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NUMERICAL SIMULATION OF AN INVERSE PROBLEM: TESTING
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Abstract. In this paper, we consider the iterative algorithm proposed by Kozlov, Mazya and Fomin

(KMF) for solving the inverse problem for Laplace equation which consiste to determine the missing

conditions on a part of the boundary from the overspecified coditions on the accessible part. Several

formulations are discussed according to the measure of the underspecified boundary and the condition

on the other part to conclude the relationschip between the data problems and the rate of convergence.

Numerical tests are developed with the software FreeFem with smooth and non-smooth domains.
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1. Introduction

We consider an inverse problem for Laplace equation which consist to recovering miss-

ing conditions on some inaccessible part of the boundary (which can not be evaluated due

to the physical difficulties or inaccessibility geometric) from the overspecified boundary

data on the remaining part of the boundary. This type of problem arises in several areas
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such as corrosion detection[1], mechanical problem’s particulary in the areas of identifica-

tion of boundaries on domains , determination of initial condition and fault location [2],

Geophysic [3] and electroencephalography[4].

The ill-posedness of the problem in the sense of Hadamard makes its resolution by direct

methods very difficult, and it deals to serious questions including the existence, uniqueness

and stability of the solution, that are the three properties required to define well-posed

problem according to Hadamard [5]. The existence of the solution of this kind of problem

is not always garuanted, but when the conditions on the accessible part of the boundary

are compatible then the existence is assured [6]. Thanks to Holmgreen theorem, we know

that this problem has at most one solution [7]. Stability is the most delicate problem since

a small perturbation of data provides a large difference between the solution obtained by

disturbed data and that obtained by undisturbed data [8]. It suffices here to recall the

famous example of Hadamard where he showed for a square domain that, with perturbed

data the solution is not bounded even if the data problems tend to zero.

In order to solve the inverse problem for the Laplace equation, we have proposed several

performing methods to overcome of the ill-posed nature of this kind of problem. The

last ancient of them is the one, based on optimization tools, introduced by Kohn and

Vogelius [9]. Other methods were experimented, among them, we mention the method

of Quasi-reversibility introduced by Lates since 1960 [10] (see also [11],[12]), Thikhonv

method [13], Bakus-Gilbert method applied to moment problem [14], the method applied

to the minimisation of an energie like fonctional [15], and the KMF iterative algorithm

adressed by Kozlov, Mazya and Fomin [16] (see also [17],[18]).

The group of iterative method has the advantage to allow any physical contrainst to be

easily taken into account directly in the scheme of the iterative algorithm and simplicity

of the implementation shemes. One possible disavantage of this kind of method is the

large number of iterations that may be required in order to achieve convergence. Based of

these reasons, we have decided in this study to use the KMF algorithm, also called alter-

nating method, for solving the Cauchy problem for Laplace’s equation and study in more

detail this method. Particulary, the relationship between the rate of convergence of this
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algorithm and the data of the problem, specialy; the measure of the inaccessible part of

the boundary and the different choice of condition on the accessible part by implementing

the algorithm by FEM, using the software FreeFem.

2. Mathematical formulation

Let Ω an open set in R2, with a smooth boundary Γ. We consider a partition of this

boundary: Γ = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅ and mes(Γ1) ̸= 0.

The problem is to reconstruct a harmonic function u solution of the following problem :

(1)


−∆u = 0 in Ω

u = f on Γ0

∂nu = g on Γ0

where ∂nu is the normal derivative of u.

We can notice that no boundary condition is prescribed on the boundary part Γ1.

For compatible data (f, g) ∈ H(Γ0) the problem (1) has a unique solution, where H(Γ0)

is the space defined as:

H(Γ0) =
{
(φ, ψ) ∈ H

1
2 (Γ0)×H− 1

2 (Γ0)/∃v ∈ H(Ω) v/Γ0 = f and ∂nv/Γ0 = g}

and

H(Ω) = {v ∈ H1(Ω)/∆v = 0 in Ω}

Principle of the method: The problem is to determine on the part Γ1 the traces u/Γ1

and ∂nu/Γ1that we denote by f
∗ and g∗. This therefore amounts to determine u, solution

of the following problem:

(2)


−∆u = 0 in Ω

u = f , ∂nu = g on Γ0

u = f ∗ , ∂nu = g∗ on Γ1
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This problem can be divided into two well-posed sub-problems, the first with Dirichlet

condition in Γ0 and Neuman condition in Γ1, and the second with a Neumann condition

in Γ1 and Dirichlet condition in Γ0 defined as follows:

(3)


−∆ŭ = 0 in Ω

ŭ = f on Γ0

∂nŭ = g∗ on Γ1

and


−∆ū = 0 in Ω

∂nū = g on Γ0

ū = f ∗ on Γ1

The main idea of the KMF method is:

• To solve the Cauchy problem (1), it is necessary to determine u that satisfies the prob-

lem (2), what is covered when ŭ and ū coincide.

