
                

*Corresponding author 

E-mail address: mamtakapoor.78@yahoo.com 

Received November 10, 2021 

1 

 

     Available online at http://scik.org 

     J. Math. Comput. Sci. 2022, 12:93 

https://doi.org/10.28919/jmcs/6979 

ISSN: 1927-5307 

 

 

SUMUDU TRANSFORM HPM FOR KLEIN-GORDON AND SINE-GORDON 

EQUATIONS IN ONE DIMENSION FROM AN ANALYTICAL ASPECT  

MAMTA KAPOOR* 

Department of Mathematics, Lovely Professional University, Phagwara, Punjab 144411, India 

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: In the present research work, a hybrid algorithm is introduced, which includes an integral transform 

“Sumudu Transform” and the well-known semi-analytical regime “Homotopy Perturbation Method” named as 

“Sumudu Transform Homotopy Perturbation Method (STHPM)” to evaluate the exact solution of Klein-Gordon and 

Sine-Gordon equations. The discussed equations in this research have a prominent role in sciences and engineering. 

The authenticity and efficacy of this regime are established via a comparison between approximated solutions and 

exact solutions. Convergence analysis is also provided, which affirms that the solution obtained from STHPM is 

convergent and unique in nature. The results obtained by STHPM are compared with exact solutions. 2D and 3D plots 

are also discussed. The present regime is a reliable technique to provide the exact solution to a wide category of non-

linear PDEs in an easy way, without any need of discretization, complex computation, linearization, and it is also 

error-free. 
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1. INTRODUCTION 

1.1. Klein-Gordon Equation 

Klein-Gordon equations are one of the most common equations in the modeling of systems in 

different fields like applied physics. These equations have an important role not only from a 

mathematical aspect but as well as from a Physics aspect also. For instance, its significance is 

shown in [1-3]. The general form of the Klein-Gordon equation is as follows: 

𝑢𝑡𝑡 − 𝑘 𝑢𝑥𝑥 + 𝑔(𝑢) = 0                   (1) 

A number of analytical methods have been proposed to solve these specific equations. In literature, 

researchers have contributed a lot in the latest years regarding the analytical solution of partial 

differential equations. One of the most recent examples is the multi-step differential reduction 

regime [4, 5]. Elzaki transform is also a tool to deal with the analytical solution, which was 

proposed by Elzaki [6]. Elzaki transform has been proved as a very useful technique to solve 

different differential equations. 

One another form of the Klein-Gordon equation can be as follows: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑁[𝑢(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡)                (2) 

I.C.s:              𝑢(𝑥, 0) = 𝑓(𝑥) and 𝑢𝑡(𝑥, 0) = 𝑔(𝑥) 

Where, 𝑢(𝑥, 𝑡) is the function of 𝑥. 𝑁[𝑢(𝑥, 𝑡)] is a non-linear term. 𝑓(𝑥, 𝑡) is the unknown 

function. Due to the importance of the Klein-Gordon equation in quantum mechanics, several 

regimes have been developed, such as Homotopy Perturbation Method, Sumudu Transform 

Method, New Perturbation Iteration Transform Method, and many others. 

1.2. Sine-Gordon Equation 

The Sine-Gordon equation is considered one of the most crucial evolution equations (non-linear 

in nature), which has an important role in engineering and physical science. Sine-Gordon equation 

has the property of non-linear Hyperbolic PDE, which contains the Sine of an unknown function 

as well as the d’ Alembert operator. 

The Sine-Gordon equation was initially proposed in the 19th century to deal with various problems 

of differential geometry [7]. In the early 1970s, it was first considered that the Sine-Gordon 
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equation might be helpful in generating the Kink and Anti-Kink solutions (Soliton solutions) [8]. 

The concept of the Sine-Gordon equation is implemented in many physical applications like 

physical applications in relativistic field theory, mechanical transmission line: Josephson junction, 

and others.  

The standard form of the Sine-Gordon equation is as follows: 

𝑢𝑡𝑡(𝑥, 𝑡) − 𝛼2𝑢𝑥𝑥(𝑥, 𝑡) − 𝛽𝑠𝑖𝑛[𝑢(𝑥, 𝑡)] = 0              (3) 

I.C.s:             𝑢(𝑥, 0) = 𝑓(𝑥) and 𝑢𝑡(𝑥, 0) = 𝑔(𝑥) 

Where 𝛼 and 𝛽 are the constant values. 

Different analytical methods have come into existence to deal with solution of PDEs. ADM [9-

12], VIM [13-17], LDM [18], NDM [19-24], HPM [25-27], Tanh method [TM] [28], Exp-function 

method [EFM] [29], NHPM [30-32], the reduced differential transform method [RDTM] [33-35], 

and so on. Other useful references are available in [36-38].  

1.3. Sumudu Transform 

The Sumudu transform, whose basic properties are presented in the present section, is still not 

widely in consideration as well as nor implemented. In 2003, Belgacem et al. claimed Sumudu 

transform as a theoretical dual to the Laplace transform.  

Due to its simplicity and easy-to-implement properties, Sumudu transform is considered one of 

the most promising techniques. It can be widely applicable to deal with the problems of 

engineering mathematics and applied sciences. 

Watugala [39] implemented the notion of Sumudu transform in 1993 to deal with the engineering 

control problems. Weerakoon [41] presented applications of Sumudu transform to the PDEs by 

following Watugala’s [39] work. 

Watugala [40] presented the notion that the Sumudu transform is a useful technique to solve 

different ODEs and engineering control problems. Weerakoon [42] followed one more concept 

given by Watugala regarding the complex natured inversion formula of the Sumudu transform. 

In [43-45], it is presented how to solve the partial-integro-differential equations. Watugala [46] 

extended the concept of Sumudu transform from one variable to two variables regarding the 
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solution of PDEs. Belgacem et al. [47] implemented an application for the integral equations of 

convolution type.  

Definition 

Considered the set of functions: 

𝐴 = {𝑓(𝑡): 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 , 𝜂1, 𝜂2 > 0, |𝑓(𝑡)| < 𝑀𝑒
(

|𝑡|

𝜂𝑗
)

, 𝑖𝑓 𝑡 ∈ (−1)𝑗 × [0, ∞)}                                            

(4) 

Sumudu transform is defined as follows: 

𝑆[𝑓(𝑡)] =  ∫ 𝑓(𝑢𝑡)𝑒−𝑡∞

0
𝑑𝑡, 𝑢 ∈ (−𝜂1, 𝜂2)               (5) 

One of the most interesting properties regarding Sumudu transform is that it preserves the linear 

function as well as is itself linear, and therefore it does not change the units [48], [47].  

Formulae regarding Sumudu Transform 

• 𝑆[1] = 1 

• 𝑆[𝑡] = 𝑢 

• 𝑆 [
𝑡𝑛−1

∠𝑛−1
] = 𝑢𝑛−1, 𝑛 = 1, 2, 3,\𝑑𝑜𝑡𝑠 

• 𝑆[𝑒𝑎𝑡] =
1

1−𝑎𝑢
 

• 𝑆[𝑒−𝑎𝑡] =
1

1+𝑎𝑢
 

• 𝑆[𝑠𝑖𝑛𝑎𝑡] =
𝑎𝑢

1+𝑎2𝑢2  

• 𝑆[𝑐𝑜𝑠𝑎𝑡] =
1

1+𝑎2𝑢2
 

• 𝑆[𝑠𝑖𝑛ℎ(𝑎𝑡)] =
𝑎𝑢

1−𝑎2𝑢2  

• 𝑆[𝑐𝑜𝑠ℎ(𝑎𝑡)] =
1

1−𝑎2𝑢2 

• 𝑆[𝑢′(𝑥, 𝑡)] =
1

𝑢
[𝑆(𝑢(𝑥, 𝑡)) − 𝑢(𝑥, 0)] 

• 𝑆[𝑢′′(𝑥, 𝑡)] =
1

𝑢2 𝑆[𝑢(𝑥, 𝑡)] −
𝑢(𝑥,0)

𝑢2 −
𝑢′(𝑥,0)

𝑢
 

• 𝑆[𝑢(𝑛)(𝑥, 𝑡)] =
1

𝑢𝑛
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥,0)

𝑢𝑛
− ⋯ −

𝑢(𝑛−1)(𝑥,0)

𝑢
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Formulae regarding Inverse Sumudu Transform. 

• 𝑆−1[1] = 1 

• 𝑆−1[𝑢] = 𝑡 

• 𝑆−1[𝑢𝑛−1] = 𝑢𝑛−1 𝑡𝑛−1

∠𝑛−1
, 𝑛 = 1, 2, 3, …  

• 𝑆−1 [
1

1−𝑎𝑢
] = 𝑒𝑎𝑡 

• 𝑆−1 [
1

1+𝑎𝑢
] = 𝑒−𝑎𝑡 

• 𝑆−1 [
𝑎𝑢

1+𝑎2𝑢2] = 𝑠𝑖𝑛𝑎𝑡  

• 𝑆−1 [
1

1+𝑎2𝑢2] = 𝑐𝑜𝑠𝑎𝑡 

• 𝑆−1 [
𝑎𝑢

1−𝑎2𝑢2 𝑠𝑖𝑛ℎ(𝑎𝑡)] = 𝑠𝑖𝑛ℎ(𝑎𝑡)  

• 𝑆−1 [
1

1−𝑎2𝑢2] = 𝑐𝑜𝑠ℎ(𝑎𝑡) 

Linearity Property of Sumudu Transform 

If                 𝑆[𝑓(𝑡)] = 𝑢1 𝑎𝑛𝑑 𝑆[𝑔(𝑡)] = 𝑢2 

then           𝑆[𝛼𝑓(𝑡) + 𝛽𝑔(𝑡)] = 𝛼𝑆[𝑓(𝑡)] + 𝛽𝑆[𝑔(𝑡)] 

⇒ 𝑆[𝛼𝑓(𝑡) + 𝛽𝑔(𝑡)] = 𝛼 𝑢1 + 𝛽𝑢2  

Linearity Property of Inverse Sumudu Transform 

If                𝑆−1[𝑢1] = 𝑓(𝑡) 𝑎𝑛𝑑 𝑆−1[𝑢2] = 𝑔(𝑡) 

then           𝑆−1[𝛼𝑢1 + 𝛽𝑢2] = 𝛼𝑆−1[𝑢1] + 𝛽𝑆−1[𝑢2)] 

⇒ 𝑆−1[𝛼𝑢1 + 𝛽𝑢2] = 𝛼 𝑓(𝑡) + 𝛽𝑔(𝑡) 

1.4. HPM 

In the last some decades, non-linear science has emerged as an interest of scientists and engineers 

regarding analytical techniques for the non-linear problems. 

The most common applied techniques are known as perturbation techniques, but Perturbation 

methods have their own limits. 

1. Most of the perturbation methods considered that there must be an existence of a small 

parameter. 
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2. The determination of this small parameter is not an easy task to evaluate, which needs some 

special techniques to implement. 

3. An unsuitable choice of the small parameter may lead to a wrong result. 

But still, the approximated solutions by Perturbation methods are valid. Different Perturbation 

methods have been applied regarding non-linear problems. 

Many novel techniques have been generated based upon the Perturbation concept. He [51] 

proposed HAM. In [52], a review regarding the recent development in non-linear sciences is 

provided. He [49, 50] provided HPM to tackle different differential and integral equations. The 

regime which is generated by coupling of the conventional perturbation method and Homotopy in 

topology reforms a problem that can be tackled easily. This method does not need any small 

parameter in the equation. 

The HPM provides a rapid convergent solution in non-linear approach. A very less number of 

iterations is required to get an accurate solution. He’ HPM is one of the most well-known regimes 

which can solve numerous PDEs. 

Definition  

Let 𝑋 and 𝑌 are topological spaces. 

𝑓, 𝑔   →    continuous maps from X to Y. 

𝑓 is homotopic to g if there exists a continuous map.  

𝐹 ∶  𝑋 × [0, 1]  →  𝑌                    (6) 

s. t.                  𝐹(𝑥, 0) = 𝑓(𝑥) and 𝐹(𝑥, 1) = 𝑔(𝑥) 

HPM is a hybrid method generated by classical perturbation and Homotopy map used in topology. 

Basic notion of HPM 

Considered a non-linear differential equation as follows: 

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ D                 (7) 

B.C.:                         𝐵 (𝑢,
𝜕𝑢

𝜕𝜂
) = 0, 𝑟 ∈ Γ 

Where 𝐴 is considered as a general differential operator, 𝐵 is known as a boundary operator, 

𝑓(𝑟) is the given analytic function, and Γ is the boundary of the provided domain 𝐷. 𝐴 can be 
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splitted into two parts, where 𝐿 and 𝑁 are the respective parts, 𝐿 is considered as the linear part, 

and 𝑁 is considered as the non-linear part. 

𝐴(𝑢) − 𝑓(𝑟) = 0 

will be transformed into, 

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0 

In the concept of HPM, construction is Homotopy is as follows: 

𝐻(𝑟, 𝑝): 𝐷 × [0,1] → 𝑅 

Satisfying, 

𝐻(𝜈, 𝑝) = (1 − 𝑝)[𝐿(𝜈) − 𝐿(𝜈0)] + 𝑝[𝐴(𝜈) − 𝑓(𝑟)] = 0 

and                      𝑝 ∈ [0,1], 𝑟 ∈  𝐷 

or        𝐻(𝜈, 𝑝) = 𝐿(𝜈) − 𝐿(𝜈0) + 𝑝 𝐿(𝑢0) + 𝑝[𝑁(𝜈) − 𝑓(𝑟)] = 0 

Where, 𝑝 ∈ [0,1] is given parameter and 𝑢0 is considered as the initial approximation. 

along with,            𝐻(𝜈, 0) = 𝐿(𝜈) − 𝐿(𝑢0) = 0 

𝐻(𝜈, 1) = 𝐴(𝜈) − 𝑓(𝑢0) = 0 

Where,             𝜈 =  𝜈0 + 𝑝 𝜈1 + 𝑝2𝜈2 + 𝑝3𝜈3 + ⋯ 

Approximated solution is as follows: 

𝑢 = lim
𝑝→1

𝜈 

⇒ 𝑢 = 𝜈0 +  𝜈1 +  𝜈2 +  𝜈3 + ⋯ 

Outline of Paper 

• In Section 2, detail regarding the implementation of the proposed scheme is provided. 

• In Subsection 2.1, Implementation of STHPM is given regarding the Klein-Gordon equation. 

• In Subsection 2.1, the Implementation of STHPM is given regarding the Sine-Gordon equation. 

• In Section 3, a notion regarding convergence analysis is provided. 

• In Section 4, six examples are discussed regarding the testing of the proposed scheme as well 

as graphical plots are provided. 

• Section 5 is given as concluding remarks. 
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2. IMPLEMENTATION PROCESS OF STHPM 

2.1.  Implementation of STHPM upon Klein Gordon Equation 

Applying Sumudu transform in Equation (1): 

𝑆[𝑢𝑡𝑡] = 𝑆[𝑘 𝑢𝑥𝑥 − 𝑔(𝑢)] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
= 𝑆[𝑘 𝑢𝑥𝑥 − 𝑔(𝑢)] 

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
=

𝑢(𝑥, 0)

𝑢2
+

𝑢′(𝑥, 0)

𝑢
+ 𝑆[𝑘 𝑢𝑥𝑥 − 𝑔(𝑢)]  

𝑆[𝑢(𝑥, 𝑡)] = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑢 + 𝑢2𝑆[𝑘 𝑢𝑥𝑥 − 𝑔(𝑢)]  

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑆−1[𝑢] + 𝑆−1[𝑢2𝑆[𝑘 𝑢𝑥𝑥 − 𝑔(𝑢)] ] 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)[𝑡] +  𝑆−1[𝑢2𝑆[𝑘 𝑢𝑥𝑥 − 𝑔(𝑢)] ] 

Applying HPM: 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)[𝑡] + 𝑝 𝑆−1 [𝑢2𝑆 {𝑘 (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

− ∑ 𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

}]

∞

𝑛=0

 

Where,                    𝑔(𝑢) = 𝐻𝑛(𝑢) 

Comparing powers of 𝑝: 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)[𝑡]  

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑘 (𝑢0)𝑥𝑥 − 𝐻0(𝑢)}] 

𝒑𝟐: 𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑘 (𝑢1)𝑥𝑥 − 𝐻1(𝑢)}] 

𝒑𝟑: 𝑢3(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑘 (𝑢2)𝑥𝑥 − 𝐻2(𝑢)}] 

𝒑𝒏: 𝑢𝑛(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑘 (𝑢𝑛−1)𝑥𝑥 − 𝐻𝑛−1(𝑢)}] 

A general solution is provided as follows: 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ + 𝑢𝑛(𝑥, 𝑡)  

2.2.  Implementation of STHPM upon Sine-Gordon Equation 

      Applying Sumudu transform in Equation (3): 

𝑆[𝑢𝑡𝑡] = 𝑆[𝛼2 𝑢𝑥𝑥 + 𝛽𝑠𝑖𝑛(𝑢)]                         (8) 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
= 𝑆[𝛼2 𝑢𝑥𝑥 + 𝛽𝑠𝑖𝑛(𝑢)] 

𝑆[𝑢(𝑥, 𝑡)] − 𝑢(𝑥, 0) − 𝑢′(𝑥, 0)𝑢 = 𝑢2𝑆[𝛼2 𝑢𝑥𝑥 + 𝛽𝑠𝑖𝑛(𝑢)] 
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𝑆[𝑢(𝑥, 𝑡)] = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑢 + 𝑢2𝑆[𝛼2 𝑢𝑥𝑥 + 𝛽𝑠𝑖𝑛(𝑢)]   

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑆−1[𝑢] + 𝑆−1[𝑢2𝑆[𝛼2 𝑢𝑥𝑥 + 𝛽𝑠𝑖𝑛(𝑢)]] 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑡 + 𝑆−1[𝑢2𝑆[𝛼2 𝑢𝑥𝑥 + 𝛽𝑠𝑖𝑛(𝑢)]]           (9) 

Applying HPM in Equation (9): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑡 + 𝑝 𝑆−1[𝑢2𝑆{𝛼2(∑ 𝑝𝑛𝑢𝑛
∞
𝑛=0 )𝑥𝑥 + 𝛽(∑ 𝑝𝑛𝐻𝑛(𝑢)∞

𝑛=0 )}]∞
𝑛=0                                                 

(10) 

Where,                  𝐻𝑛(𝑢) = 𝑠𝑖𝑛(𝑢) [non-linear term] 

Comparing powers of 𝑝 in Equation (10): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢′(𝑥, 0)𝑡  

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝛼2(𝑢0)𝑥𝑥 + 𝛽 𝐻0(𝑢)}] 

𝒑𝟐: 𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝛼2(𝑢1)𝑥𝑥 + 𝛽 𝐻1(𝑢)}] 

𝒑𝟑: 𝑢3(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝛼2(𝑢2)𝑥𝑥 + 𝛽 𝐻2(𝑢)}] 

… 

𝒑𝒏: 𝑢𝑛(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝛼2(𝑢𝑛−1)𝑥𝑥 + 𝛽 𝐻𝑛−1(𝑢)}] 

 

General solution is provided as follows: 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ + 𝑢𝑛(𝑥, 𝑡) 

 

3. CONVERGENCE ANALYSIS 

Theorem 1.  

Let 𝐹 defined is an operator from Hilbert space. The series solution is considered as 𝑢𝑛(𝑥, 𝑡) =

 ∑ 𝑢𝑖(𝑥, 𝑡)𝑛
𝑖=0 , which converges if there exists 0 < 𝜂 < 1 such that, 

||𝐹(𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑖+1 )||  ≤ 𝑘 ||𝐹(𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑖  )|| 

for all 𝑖 =  0, 1, 2, 3, …  

Proof.  From [55] and [56]. 

Theorem 2. 

If there is a series solution 𝑢(𝑥, 𝑡) =  ∑ 𝑢𝑖(𝑥, 𝑡)∞
𝑖=0   considered as convergent, then the given 
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series solution will denote the exact solution of the given linear/non-linear problem. 

Proof. From [57], [58] and [59]. 

Theorem 3. 

Considered the series solution ∑ 𝑢𝑖(𝑥, 𝑡)∞
𝑖=0  , is convergent to 𝑢(𝑥, 𝑡)  if the truncated series 

∑ 𝑢𝑖(𝑥, 𝑡)𝑛
𝑖=0   is considered as an approximate solution of the given problem then 

𝑀𝑎𝑥. 𝑇𝑟𝑢𝑛𝑐. 𝐸𝑟𝑟𝑜𝑟 ≤
1

1−𝑘
 𝑘 ||𝑢0||. 

Proof. From [57], [58] and [59]. 

In short, As per Theorem 1 and Theorem 2, a solution obtained converges to the exact solution if 

0 < 𝜂 < 1 such that 

||𝐹[𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑖+1]|| ≤ 𝜂||𝐹[𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑖+1]||    

i.e. ||𝑢𝑖+1|| ≤ 𝜂||𝑢𝑖|| 

for all 𝑖 =  0, 1, 2, 3, …  

 

4. EXAMPLES AND APPLICATIONS OF STHPM 

In the present section, six examples are discussed. The first five examples are related to the notion 

of the Klein-Gordon equation, and the sixth example is related to the concept of the Sine-Gordon 

equation. Accuracy of present schemes is shown with the aid of matching between approximated 

and exact solutions via graphs. In Figure 1, Comparison of approximated and exact results is 

provided at 𝑡 = 0.001, 0.002, 0.003 and 0.004 for 𝑁 = 51 regarding Example 1. Comparison of 

approximated and exact results is provided at 𝑡 = 0.001, 0.002, 0.003 and 0.004 for 𝑁 = 21 

regarding Example 2. In Figure 3, comparison of approximated and exact solutions is given at 𝑡 

= 0.1, 0.2, 0.3, 0.4 and 0.5 for 𝑁  = 51 regarding Example 6. In Figure 4, a comparison of 

approximated and exact Solutions is provided at 𝑡 = 1, 2, 3, 4, and 5 for 𝑁 = 101. 

Example 1. [Klein-Gordon Equation] [53] 

Considered one dimensional Klein-Gordon equation is as follows: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 𝑢 = 0                        (11) 
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Initial conditions:      𝑢(𝑥, 0) = 1 + 𝑠𝑖𝑛𝑥 and 𝑢𝑡(𝑥, 0) = 0 

Applying Sumudu transform: 

𝑆[𝑢𝑡𝑡] = 𝑆[𝑢𝑥𝑥 + 𝑢] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
= 𝑆[𝑢𝑥𝑥 + 𝑢] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

1 + 𝑠𝑖𝑛𝑥

𝑢2
= 𝑆[𝑢𝑥𝑥 + 𝑢]  

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
=  

1 + 𝑠𝑖𝑛𝑥

𝑢2
+ 𝑆[𝑢𝑥𝑥 + 𝑢]   

𝑆[𝑢(𝑥, 𝑡)] = (1 + 𝑠𝑖𝑛𝑥) + 𝑢2𝑆[𝑢𝑥𝑥 + 𝑢] 

𝑢(𝑥, 𝑡) = (1 + 𝑠𝑖𝑛𝑥) + 𝑆−1[𝑢2𝑆{𝑢𝑥𝑥 + 𝑢}]               (12) 

Applying HPM in Equation (12): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = (1 + 𝑠𝑖𝑛𝑥) + 𝑝 𝑆−1 [𝑢2𝑆 {(∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

+ (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)}]

∞

𝑛=0

 

                                   (13) 

Comparing powers of 𝑝 in Equation (13): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = (1 + 𝑠𝑖𝑛𝑥) 

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{(𝑢0)𝑥𝑥 + 𝑢0}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{−𝑠𝑖𝑛𝑥 + 1 + 𝑠𝑖𝑛𝑥}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{1}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2] 

𝑢1(𝑥, 𝑡) =
𝑡2

∠2
 

𝒑𝟐: 𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{(𝑢1)𝑥𝑥 + 𝑢1}]  

𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{
𝑡2

∠2
}] 

𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢4] 

𝑢2(𝑥, 𝑡) =
𝑡4

∠4
 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

𝑢(𝑥, 𝑡) =  (1 + 𝑠𝑖𝑛𝑥) +
𝑡2

∠2
+

𝑡4

∠4
+ ⋯ 
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𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + [1 + 
𝑡2

∠2
+

𝑡4

∠4
+ ⋯ ] = 𝑠𝑖𝑛𝑥 +  ∑

𝑡2𝑖

∠𝑖

∞

𝑖= 0

 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠ℎ𝑡 

Convergence regarding Example 1 

𝜇0 =
‖𝑢1‖

‖𝑢0‖
 = 4.5461𝑒 − 05 < 1  

𝜇1 =
‖𝑢2‖

‖𝑢1‖
 =  8.3333𝑒 − 06 < 1 

𝜇2 =
‖𝑢3‖

‖𝑢2‖
 =  3.3333𝑒 − 06 < 1 

𝜇3 =
‖𝑢4‖

‖𝑢3‖
 = 1.7857𝑒 − 06 < 1 

𝜇𝑖
′𝑠  for 𝑖 ≥ 0  and 𝑡 ≤ (

𝑗

2
)  for 0 < 𝑗 < 1  are less than one. Hence convergence condition is 

completed. 

 

Figure 1. Comparison of approximated and exact results at 𝒕 = 0.001, 0.002, 0.003 

and 0.004 for 𝑵 = 51 regarding Example 1. 

 

Example 2. [Klein-Gordon Equation] [53] 

Considered one dimensional Klein-Gordon equation is as follows: 
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𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 = 0                          (14) 

I.C.s:                   𝑢(𝑥, 0)  =  0 and 𝑢𝑡(𝑥, 0) = 0 

Applying Sumudu transform in Equation (14): 

𝑆[𝑢𝑡𝑡] = 𝑆[𝑢𝑥𝑥 − 𝑢] 

1

𝑢2
[𝑆(𝑢(𝑥, 𝑡))] −

1

𝑢2
𝑢(𝑥, 0) −

1

𝑢
𝑢′(𝑥, 0) = 𝑆[𝑢𝑥𝑥 − 𝑢] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑥

𝑢2
=  𝑆[𝑢𝑥𝑥 − 𝑢] 

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
=

𝑥

𝑢2
+  𝑆[𝑢𝑥𝑥 − 𝑢] 

𝑆[𝑢(𝑥, 𝑡)] = 𝑥 + 𝑢2𝑆[𝑢𝑥𝑥 − 𝑢] 

𝑢(𝑥, 𝑡) = 𝑥 + 𝑆−1[𝑢2 𝑆{𝑢𝑥𝑥 − 𝑢}]                   (15) 

Applying HPM in Equation (15): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝑥 + 𝑝 𝑆−1 [𝑢2𝑆 {(∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

+ (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)}]

∞

𝑛=0

 

(16) 

Comparing powers of 𝑝 in Equation (16): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = 𝑥 

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{(𝑢0)𝑥𝑥 − 𝑢0}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{−𝑢0}] 

𝑢1(𝑥, 𝑡) =  −𝑥 𝑆−1[𝑢2] 

𝑢1(𝑥, 𝑡) =  −𝑥
𝑡2

∠2
 

𝒑𝟐: 𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{(𝑢1)𝑥𝑥 − 𝑢1}] 

𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{−𝑢1}] 

𝑢2(𝑥, 𝑡) = 𝑆−1 [𝑢2𝑆 {𝑥
𝑡2

2
}] 

𝑢2(𝑥, 𝑡) =
𝑥

2
𝑆−1[𝑢2𝑆{𝑡2}] 

𝑢2(𝑥, 𝑡) =
𝑥

2
𝑆−1[2 𝑢4] 
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𝑢2(𝑥, 𝑡) = 𝑥 
𝑡4

∠4
 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

𝑢(𝑥, 𝑡) = 𝑥 − 𝑥
𝑡2

∠2
+  𝑥 

𝑡4

∠4
− ⋯ 

𝑢(𝑥, 𝑡) = 𝑥 [1 −
𝑡2

∠2
+

𝑡4

∠4
− ⋯ ] = 𝑥 ∑(−1)𝑖

𝑡2𝑖

∠2𝑖

∞

𝑖=0

 

𝑢(𝑥, 𝑡) = 𝑥 𝑐𝑜𝑠(𝑡) 

 Convergence regarding Example 2. 

𝜇0 =
‖𝑢1‖

‖𝑢0‖
 = 5.0000𝑒 − 05 < 1  

𝜇1 =
‖𝑢2‖

‖𝑢1‖
 =  8.3333𝑒 − 06 < 1 

𝜇2 =
‖𝑢3‖

‖𝑢2‖
 =  3.3333𝑒 − 06 < 1 

𝜇3 =
‖𝑢4‖

‖𝑢3‖
 = 1.7857𝑒 − 06 < 1 

𝜇𝑖
′𝑠  for 𝑖 ≥ 0  and 𝑡 ≤ (

𝑗

2
)  for 0 < 𝑗 < 1  are less than one. Hence convergence condition is 

completed. 

 

Figure 2. Comparison of approximated and exact results at 𝒕 = 0.001, 0.002, 0.003 

and 0.004 for 𝑵 = 21 regarding Example 2. 
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Example 3. [Klein-Gordon Equation] [53] 

Considered one dimensional Klein-Gordon equation is as follows: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 = 2 𝑠𝑖𝑛𝑥                      (17) 

I.C.s:                    𝑢(𝑥, 0) = 𝑠𝑖𝑛𝑥 and 𝑢𝑡(𝑥, 0) = 1 

Applying Sumudu transform in Equation (17): 

𝑆[𝑢𝑡𝑡] = 𝑆[2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢] 

1

𝑢2
 𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
= 𝑆[2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢] 

1

𝑢2
 𝑆[𝑢(𝑥, 𝑡)] −

𝑠𝑖𝑛𝑥

𝑢2
−

1

𝑢
=  𝑆[2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] =

𝑠𝑖𝑛𝑥

𝑢
+

1

𝑢
+ 𝑆[2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢]  

𝑆[𝑢(𝑥, 𝑡)] = 𝑠𝑖𝑛𝑥 + 𝑢 + 𝑢2𝑆[2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢] 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑆−1[𝑢] + 𝑆−1[𝑢2𝑆{2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢}] 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑡 + 𝑆−1[𝑢2𝑆{2 𝑠𝑖𝑛𝑥 +  𝑢𝑥𝑥 − 𝑢}]             (18) 

Applying HPM in Equation (18): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑡 + 𝑝 𝑆−1 [𝑢2𝑆 {2 𝑠𝑖𝑛𝑥 + (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

− (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)}]

∞

𝑛=0

 

  (19) 

Comparing powers of 𝑝 in Equation (19): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑡 

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{2 𝑠𝑖𝑛𝑥 + (𝑢0)𝑥𝑥 − (𝑢0)}]  

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{2 𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛𝑥 − (𝑠𝑖𝑛𝑥 + 𝑡)}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{−𝑡}] 

𝑢1(𝑥, 𝑡) =  −𝑆−1[𝑢2𝑆(𝑡)] 

𝑢1(𝑥, 𝑡) =  −𝑆−1[𝑢3] 

𝑢1(𝑥, 𝑡) =  −
𝑡3

∠3
 

𝒑𝟐: 𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{2 𝑠𝑖𝑛𝑥 + (𝑢1)𝑥𝑥 − (𝑢1)}]  

𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{−𝑢1}] 
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𝑢2(𝑥, 𝑡) = 𝑆−1 [𝑢2𝑆 {
𝑡3

∠3
}] 

𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢5] 

𝑢2(𝑥, 𝑡) =
𝑡5

∠5
 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑡 −
𝑡3

∠3
+

𝑡5

∠5
− ⋯ = sin 𝑥 +  ∑

(−1)𝑖 𝑡2𝑖+1

∠(2𝑖 + 1)

∞

𝑖=0

 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑡 

Example 4. [Klein-Gordon Equation] [53] 

Considered one dimensional Klein-Gordon equation is as follows: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢2 = 𝑥2𝑡2                        (20) 

I.C.s:                   𝑢(𝑥, 0) = 0 and 𝑢𝑡(𝑥, 0) = 𝑥 

Applying Sumudu transform in Equation (20): 

𝑆[𝑢𝑡𝑡] = 𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
= 𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2]  

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
−

𝑥

𝑢
= 𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2]   

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
=

𝑥

𝑢
+ 𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2]   

𝑆[𝑢(𝑥, 𝑡)] = 𝑥𝑢 + 𝑢2𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2]   

𝑢(𝑥, 𝑡) = 𝑥 𝑆−1[𝑢] + 𝑆−1[𝑢2𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2]] 

𝑢(𝑥, 𝑡) = 𝑥 𝑡 + 𝑆−1[𝑢2𝑆[𝑥2𝑡2 + 𝑢𝑥𝑥 − 𝑢2]]                (21) 

Applying HPM in Equation (21): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝑥 𝑡 + 𝑝 𝑆−1[𝑢2𝑆{𝑥2𝑡2 + (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

− (∑ 𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

)}]

∞

𝑛=0

 

(22) 

Where,                         𝐻𝑛(𝑢) = 𝑢2 

𝐻0(𝑢) = 𝑢0
2 = 𝑥2𝑡2 
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𝐻1(𝑢) = 2 𝑢0𝑢1 = 0 

          Comparing powers of 𝑝 in Equation (22): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = 𝑥𝑡 

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑥2𝑡2 + (𝑢0)𝑥𝑥 − 𝐻0(𝑢)}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑥2𝑡2 − 𝑥2𝑡2}] 

𝑢1(𝑥, 𝑡) = 0 

𝒑𝟐: 𝑢2(𝑥, 𝑡) =  𝑆−1[𝑢2𝑆{𝑥2𝑡2 + (𝑢1)𝑥𝑥 − 𝐻1(𝑢)}] 

𝑢2(𝑥, 𝑡) = 0 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

𝑢(𝑥, 𝑡) = 𝑥𝑡 

Example 5. [Klein-Gordon Equation] [53] 

Considered one dimensional Klein-Gordon equation is as follows: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 𝑢 + 𝑢2 = 𝑥𝑡 + 𝑥2𝑡2                   (23) 

I.C.s:                    𝑢(𝑥, 0) = 1 and 𝑢𝑡(𝑥, 0) = 𝑥 

Applying Sumudu transform in Equation (23): 

𝑆[𝑢𝑡𝑡] = 𝑆[𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2] 

1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
=  𝑆[𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2] 

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
−

1

𝑢2
−

𝑥

𝑢
=   𝑆[𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2]  

𝑆[𝑢(𝑥, 𝑡)]

𝑢2
=

1

𝑢2
+

𝑥

𝑢
+  𝑆[𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2] 

𝑆[𝑢(𝑥, 𝑡)] = 1 + 𝑥 𝑢 + 𝑢2𝑆[𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2] 

𝑢(𝑥, 𝑡) = 1 + 𝑥 𝑆−1[𝑢] + 𝑆−1[𝑢2𝑆{𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2}] 

𝑢(𝑥, 𝑡) = 1 + 𝑥𝑡 + 𝑆−1[𝑢2𝑆{𝑥𝑡 + 𝑥2𝑡2 + 𝑢𝑥𝑥 + 𝑢 − 𝑢2}]            (24) 

Applying HPM in Equation (24): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 1 + 𝑥𝑡 + 𝑝 𝑆−1 [𝑢2𝑆 {𝑥𝑡 + 𝑥2𝑡2 + (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

+ (∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

) − ∑ 𝑝𝑛𝐻𝑛(𝑢) 

∞

𝑛=0

}]

∞

𝑛=0

 

(25) 
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Where,                        𝐻𝑛(𝑢) = 𝑢2 

𝐻0(𝑢) = 𝑢0
2 = (1 + 𝑥𝑡)2 

𝐻1(𝑢) = 2 𝑢0𝑢1 

Comparing powers of 𝑝 in Equation (25): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = (1 + 𝑥𝑡) 

𝒑𝟏: 𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑥𝑡 + 𝑥2𝑡2 + (𝑢0)𝑥𝑥 + 𝑢0 − 𝐻0(𝑢)}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{0}] 

𝑢1(𝑥, 𝑡) = 0 

𝒑𝟐: 𝑢2(𝑥, 𝑡) = 𝑆−1[𝑢2𝑆{𝑥𝑡 + 𝑥2𝑡2 + (𝑢1)𝑥𝑥 + 𝑢1 − 𝐻1(𝑢)}]  

𝑢2(𝑥, 𝑡) = 0 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

𝑢(𝑥, 𝑡) = (1 + 𝑥𝑡) 

Example 6. [Sine-Gordon Equation] [54] 

Considered one dimensional Sine-Gordon equation is as follows: 

𝑢𝑡𝑡 + 𝑢𝑡 = 𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 𝑠𝑖𝑛[𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥)]    (26) 

I.C.:                𝑢(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥) and 𝑢𝑡(𝑥, 0) =  −𝑠𝑖𝑛(𝜋𝑥) 

Applying Sumudu Transform in Equation (26): 

𝑆[𝑢𝑡𝑡] + 𝑆[𝑢𝑡] = 𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 sin [𝑒−𝑡sin (𝜋𝑥)]] 

[
1

𝑢2
𝑆[𝑢(𝑥, 𝑡)] −

𝑢(𝑥, 0)

𝑢2
−

𝑢′(𝑥, 0)

𝑢
] +

1

𝑢
[𝑆[𝑢(𝑥, 𝑡) − 𝑢(𝑥, 0)]]

=  𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 sin [𝑒−𝑡sin (𝜋𝑥)]] 

𝑆[𝑢(𝑥, 𝑡)] [
1

𝑢2
+

1

𝑢
 ] =

𝑠𝑖𝑛(𝜋𝑥)

𝑢2
+ 𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 sin [𝑒−𝑡sin (𝜋𝑥)]] 

𝑆[𝑢(𝑥, 𝑡)] [
1 + 𝑢

𝑢2
 ] =

𝑠𝑖𝑛(𝜋𝑥)

𝑢2
+ 𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 sin [𝑒−𝑡sin (𝜋𝑥)]] 

𝑆[𝑢(𝑥, 𝑡)] =
𝑠𝑖𝑛(𝜋𝑥)

1 + 𝑢
+

𝑢2

1 + 𝑢
𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 sin [𝑒−𝑡sin (𝜋𝑥)]] 

𝑢(𝑥, 𝑡) = sin(𝜋𝑥) 𝑆−1 [
1

1 + 𝑢
] + 𝑆−1[

𝑢2

1 + 𝑢
𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥)

+ 2 sin [𝑒−𝑡sin (𝜋𝑥)]]]  



19 

SUMUDU TRANSFORM HPM FOR KLEIN-GORDON AND SINE-GORDON EQUATIONS 

𝑢(𝑥, 𝑡) = sin(𝜋𝑥) 𝑒−𝑡 +  𝑆−1[
𝑢2

1+𝑢
𝑆[𝑢𝑥𝑥 − 2 𝑠𝑖𝑛𝑢 + 𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) + 2 sin [𝑒−𝑡sin (𝜋𝑥)]]]                                             

(27) 

Applying HPM in Equation (27): 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = sin(𝜋𝑥) 𝑒−𝑡

∞

𝑛=0

+ 𝑝 𝑆−1 [
𝑢2

1 + 𝑢
𝑆 {(∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

)

𝑥𝑥

− 2 ∑ 𝑝𝑛𝐻𝑛(𝑢) + 𝜋2𝑒−𝑡 sin(𝜋𝑥) + 2 sin(𝑒−𝑡 𝑠𝑖𝑛(𝜋𝑥))

∞

𝑛=0

}] 

    (28) 

Where,                        𝐻𝑛(𝑢) = sin (𝑢) 

𝐻0(𝑢) = sin (𝑢0) 

𝐻1(𝑢) = cos(𝑢0) 𝑢1 

Comparing powers of 𝑝 in Equation (28): 

𝒑𝟎: 𝑢0(𝑥, 𝑡) = sin(𝜋𝑥) 𝑒−𝑡  

𝒑𝟏: 𝑢1(𝑥, 𝑡) =  𝑆−1[
𝑢2

1 + 𝑢
𝑆{(𝑢0)𝑥𝑥 − 2 𝐻0(𝑢) + 𝜋2𝑒−𝑡 sin(𝜋𝑥) + 2 sin (𝑒−𝑡sin (𝜋𝑥))}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[
𝑢2

1 + 𝑢
 𝑆{−𝜋2𝑠𝑖𝑛(𝜋𝑥)𝑒−𝑡 − 2 𝑠𝑖𝑛(𝑠𝑖𝑛(𝜋𝑥)𝑒−𝑡) +  𝜋2𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥)

+ 2𝑠𝑖𝑛(𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥))}] 

𝑢1(𝑥, 𝑡) = 𝑆−1[0] 

𝑢1(𝑥, 𝑡) = 0 

𝒑𝟐: 𝑢2(𝑥, 𝑡) =  𝑆−1[
𝑢2

1 + 𝑢
𝑆{(𝑢1)𝑥𝑥 − 2 𝐻1(𝑢)}]  

𝑢2(𝑥, 𝑡) =  𝑆−1[
𝑢2

1 + 𝑢
𝑆{0}] 

𝑢2(𝑥, 𝑡) = 0 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ = sin(𝜋𝑥) ∑
 (−𝑡)𝑖

∠𝑖
 

∞

𝑖=0

  

𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑠𝑖𝑛(𝜋𝑥) 
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Figure 3. Comparison of Approximated and Exact Solutions at 𝒕 = 0.1, 0.2, 0.3, 0.4 

and 0.5 for 𝑵 = 51 regarding Example 6. 

 

 

Figure 4. Comparison of Approximated and Exact Solutions at 𝒕 = 1, 2, 3, 4 and 5 

for 𝑵 = 101. 
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5. CONCLUSION 

In the present study, a hybrid regime named “Sumudu Transform Homotopy Perturbation Method” 

(STHPM) is implemented to solve Klein-Gordon and Sine-Gordon equations analytically. 

Convergence analysis of the scheme is also provided. Graphical plots are provided to test the 

compatibility between the approximated and exact results. The present scheme is easy to 

implemented and has produced acceptable results. With the aid of the present regime, complex-

natured differential equations can also be solved.  
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