In a bitopological space (S,η1,η2) , W (η1) is said to be ω−regular with respect

to W (η2) if, for each point s in S and each η1−ω−closed set Csuch that s /∈C, there are a η1−

ω− open set K and a η2−ω−open set L such that s ∈ K,C ⊆ L and K ∩L = φ . (S,η1,η2) is

p −ω−regular if W (η1)is ω−regular with respect to W (η2) .Let S be a pairwise −ω−regular

space, and N be ηr −ω−compact subset of S,r = 1,2, then for each τr −ω− neighbourhood

K of N , there exists a ηr −ω−open P, such that N ⊂ P⊂Cl ηε
(P)⊂U,r,ε = 1,2,r /∈ ε.
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Proof. For each n ∈ N,there exist a ηr −ω− neighbourhood V (n) such that Cl ηε
L(n)⊂ K,so

N ⊂
n⋃

κ=1

L(nκ) ⊂ Cl ηε

n⋃
κ=1

L(nκ).Let P =
n⋃

κ=1

L(nκ),then P is ηr −ω−open, but Cl ηε
P

= Cl ηε

n⋃
κ=1

L(nκ) = Cl ηε
∪L(nκ),hence N ⊂ P⊂ Cl ηε

(P)⊂ K, r,ε = 1,2,r /∈ ε. �

Theorem 3.30. Let Ω : (S,η1,η2) → (T,γ1,γ2) be a pairwise −ω−perfect func-

tion , and (S,η1,η2) is a pairwise −ω−regular, then (T,γ1,γ2) is so.

Proof. Given γr −ω− open set L, t ∈ L,r,ε = 1,2,r /∈ ε,Ω−1(t) ∈ Ω−1(L) in T,since S is

pairwise −ω− regular,there exists ηr −ω−open set K,(by using Lemma 2.52 ),such that

Ω−1(t) ∈ Cl ηε

n⋃
κ=1

K ⊂ Ω−1(L).Since Ω is ηr −ω , then there exists γr−ω−neighbourhood

P of t, such that Ω−1(t) ∈ Ω−1(P) ⊂ L,but P ⊂ Ω( Cl ηε
K) ⊂ L,since Ω( Cl ηε

K) is γε −ω−

closed , t ∈ E ⊂ (Cl ηε
(P))⊂Ω( Cl ηε

K)⊂ L,hence T is pairwise −ω−regular. �

Remark 3.31. The pairwise −ω−regular space is constant algebraic expression and inverse

constant algebraic expression under M−ω−perfect.

Definition 3.32. A bitopological space (S,η1,η2) is called pairwise−ω−normal, if each ηr −

ω−closed set N and ηε −ω− closed set G, there exists ηε −ω−open set K and ηr−ω−open

set L, such that N ⊂ K,G⊂ L,K∩L = φ , r,ε = 1,2,r /∈ ε.

Theorem 3.33. Let Ω : (S,η1,η2) → (T,γ1,γ2) be a pairwise −ω−perfect func-

tion , and (S,η1,η2) is a pairwise −ω−normal, then (T,γ1,γ2) is so.

Proof. It follows by using Lemma [3.32] and theorem [3.33]. �

Theorem 3.34. Let (S,η1,η2) , (T,γ1,γ2), be any bitopological

spaces .If (S,η1,η2) is pairwise M−ω−compact,then the projection function, Φ :

(S×T,η1× γ1 ,η2× γ2)→ (T,γ1,γ2) is pairwise −ω−closed.

Proof. If (S,η1,η2) is pairwise M−ω− compact, then (S,η1) is M−ω−compact,(S,η2) is

M−ω−compact, �

thus the projection functions: Φ1 : (S× T,η1 × γ1) → (T,γ1), Φ2 : (S× T,η2 × γ2) →

(T,γ2),are ω−closed,thus Φ is pairwise −ω−closed.
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Corollary 3.35. Let (S,η1,η2) , (T,γ1,γ2) are pairwise M−ω−compact then (S× T,η1×

γ1 ,η2× γ2) is pairwise M−ω−compact
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