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Abstract. The utility of Noether’s classical theorem on differential equations extended to a generalized non-

classical theorem is the focus of this paper. After addressing a couple of standard related Partial Differential

Equation (P.D.E.) formulations from classical Lagrangians, it culminates into a non-classical formulation of the

diffusion equation in one spatial dimension from a fractional Lagrangian. Comparisons and contrasts between

techniques for the classical and fractional formulations, as done here, facilitate the basic computational methods

required for building analytical results. A noteworthy interface between Distribution theory, Trace theory and Lie

symmetry theory is a key point of interest in this study.
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1. INTRODUCTION

Optimization of regular functionals on Banach spaces leads to formulation settings for dif-

ferential equations, from which symmetry considerations can often reveal much about possible
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solutions. This observation is particularly useful in physical systems governed by such dif-

ferential equations, as the qualitative and quantitative properties of equilibrium states of these

systems can be inferred from admitted symmetry groups and the associated group invariant so-

lutions. