PROPERTIES OF MULTI ANTI L-FUZZY QUOTIENT GROUP $\tilde{\alpha}$ OF A GROUP G

M. AKILESH1, R. MUTHURAJ2,*

1Department of Mathematics, SRMV College of Arts and Science, Coimbatore-641020, Tamilnadu, India

2PG and Research Department of Mathematics, H. H. The Rajah’s College, Pudukkottai–622 001, Tamilnadu, India

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this Paper, the notion of multi anti L–fuzzy quotient group $\tilde{\alpha}$ of a group G determined by A and K is introduced and discussed its properties.

Keywords: fuzzy set; multi-L-fuzzy subgroup; homomorphism of multi L-fuzzy group; anti homomorphism of multi L-fuzzy group; quotient subgroup; multi L-fuzzy quotient subgroup.

2010 AMS Subject Classification: 20N25, 03E72.

1. INTRODUCTION

L. A. Zadeh [19] introduced the notion of a fuzzy subset A of a set X as a function from X into $I = [0, 1]$. Rosenfeld [3] and Kuroki [12] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy sub semi groupoids respectively. The concept of anti – fuzzy subgroup was introduced by Biswas [5]. The Concept

*Corresponding author
E-mail address: rmr1973@gmail.com
Received October 26, 2021
of multi fuzzy subgroups was introduced by Souriar Sebastian and S. Babu Sundar [17]. In all these studies, the closed unit interval [0, 1] is taken as the Membership lattice. We introduce the notion of a multi L-fuzzy sub group G and discussed some of its properties. The characterizations of a Multi L-fuzzy subgroup under homomorphism and anti homomorphism on multi L-fuzzy quotient subgroup on a group is discussed

2. PRELIMINARIES

In this Section, we review some definitions and some results of Multi L-fuzzy subgroups which will be used in the later sections. Throughout this section we mean that (G,*) is a group, e is the identity of G and xy as x*y.

2.1 Definition:

Let X be any nonempty set. A fuzzy set A of X is A: X → [0, 1].

2.2 Definition:

Let (G, .) be a group. A fuzzy subset A of G is said to be a fuzzy subgroup (FSG) of G if the following conditions are satisfied:

i. A(xy) ≥ min{A(x), A(y)},

ii. A(x⁻¹) = A(x), for all x and y ∈ G.

2.3 Definition:

Let (G, .) be a group. A fuzzy subgroup A of G is said to be a normal fuzzy subgroup of G if A(xy) = A(yx), for all x and y ∈ G.

2.4 Definition:

A fuzzy subset A of G is said to be a anti fuzzy group of G, if for all x, y ∈ G

i. A(xy) ≤ max{A(x), A(y)}

ii. A(x⁻¹) = A(x).

2.5 Definition:

An anti fuzzy subgroup A of G is called a anti fuzzy normal subgroup (AFNS) of G if for every x, y ∈ G, A(xy⁻¹) ≤ A(y).
2.6 Definition:
Let X be a non-empty set. A multi L-fuzzy set A in X is defined as a set of ordered sequences, $A = \{(x, A_1(x), A_2(x), \ldots, A_i(x), \ldots); x \in X\}$, where $A_i : X \rightarrow L$ for all i.

2.7 Definition:
A multi L-fuzzy subset A of G is called a multi L-fuzzy subgroup (MLFS) of G if for every $x, y \in G$,

i. $A(xy) \geq A(x) \wedge A(y)$

ii. $A(x^{-1}) = A(x)$.

2.8 Definition:
A multi L-fuzzy subset A of G is called a multi anti L-fuzzy subgroup (MALFS) of G if for every $x, y \in G$,

i. $A(xy) \leq A(x) \vee A(y)$

ii. $A(x^{-1}) = A(x)$.

2.9 Definition
The function $f: G \rightarrow G'$ is said to be a homomorphism if $f(xy) = f(x)f(y)$ $\forall x, y \in G$.

2.10 Definition
The function $f: G \rightarrow G'$ (G and G' are not necessarily commutative) is said to be an anti homomorphism if $f(xy) = f(y)f(x)$ $\forall x, y \in G$.

2.11 Definition
Let f be any function from a set X to a set Y, and let A be any L-fuzzy subset of X. Then A is called f-invariant if $f(x) = f(y)$ implies $A(x) = A(y)$, where $x, y \in X$.

2.12 Definition:
Let (G, \cdot) be a group. A multi L-fuzzy subgroup A of G is said to be a multi L-fuzzy normal subgroup of G if $A(xy) = A(yx)$, for all x and $y \in G$.

2.13 Definition:
Let (G, \cdot) be a group. A multi anti L-fuzzy subgroup A of G is said to be a multi anti L-fuzzy normal subgroup of G if $A(xy) = A(yx)$, for all x and $y \in G$.
2.14 Definition:

Let A be a multi L-fuzzy normal subgroup of G with identity e. Let $K = \{ x \in G / A(x) = A(e) \}$. Consider the map $\bar{A} : G/K \rightarrow \mathbb{L}^k$ defined by $\bar{A}(xK) = \vee A(xk)$ for all $k \in K$ and $x \in G$. Then, the multi L-fuzzy subgroup \bar{A} of G/K is called a multi L-fuzzy quotient group of A by K.

Remarks:

i. \bar{A} is not a multi L-fuzzy normal quotient group of G/K, Since, $\bar{A}(xKyK) \neq \bar{A}(yKxK)$.

ii. Consider the map, $\bar{A} : G/K \rightarrow \mathbb{L}$ defined by $\bar{A}(xK) = A(x)$ for all $k \in K$ and $x \in G$. Then, \bar{A} is a multi L-fuzzy normal quotient group of G/K.

3. Properties of Multi Anti L-Fuzzy Quotient Group \bar{A} Determined by A and K

In this section, the properties of multi L-fuzzy quotient group \bar{A} determined by A and K are discussed.

3.1 Theorem:

Let A be a multi anti L-fuzzy normal subgroup of G with identity e. Let $K = \{ x \in G / A(x) = A(e) \}$. Consider the map $\bar{A} : G/K \rightarrow \mathbb{L}^k$ defined by $\bar{A}(xK) = \wedge A(xk)$ for all $k \in K$ and $x \in G$. Then, K is a normal subgroup of G.

i. The map \bar{A} is well defined.

ii. \bar{A} is a multi L-fuzzy subgroup of G.

Proof:

Given A is a multi anti L-fuzzy normal subgroup of G and

i. $K = \{ x \in G / A(x) = A(e) \}$. Let $x \in G$ and $y \in K$, then $A(y) = A(e)$.

Now, $A(xyx^{-1}) = A(y) = A(e)$, since A is a normal subgroup of G.

Hence, $xyx^{-1} \in K$.

PROPERTIES OF MULTI ANTI L-FUZZY QUOTIENT GROUP \overline{A} OF A GROUP G

Hence, $K = \{ x \in G / A(x) = A(e) \}$ is a normal subgroup of G.

ii. Consider the map, $\overline{A} : G / K \rightarrow L$ defined by

\[\overline{A}(xK) = \land A(xK) \text{ for all } k \in K \text{ and } x \in G. \]

Let $Kx = Ky$ for some $x, y \in G$. Then $xy^{-1} \in K$. That is, $A(xy^{-1}) = A(e)$.

That is, $A(xK) = A(yK)$

That is, $\overline{A}(xK) = \overline{A}(yK)$.

Hence, the map \overline{A} is well defined.

iii. Now, $\overline{A}(xKyK) = \overline{A}(xyK) = \land A(xyK)$, for all $k \in K$ and $x, y \in G$.

\[\leq \land (A(xk_1) \lor A(yk_2)) , k_1, k_2 \in K. \]

\[\leq (\land A(xk_1)) \lor (\land A(yk_2)) , k_1, k_2 \in K. \]

\[\leq \overline{A}(xK) \lor \overline{A}(yK). \]

\[\overline{A}(xKyK) \leq \overline{A}(xK) \lor \overline{A}(yK). \]

\[\overline{A}((xK)^{-1}) = \overline{A}(x^{-1}K) \]

\[= \land A(x^{-1}K) \text{ for all } k \in K \text{ and } x \in G. \]

\[= \land A(xK) \text{ for all } k \in K \text{ and } x \in G. \]

\[= \overline{A}(xK). \]

\[\overline{A}((xK)^{-1}) = \overline{A}(xK). \]

Hence, \overline{A} is a multi anti L-fuzzy subgroup of G / K.

3.2 Definition

Let A be a multi anti L-fuzzy normal subgroup of G with identity e. Let $K = \{ x \in G / A(x) = A(e) \}$. Consider the map $\overline{A} = G / K \rightarrow L^k$ defined by $\overline{A}(xK) = \land A(xk)$ for all $k \in K$ and $x \in G$. Then, the multi anti L-fuzzy subgroup \overline{A} of G / K is called a multi anti L-fuzzy quotient group of A by K.
Remarks:

i. \overline{A} is not a multi anti L-fuzzy normal quotient group of G/K.

Since, $\overline{A}(xKyK) \neq \overline{A}(yKxK)$.

ii. Consider the map, $\overline{A}: G/K \rightarrow L$ defined by $\overline{A}(xK) = A(x)$ for all $k \in K$ and $x \in G$.

Then, \overline{A} is a multi anti L-fuzzy normal quotient group of G/K.