• From an initial estimate of the solution u = f ∗ on Γ1, the method consists in solving

alternately two well posed problems of type (3) where each of these problems provides a

condition on the part Γ1 which will be introduced in the other problem to find another

condition.

• Thus, a sequence of well-posed problems with mixed boundary conditions is constructed

using alternating the given Dirichlet and Neumann on the part of the boundary contain-

ing the data, and the iterative procedure stops when a predefined stop criterion is satisfied.

Description of the alternating algorithm: Consider the Cauchy problem (1) with

f ∈ H
1
2 (Γ0) and g ∈ H− 1

2 (Γ0). The iterative algorithm investigated is based on reducing

this ill-posed problem to a sequence of mixed well-posed boundary value problems and

consists of the following steps :

Step 1: Specify an initial guess u0 on Γ1 and solve:

(4)


−∆u(0) = 0 in Ω

u(0) = u0 on Γ1

∂nu
(0) = g on Γ0

to obtain v0 = ∂nu
(0)
/Γ1
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Step 2: For n ≥ 0, solving alternatively the following two mixed well-posed boundary

value problems :

(5)


−∆u(2n+1) = 0 in Ω

∂nu
(2n+1) = vn on Γ1

u(2n+1) = f on Γ0

and


−∆u(2n+2) = 0 in Ω

u(2n+2) = un+1 on Γ1

∂nu
(2n+2) = g on Γ0

to obtain un+1 = u
(2n+1)
/Γ1

, to obtain vn+1 = ∂nu
(2n+2)
/Γ1

Step 3: Repeat the step2 until a prescribed stopping criterion is satisfied.

Numerical formulation: It is clear that the conditions and the two parts of the bound-

ary are involved in the convergence of this algorithm. Hence, the investigation to consider

different formulations from same problem, to better understand the behavior of the al-

gorithm (the number of iteration that is the inconvenience of this method) with respect

to the changing conditions of the problem. In particular, the measure of the parts of the

boundary and the type of condition on each part of the boundary.

In this study, we present three formulations of the Cauchy problem (1), to be solved by

the KMF algorithm to determine the unknowns data in the part Γ1.

• Formulation 1

The first formulation considered has the same form as the problem (1) where we have two

conditions (Dirichlet and Neuman) in the all accessible part Γ0.

(6) u = f and ∂nu = g on Γ0

• Formulation 2

In the second formulation the accessible part is devised in two parts Γ0 = Γ0,1 ∪Γ0,2 such

as Γ0,1∩Γ0,2 = ∅. In the part Γ0,1 we consider two conditions (the Dirichlet and Newman)

and we are satisfied with only one condition (the Dirichlet) in the remaining part Γ0,2.

(7) u = f2 on Γ0,2 , u = f1 and ∂nu = g on Γ0,1
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• Formulation 3

we consider the same formulation as that taken in formulation 2, but the Dirichlet condi-

tion in Γ0,2 is replaced by a Newman condition.

(8) ∂nu = g2 on Γ0,2 , u = f and ∂nu = g1 on Γ0,1

formulation 1 formulation 2 formulation 3

The purpose of these three formulations is to complete the missing data on the inacces-

sible part Γ1. The three formulations of a problem (1) are solved by the KMF algorithm

to examine the rate and accuracy of the convergence.

The reformulation of problem (1) in three forms, the different choices of measurements on

the parts of the bonndary and the use of different selection conditions on the accessible

part allow us to see the relationship between the data of the problem and the rate and

accuracy of convergence, that can be mentioned in the following results :

• The convergence is assured even if the measures are available for a small part of

the accessible part of the boundary.

• The measure of accessible and inaccessible parts of boundary affects the rate and

accuracy of conergence.

• The convergence is ensured without the need for two conditions throughout the

accessible part.

• The type of conditions considered on the accessible part influence the rate of

convergence of the algorithm.

• The approximation of the Dirichlet condition is more accurate than the Neumann

condition.
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3. Numerical result and disccusion

In this section, as a typical example, we consider two examples with smooth and non-

smooth boundary using the software FreeFem, which allows the implementation of the

iterative algorithm and solve the well-posed problems in the algorithm by the finite ele-

ment method. In this examples, we use a finit element method with continuous piecewise

linear polynomials.

The convergence of the algorithm may be investigated by evaluating at every iteration

the error : eu = ∥un − uex∥0,Γ1 and ev = ∥∂nun − ∂nuex∥0,Γ1 , where un is the approx-

imation obtained for the function on the boundary Γ1 after n iterations and uex is the

exact solution of the problem (1). However, in practical applications the error eu and ev

cannot be evaluated since the analytical solution is not known and therefore the following

stoping criterion is addopted E = ∥un+1 − un∥ ≤ 10−5. Alternative stopping criteria can

be found in [19].

Example 1

The following typical benchmark test example in a smooth geometry, such as a disc

Ω = {(x, y) ∈ R2/0 ≤ x2 + y2 ≤ 1}, namely, the analytical harmonic function to be

retrieved is given by: uex = x2 − y2.

The under-specified boundary was taken to be Γ1 = {(x, y)/x = cos(t), y = sin(t), 0 ≤

t < θ,where, 0 < θ < 2π} while the overspecified boundary is Γ0 = {(x, y)/x = cos(t), y =

sin(t), θ ≤ t ≤ 2π}. The unknown data on the under specified boundary Γ1 are given by:

u(x, y) = 2x2 − 1 and ∂nu(x, y) = 2(2x2 − 1).

As an initial guess u0 for the step 1 of the algorithm, we have chosen u0 = x2 − x− 1
2
.

We notice that u0 is not too close to the analytical solution u on the under-specifed

boundary Γ1.

We apply the KMF algorithm to formulation 1 with various choice of angle θ (θ is the

parameter that defines the part of the boundary).

Figure 1 and figure 2, show the number of iterations required in order to achieve conver-

gence with respect to the parameter θ.
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From figure 1 et figure 2, we observe that when the part of the boundary Γ1 is small, the

algorithm converges rapidly (Two iteration for θ = π/12); but we need more iterations to

achieve the convergence if the measure of Γ1 is greater.

For the formulation 2 and formulation 3, we can note that the underspecified boundary

is defined as: Γ1 = {(x, y)/x = cos(t), y = sin(t), 0 ≤ t < θ1} and the part Γ0,1 of the ac-

cessible part was taken to be Γ0,1 = {(x, y)/x = cos(t), y = sin(t), θ1 ≤ t < θ1 + θ2} while

the overspecified boundary is Γ0,2 = {(x, y)/x = cos(t), y = sin(t), θ1 + θ2 ≤ t ≤ 2π}. As

initial guess u0 , we take the same taken in the formulation 1.

The figure 3 (resp. figure 5) representes the convergence of the algorithm for θ1 = π/4,

and with different choice of θ2 with formulation 3 (resp. with formulation 2).

The figure 4 (resp. figure 6) representes the numerical results obtained to calculate the

boundary function of u in the point(cos(π/6), sin(π/6)) using the iterative algorithm

(KMF) with formulation 3 (with formulation 2) with θ1 = π/4.
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Fig. 1. The error eu and numbers of iterations for different

choices θ with formulation1
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Fig. 2. The error ev and numbers of iterations for different

choices θ with formulation1

We observe from figure 3, figure 4, figure 5 and figure 6 that we do not need two

conditions on any part of the boundary for the convergence; However, the convergence

becomes faster if we have two conditions (Dirichlet and Neumann) on a substantial part

of Γ0.
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Fig. 3. The error eu as a function of the number of

iterations for different choice θ2 with the formulation3.
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Fig. 4. u(cos(π/6), sin((π/6)) for different choice θ2 with

the formulation3.
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Fig. 5. The erroe eu as a function of the number of

iterations for different choice θ2 with formulation2.
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Fig. 6. u(cos(π/6), sin((π/6)) for different choice θ2 with

the formulation2

With two conditions (Dirichlet and Neumann) on a part of Γ0 and only one condition on

the remaining part of this part of boundary, especially with a Neumann condition, one

complete data problem on the part of the boundary Γ1. That can be understood with

the fact that the imposition of a Neumann boundary condition contains more information

than the imposition of a Direchlet boundary condition.

Figure 7 presents the numerical results obtained for the function u on the boundary

Γ1 = {(x, y)/x = cos(t), y = sin(t), 0 ≤ t ≤ π/4} by using the three formulations, where

in formulation 2 and formulation 3, we take θ2 = π/4. It can be seen that the three
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Fig. 7. The numerical results for u on the boundary Γ1 obtained by using the three formulations in comparison with the

analytical solution and the initial guess

formulations considered are equally efficient in producing an accurate numerical solution

on the under-specified boundary part on the boundary .

Example 2

We presente here typical benchmark test example in a non-smooth geometry, such as a

square Ω = (0, L) × (0, L) where L = 1, namely, the analytical harmonic function to be

retrieved is given by :

uex(x) = cos(x)cosh(y) + sin(x)sinh(y) .

We can take the underspecified boundary as Γ0 = (0, L) × {L} ∪ {0} × (0, L) and the

overspecified boundary as Γ1 = (0, L)×{0}∪{L}×(0, L) (see [2]). But, to not violate the

hypothesis that Γ0 and Γ1 be smooth boundaries on which the mathematical proofs for

the convergence of the algorithm (KMF) of Kozlov et al are based, we consider the case

when Γ0 = {0} × (0, L) as underspecified boundary, Γ1 = (0, L)× {0}, Γ2 = {L} × (0, L)

as overspecified boundary and Γ3 = (0, L)× {L}.

The known data is given by :

u/Γ1 = cos(x),

u/Γ2 = cos(L)cosh(y) + sin(L)sinh(y) and ∂nu/Γ2 = −sin(L)cosh(y) + cos(L)sinh(y),

∂nu/Γ3 = cos(x)sinh(L) + sin(x)cosh(L),

and the unknown data on the underspecified boundary Γ0 is given by :

u/Γ0 = cosh(y) and ∂nu/Γ0 = −sinh(y).

For the step1 of the algorithm, as an initial guess u0 ∈ H1/2(Γ0), we have chosen u0(y) =
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1 + y(−L+ sinh(L)) + y2/2, y ∈ [0, 1], which also ensures the continuity of ∂u/∂y at the

corner Γ0 ∩ Γ3 and provides that the initial guess is not too close to the exact value of

uex.

In this example, in order to test the influence of lenght of the inaccessible part on the rate

of the convergence, we take Γ0 = Γ0,1∪Γ0,2 where Γ0,1 = {0}×(0, a) and Γ0,2 = {0}×(a, L)

where u/Γ0,2 is known with 0 < a ≤ L.

For different choices of lenght a, we use the algorithm (KMF) to obtain the underspecified

conditions on Γ0,1 (see figure 8). We can note that the convergence is also ensured, but;

it is faster if Γ0,1 is more smaller.

Figure 9 presents the numerical results obtained for the function u on the boundary Γ0

with the three formulations in comparison with the analytical solution and the initial

guess. For formulation 2 and formulation 3, the overspecified boundary is devised in two

parts Γ2 = Γ2,1 ∪ Γ2,2 such that Γ2,1 ∩ Γ2,2 = ∅, where on Γ2,1 = (0, a)× {L} we have two

conditions and on Γ2,2 = (a, L)× {L} we have one condition (with a = 2/3).
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Fig. 8. The numerical results for u on the boundary Γ0,1

obtained for different choices of lenght with formulation 1
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Fig. 9. The numerical results for u on the boundary Γ0

obtained by using the three formulations in comparison

with the analytical solution and the initial guess

Various other tests have been investigated and similar results have been obtained to those

obtained for the test example 1.
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4. Conclusion

In this paper we have investigated the iterative algorithm (KMF) for a Cauchy problem

for Laplace equation. Three formulations with different possibility of boundary conditions

are considered to study the influence of data on the convergence of the algorithm. It has

been found, by using these three formulations, that the number of iterations necessary to

achieve convergence depends on the measure of different parts of the boundary and the

type of conditions considered on the accessible part of the boundary. Particularly, the

numerical tests performed show that the number of iterations decreases if the inaccessible

part of the boundary has a measure smaller; which can be invested to perform the KMF

algorithm in order to accelerate the convergence.
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