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Abstract. Copulas are used to describe and explain the asymmetry between image-text and text-image retrieval

observed in different values of the mean average precision (MAP). We use empirical copulas to quantify the

asymmetry in a general framework of cross-modal retrieval via suitable asymmetry measures. Several experiments

are done on real world dataset feautures to prove the relevance of our analysis.
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1. MULTIMODAL HASHING

During recent years, Cross-modal retrieval has already gained wide attention due to the enor-

mous growth of multimedia data on the Internet and social networks. Multimodal search is

used in many domains such as pattern recognition, video surveillance and audio-text recogni-

tion. The task of cross modal retrieval is to submit a request from one modality and have results

from another one [1, 2]. Cross modal retrieval can have advantages of high efficiency and

good results with information from different modalities compared to unimodal retrieval meth-

ods [3, 4] or more recently [5]. Transforming high multimodal data into a set of a small length
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compact code is the main idea of multimodal hashing. This code needs to preserve the cross-

modality similarities of the original data. Then, using a convenient metric between obtained

codes, we can compute the multimodal similarity distance between the original data. Actu-

ally, the limited storage resource and the semantic hole between the representation and original

data, makes performing accurate cross-modal retrieval on large scale datasets very challenging.

Many approaches have been proposed to address the cross-modality retrieval problem and can

be grouped into two categories: Unsupervised methods that learn the cross-modal feature repre-

sentation space by maximizing the correlation between pairwise data from different modalities

such as cross-view hashing (CVH) proposed by Kumar and Udupa [6], is a relevant work that

extends the spectral hashing (SH) method [7]. This method aims to minimize the weighted

average distance between hash codes to preserve the similarity between data modalities. Co-

Regularized Hashing (CRH)[8], the hash functions for each bit of the hash codes are learned

by solving difference of convex function programms. Inter-media hashing (IMH) [9] using a

similarity graph, the method explores the correlations within each single modality and then

keeps the binary codes of the paired data points with different modalities consistent. Multi-

modal latent binary embedding (MLBE) [10] directly learns the binary hash codes with latent

variable models. Multi-View Spectral Hashing (MVSH) [11] integrates Multiview informa-

tion into binary codes, and uses product of code words to avoid undesirable embedding. [12]

proposes a novel Latent Semantic Sparse Hashing (LSSH) employ sparse coding to capture

the salient structures of images and Matrix Factorization to learn the latent concepts from text

to perform cross-modal similarity search. Semantic Topic Multimodal Hashing (STMH) [13]

discovers clustering patterns of texts and robust factorizes the matrix of images to obtain mul-

tiple semantic topics of texts and concepts of images. [14] proposes the RFDH model where

binary codes are directly learned based on discrete matrix decomposition. Supervised multi-

modal hashing methods learn hash codes by approximating the pairwise similarity matrices that

are constructed by available supervised information such as semantic correlation maximization

(SCM) [15] which, based on seamlessly, integrate semantic labels into the hashing learning

procedure for large-scale data modeling. Semantics-Preserving Hashing (SePH) method [16]

proposed to transform supervised information into a probability distribution learned hash codes
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in Hamming space using the Kullback-Leibler divergence. Multimodal discriminative binary

embedding (MDBE) [10] learns discriminative hash codes creating a classification to learn the

hash function. Cross Modal Hashing (CMDH) [17] learned a set of shared binary codes from

different modalities, to remove the modality effectively in cross-modal multimedia retrieval.

Supervised hierarchical cross-modal hashing (HiCHNet) [18] exploits the hierarchical labels of

instances by the pre-established label hierarchy and characterizes each modality of the instance

with a set of layer-wise hash representations. Supervised robust discrete multimodal hashing

(SRDMH) [19] incorporates full label information into the hash functions learning to preserve

the similarity in the original space. Recently, thanks to using deep neural networks while con-

structing the hash code, high performance can be achieved using deep supervised multimodal

hashing methods. Those methods efficiently capture nonlinear correlations between multimodal

data such as deep semantic multimodal hashing network (DSMHN) [20], Cross-modal hash-

ing with semantic deep embedding (CMSDE) [21] and Pairwise Correlation Discrete Hashing

(PCDH)[22]. Supervised information of the entire training data set are required in supervised

methods. This makes performing accurate cross-modal retrieval on large scale datasets very

challenging.

In the current work, we are interested to quantify the asymmetry observed between the re-

quest/result: text-image and image-text. We recall some obvious results stating this asymmetry

in cross modal retrieval. We introduce Copulas as a mathematical tool to describe this asym-

metry which is, in the best of our knowledge, never treated before. To this end, we use results

on asymmetric copulas stated in [23]. In fact, there are some scattered papers where machine

learning was related to copulas such as [5], but without evoking asymmetry questions. So in

the first section, mathematical ingredients are presented mainly classical results on copulas and

some facts on cross modal retrieval. The second section is devoted to describe, via examples,

the impact of eventual non linear correlation between image and text descriptors using a main

real world database which is in the best of our knowledge not treated before.
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2. BIVARIATE COPULAS

It is worth to mention that for multimodal researches, multivariate copulas are more conve-

nient but simultaneously more difficult to handle. For the sake of simplicity and clarity, restric-

tion to the bivariate case is more convenient as it will be seen at the experimental apparatus.

In the following, I denotes the interval [0,1].

Definition 2.1. A copula C is a bifunction on I2 into I which satisfies the following conditions

for all u,v,u1,v1,u2,v2 in I

(1) Border conditions: C(0,v) =C(u,0) = 0.

(2) Uniform margins: C(1,v) = v and C(u,1) = u.

(3) the C−volume property: VC(R) = C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1) ≥ 0 for

all rectangle R = [u1,u2]× [v1,v2]⊂ I2 with u1 < u2 and v1 < v2.

Any copula C is framed between Fréchet-Hoeftding bounds W and M given by W (u,v) =

max(u+ v−1,0) and M(u,v) = min(u,v). Precisely, we have

∀(x,y) ∈ I2 : W (x,y)≤C(x,y)≤M(x,y).

Definition 2.2. A bivariate copula C is said symmetric if it satisfies

∀u,v ∈ I : C(u,v) =C(v,u).

Exemples 1. (1) The Fréchet-Hoeftding bounds W and M and the independence copula

Π(u,v) = uv are all symmetric.

(2) All archimedean copulas are symmetric. By archimedean copula, we insinuate a bifunc-

tion C satisfying hypotheses (1), (2) and (3) in Definition (2.2) above and for which

there exists a decreasing convex function φ called generator such that

∀(u,v) ∈ I2 : C(u,v) = φ
(−1)(φ(u)+φ(v)).

Here, φ (−1) denotes the generalized inverse of a monotonic function φ (not necessarily

strictly monotonic). Precisely φ (−1)(v) = inf
u∈I
{u/φ(u)≥ v}. It is clear that such copula

is manifestly symmetric.
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(3) Let α and β be in (0,1). The Marshall Olkin family of copulas defined by

Cα,β (u,v) = min(u1−αv,uv1−β )

is asymmetric if α 6= β .

For α = 1
2 and β = 3

4 the scatter plots of the copula Cα,β are given by the following

figure:

FIGURE 1. 500 data scatter plots of C1
2 ,

3
4

Comment: This copula is introduced to illustrate the asymmetry in terms of copulas. Ob-

serve mainly the density of scatter plot under the curve v =
√

u which supports mostly the

copula. Note that this curve is obtained by u1−αv = uv1−β and precise that the plot was realized

by choosing α = 1
2 , β = 3

4 .

Copulas allow also the calculus of concordance parameters like Spearman’s ρ and Kendall’s

τ . Let us recall briefly the important notions on concordance. To do so, let Q denote the

difference of two probabilities Q = P((X1−X2)(Y1−Y2)> 0)−P((X1−X2)(Y1−Y2)< 0) for

a pair of continuous random vectors (X1,X2) and (Y1,Y2). If the corresponding copulas are C1
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and C2, then we have

Q(C1,C2) = 4
∫
[0,1]2

C1(u,v) dC2(u,v)−1

The usual measures of concordance may be defined in terms of the concordance function Q.

Kendall’s tau of C is defined by

τ(C) = Q(C,C)

Spearman’s rho by

ρ(C) = 3Q(C,Π)

The undeniable asset of copulas is certainly the seminal Sklar theorem which gives a bridge

between joint distributions and marginal ones. It is so inevitable to recall it.

Theorem 2.3 (Sklar’s theorem). Let H be two-dimensional distribution function on a probabil-

ity space (Ω, p) with marginal distribution functions F and G. Then there exists copula C such

that

(2.1) ∀(x,y) ∈ I2 : H(x,y) =C(F(x),G(y)).

The copula C is unique if F and G are continuous.

When the empiric problem is asymmetric, archimedean copulas, class of copulas that are

easy to handle, are not adequate for a precise description of data dependence. It is the case

when, for instance, we request an image basing on a given text and vice versa. Indeed all

experimental results prove that the cross retrieval process is far to be symmetric (see section

below). Whereas it seems difficult presently to overcome this impurity, we suggest first to

highlight the asymmetry by measuring it using a fitting copula measure. In fact, this was the

real catalyst that prompts us for an investment in asymmetry measures of copulas (see [23]).

For the best of our knowledge, the first use of copulas in Machine learning was the paper

of G.Elidan in [24]. Therein, the premises of copula use have appeared and were related to

artificial intelligence using Bayesian mixture of copula trees and copula Bayesian networks.
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3. QUANTIFICATION OF THE ASYMMETRY IN CROSS MODAL RETRIEVAL

3.1. Experimental apparatus: Let us first present the experimental apparatus that we will

adopt to quantify the asymmetry in cross modal retrieval. To be concise and clear, we describe

roughly the important steps of the experiment.

(1) From a given image Im, we precise its descriptors (di
1,d

i
2, id3....di

n).

(2) As result of our request, we obtain a list of texts paired to the image Im which fits with

the research.

(3) Only the head of the list T1 is considered as far automatically as the most similar to the

Im. For more information on similarity measures, we refer for instance to [25].

(4) Descriptors (dt
1,d

t
2,d

t
3....d

t
n) of the T1 are then given precisely.

(5) At last, we summarize results in contingency table that we analyze in terms of copu-

las. More precise, we dress a two entries table where the main variables are T and Im

materialized with their vectors of descriptors:

a: On the principal row put T descriptors.

b: On the principal column put Im descriptors.

c: On the cell intersection of a row k and column l, we quantify the jointness by

(3.2)
di

k

di
k +dt

j

Data are extracted from Wiki database [26]: it is explored from featured Wikipedia articles.

It consists on 2,866 documents which are image-text pairs and annotated with semantic tags

of 10 classes. A 128-dimensional SIFT feature vector represents each image and each text is

represented by a 10-dimensional topic vector.

It is clear that the formula (3.2) is manifestly asymmetric. We recall that the lack of symmetry

is obvious. The goal is to quantify it by a fitting use of asymmetry copula measure.

Now the problem consists in searching of a suitable copula which describes the dependence

between Im and T . It is used in the literature to consider, with or without any specific awareness

or knowledge, the Gaussian copulas as automatic tool for modeling dependence, mainly in

applications to risk management. In fact they are the most commonly used also in chemical and

biological studies. By the Gaussian copula we mean the following one
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(3.3) C(F(x),G(y)) = Φ(Φ−1((F(x)),Φ−1(G(x))),

where Φ denotes the standard Gaussian distribution function. The common use of this copula

is surely explained by the the law of large numbers mainly the limit central theorem which may

be found in any elementary or advanced course of probability, e.g [27].

3.2. The empiric fitting copula. We start by explaining estimation procedure of empiric cop-

ulas. For our concern, we have at disposal a random sample of ((di
k,d

l
j))k,l extracted from an

unknown joint distribution H. The question now is to determine the underlying copula C. In

fact, as the problem is nonparametric and data are discrete, we will estimate the copula C at

nods (di
k,d

l
j) to obtain the estimated copula Ĉ. We follow the same way as in [24] to give a fit

punctual estimation Ĉ of C.

To this end, as usual in this type of situations, we define the joint distribution H(Im,T ) as

follows

(3.4) H(u,v) =
1

N +1

N

∑
k=1

1(Im≤u;T≤v).

The function 1(Im≤u;T≤v) denotes here the indicator mapping which maps every couple (x,y)

to 1 if x≤ u and y≤ v, and 0 otherwise.

The formula (3.4) is often used when the entire empiric joint distribution is not large enough

and when a direct use of Gaussian copula is adopted . This explains partially why we

adopt here the alternative formula (3.2). The mathematical background of this result is the fa-

mous Glivenko-Cantelli theorem and its precision on rate of convergence Donsker theorem [27].

To pursue the experiment process, we normalize data from the table. It is a classical

technique by adding up all values in the table and dividing each cell on the obtained sum.

To explain the manner in which the formula allows to fill in the aforementioned table, we give

in details the algorithm showing how to do so. For numerical results, one may flip the attached

txt-files
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We consider now the bivariate uniform joint distribution (U,V ) defined by

(Ûk,V̂l) = (F(di
k)),G(vt

l)).

This latter value is considered as an estimation of the empiric copula Ĉ. For the sack of

streamlining, we treat the diagonal data (Ûk,V̂k) = (F(di
k),G(vt

k)).

At this stage, we may estimate the empiric copula as follows:

Ĉ(u,v) =
1
N

N

∑
k=1

1{Ûk≤u;V̂k≤v}.

3.3. The asymmetry measurement. As treated by Siburg and resumed and developed in

[23], there are many ways to measure the asymmetry of a given copula C and hence of the

joint underlying data that it describes. The most common are p−measures (p ≥ 1) which are

defined by the following formula

µp(C) =

(∫∫
|C(u,v)−C(v,u)|p dudv

) 1
p

.

The double integral is taken on I2 = [0,1]2 and for a suitable presentation, it is used to denote

C(u,v) =C(v,u) the well known transpose copula.

Mathematically speaking, it is a classical exercise to see that

lim
p→∞

µp = µ∞ = sup
(u,v)∈I2

|C(u,v)−C(u,v)|.

In the statistical point of view, the measure µp also tends to the same limit when the sample

size is large enough, say when p→+∞. This explains the frequent use of µ∞ instead of general

other measures. For curious readers, we refer to [23] for more details and developments on

measures of asymmetry and their topological and mathematical treatment.

3.4. Data treatment. To measure the asymmetry , we take an image descriptor and its core-

sponding text one from the wiki dataset. Then , we measure the jointness between the image/text

features and vise versa using the formula 3.2 . We obtain results where part of them are shown

in table I and table II.
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Text

Image
037323039, 0,003861004 0,052767053 0 0,002574003 ...

0,072571837 0,339624924 0,050514984 0,420995055 0 0,034253428 ...

0,077900802 0,323917677 0,047222584 0,403825815 0 0,031985198 ...

0,032538696 0,534241512 0,106072407 0,618563855 0 0,073306886 ...

0,085489399 0,303902762 0,043211935 0,381660693 0 0,029228971 ...

0,054061688 0,408416595 0,066657879 0,493940607 0 0,045448419 ...

0,069954431 0,347911254 0,052306185 0,429974048 0 0,035489566 ...

0,054428878 0,406782116 0,066237976 0,492248657 0 0,045155658 ...

0,413522013 0,082784626 0,009250505 0,113163823 0 0,006186078 ...

0,094706813 0,282686366 0,039171039 0,35780613 0 0,026459509 ...

0,044825443 0,454336318 0,079303461 0,540687604 0 0,054304487 ...

TABLE 1. The jointness between image and text in a wiki data raw.

Txt

Im
0,037323039 0,003861004 0,052767053 0 0,002574003 ...

0,072571837 0,660375076 0,949485016 0,579004945 1 0,965746572 ...

0,077900802 0,676082323 0,952777416 0,596174185 1 0,968014802 ...

0,032538696 0,465758488 0,893927593 0,381436145 1 0,926693114 ...

0,085489399 0,696097238 0,956788065 0,618339307 1 0,970771029 ...

0,054061688 0,591583405 0,933342121 0,506059393 1 0,954551581 ...

0,069954431 0,652088746 0,947693815 0,570025952 1 0,964510434 ...

0,054428878 0,593217884 0,933762024 0,507751343 1 0,954844342 ...

0,413522013 0,917215374 0,990749495 0,886836177 1 0,993813922 ...

0,094706813 0,717313634 0,960828961 0,64219387 1 0,973540491 ...

0,044825443 0,545663682 0,920696539 0,459312396 1 0,945695513 ...

TABLE 2. The jointness between text and Image in a wiki data raw.

As mentioned above, we construct the empiric copula C1 associated with the first table.

For all (i, j) ∈ {0, ....,9}2 The matrix obtained is given by:



ASYMMETRY QUANTIFICATION IN CROSS MODAL RETRIEVAL USING COPULAS 11

Ĉ1

(
i

10
,

j
10

)
=

1
1280



6. 12. 12. 18. 24. 30. 36. 48. 54. 60.

18. 36. 36. 54. 72. 90. 108. 144. 162. 180.

36. 72. 72. 108. 144. 180. 216. 288. 324. 360.

40. 80. 80. 120. 160. 200. 240. 320. 360. 400.

56. 112. 112. 168. 224. 280. 336. 448. 504. 560.

70. 140. 140. 210. 280. 350. 420. 560. 630. 700.

80. 160. 160. 240. 320. 400. 480. 640. 720. 800.

96. 192. 192. 288. 384. 480. 576. 768. 864. 960.

106. 212. 212. 318. 424. 530. 636. 848. 954. 1060.

128. 256. 256. 384. 512. 640. 768. 1024. 1152. 1280.


The Siburg measure of asymmetry of this copula is µ∞(C1) = 0.0875.

The same calculus leads to the copula matrix C2.

For all (i, j) ∈ {0, ....,9}2, the matrix obtained is given by:

Ĉ2

(
i

10
,

j
10

)
=

1
1280



0. 13. 39. 52. 65. 78. 91. 91. 104. 130.

0. 26. 78. 104. 130. 156. 182. 182. 208. 260.

0. 39. 117. 156. 195. 234. 273. 273. 312. 390.

0. 51. 153. 204. 255. 306. 357. 357. 408. 510.

0. 64. 192. 256. 320. 384. 448. 448. 512. 640.

0. 77. 231. 308. 385. 462. 539. 539. 616. 770.

0. 90. 270. 360. 450. 540. 630. 630. 720. 900.

0. 103. 309. 412. 515. 618. 721. 721. 824. 1030.

0. 115. 345. 460. 575. 690. 805. 805. 920. 1150.

0. 128. 384. 512. 640. 768. 896. 896. 1024. 1280.


The Siburg measure of asymmetry of this copula is µ∞(C2) = 0.1046875.

The integrals involving above in concordance parameters formula can be calculated with

approximation methods of integral calculus. Here we expose which one is used

For (i, j) ∈ {0, ....,9} we denote by Ri, j the square
[ i

10 ,
i+1
10

]
×
[

j
10 ,

j+1
10

]
Then

∫∫
I2 C(u,v) dC(u,v) = ∑

9
i=0 ∑

9
j=0
∫∫

[ i
10 ,

i+1
10 ]×[ j

10 ,
j+1
10 ]

C(u,v) dC(u,v)

' 1
2 ∑

9
i=0 ∑

9
j=0

(
C
(

i
10 ,

j
10

)
+C

(
i+1
10 , j+1

10

))
VC
(
Ri, j
)
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After all computations, we obtain:

τ(C1) = 0.01400

and

τ(C2) = 0.01401

For Spearman rho calculus, since VΠ(Ri, j) =
1

100 , the integral :∫∫
I2

C(u,v) dudv

is approximated similary by:

1
200

9

∑
i=0

9

∑
j=0

(
C
(

i
10

,
j

10

)
+C

(
i+1
10

,
j+1
10

))
After computations theses results are obtained:

ρ(C1) =−0.55687.

and

ρ(C2) =−0.201374999.

4. RESULTS AND INTERPRETATIONS

It is possible, without loss of generality, to restrict calculus to µ∞(T xt − Image) but for

a deep understanding, the inverse retrieval is also so fundamental. So, on one hand the

asymmetry is manifestly made clearer since µ∞(Image− T xt)− µ∞(T xt − Image) > 0 and

on the other hand, the experience has allowed to deal with the problem of concordance and

correlation by estimation of some classical statistic parameters (τ and ρ .) The weak value

of µ∞(Image− T xt) compared to µ∞(T xt − Image) may be interpreted in terms of semantic

parameters that characterize the text. To express the result in a pith and lapidary language,

one will say: the retrieval Text-Image is less asymmetric than the research Image-Text. While

the choice of dependence quantification tool explains the strict positive behavior of the both

measures, the difference |µ∞(Image− T xt)− µ∞(T xt − Image)| gives a new way to measure

the asymmetry in the bimodal-cross retrieval.

Moreover, we observed that the siburg asymmetry of the two copulas is invariant to the the
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change of the copula matrix order when that one is greater than or equals to 10 which is

simultaneously impressing and unpredictable. This expresses the convergence velocity of (Ĉn)

to theoretical copula C that joint really the raw data is so ”fast” in the sense given by Donsker

theorem.

A simple calculus leads to µ∞(T xt − Image) = 0.0875. Let us now discuss predictability

of this empirical result. It is will known that for every copula C, µ∞ ≤ 1
3 . This is a di-

rect consequence of Fréchet-Hoffding bounds which stipulate that the double inequality

max(u+ v− 1,0) ≤C(u,v) ≤ min(u,v) holds for all copulas. Therefore, the value obtained is

so plausible. However, µ∞ = 0.0875 is of order 10−2 which is, statistically speaking, low but

considerable. A suitable interpretation is that the value confirms the fact that the asymmetry in

research of different modalities is consistent but maybe avoidable if descriptors are improved

to obtain more faithful description for documents.

For an adequate interpretation of negative values of the coefficient ρ , a deeper comprehension

of the manner to construct descriptors of each document is probably the best way to explain the

weak correlation of the two documents in an indirect sense. We postpone the treatment of this

interesting question to an other work

5. CONCLUSION

It is certainly better to take in account all document modalities or at least a lot of them, but

this implies an avoidable use of multivariate copulas. This will be our next investment in the

future work.
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