3.3 Theorem:

Let $\overline{A} = (\overline{A}_1, \overline{A}_2, \overline{A}_3, \ldots, \overline{A}_k)$ is a multi anti L-fuzzy quotient group of a group of G/K, iff $\overline{A}_i, i = 1, 2, \ldots k$, is an anti L-fuzzy quotient group of a group G/K.

Proof:

Let $\overline{A} = (\overline{A}_1, \overline{A}_2, \overline{A}_3, \ldots, \overline{A}_k)$ is a multi anti L-fuzzy quotient group of a group of G/K. Then,

$\Leftrightarrow \overline{A}(xy) \leq \overline{A}(x) \lor \overline{A}(y)$ and $\overline{A}(x^{-1}) = \overline{A}(x)$.

$\Leftrightarrow \overline{A}_i(xy) \leq \overline{A}_i(x) \lor \overline{A}_i(y)$ and $\overline{A}_i(x^{-1}) = \overline{A}_i(x)$ for all $i = 1, 2, \ldots k$.

$\Leftrightarrow \overline{A}_i, i = 1, 2, \ldots k$, is an anti L-fuzzy quotient group of a group G/K.

Remark:

If $\overline{A} = (\overline{A}_1, \overline{A}_2, \overline{A}_3, \ldots, \overline{A}_k)$ is not a multi anti L-fuzzy quotient group of a group G/K, then there is at least one $\overline{A}_i, i = 1, 2, \ldots k$, is not an anti L-fuzzy quotient group of a group G/K.

3.4 Theorem:

If \overline{A} is a multi anti L-fuzzy quotient group of a group G/K, then $\overline{A}(xK) \geq \overline{A}(eK)$, for $x \in G$, where $e \in G$ is the identity element of G.
PROPERTIES OF MULTI ANTI L-FUZZY QUOTIENT GROUP \overline{A} OF A GROUP G

Proof:

Let the element $x \in G$, where $e \in G$ is the identity element of G.

Now,

$$\overline{A}(e) = \overline{A}(xx^{-1}K)$$

$$\leq \overline{A}(xK) \lor \overline{A}(x^{-1}K)$$

$$= \overline{A}(xK).$$

Therefore, $\overline{A}(eK) \leq \overline{A}(xK)$.

3.5 Theorem:

\overline{A} is a multi anti L-fuzzy quotient group of a group G/K if and only if

$$\overline{A}(xKy^{-1}K) \leq \overline{A}(xK) \lor \overline{A}(yK),$$

for all x and y in G.

Proof:

Assume that \overline{A} is a multi anti L-fuzzy quotient group of a group G/K.

We have,

$$\overline{A}(xKy^{-1}K) \leq \overline{A}(xK) \lor \overline{A}(y^{-1}K)$$

$$\leq \overline{A}(xK) \lor \overline{A}(yK)$$

Therefore, $\overline{A}(xKy^{-1}K) \leq \overline{A}(xK) \lor \overline{A}(yK)$, for all x and y in G.

Conversely, if $\overline{A}(xKy^{-1}K) \leq \overline{A}(xK) \lor \overline{A}(yK)$, then

$$\overline{A}(x^{-1}K) = \overline{A}(ex^{-1}K)$$

$$\leq \overline{A}(eK) \lor \overline{A}(xK)$$

$$= \overline{A}(xK).$$

Therefore, $\overline{A}(x^{-1}) \leq \overline{A}(x)$, for all x in G.

Hence, $\overline{A}(x^{-1}K) \leq \overline{A}(x^{-1}K)$ and $\overline{A}(xK) \geq \overline{A}(x^{-1}K)$.

Therefore, $\overline{A}(x^{-1}K) = \overline{A}(xK)$, for all x in G.

Now, replace y by y^{-1}, then
\[\bar{A}(xyK) = \bar{A}(x(y^{-1})^{-1}K) \]
\[\leq \bar{A}(xK) \lor \bar{A}(y^{-1}K) \]
\[= \bar{A}(xK) \lor \bar{A}(yK), \text{ for all } x \text{ and } y \text{ in } G. \]

Hence, \(\bar{A} \) is a multi anti L-fuzzy quotient group of a group \(\mathbb{G}/K \).

3.6 Theorem:

If \(\bar{A} \) and \(\bar{B} \) are two multi anti L-fuzzy quotient groups of a group \(\mathbb{G}/K \), then \(\bar{A} \cap \bar{B} \) is a multi L-fuzzy quotient group of \(\mathbb{G}/K \).

Proof:

It is trivial.

Remark:

The intersection of a family of multi anti L-fuzzy quotient groups of a group \(\mathbb{G}/K \), is a multi anti L-fuzzy quotient group of a group \(\mathbb{G}/K \).

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

PROPERTIES OF MULTI ANTI L-FUZZY QUOTIENT GROUP \(\overline{A} \) OF A GROUP G

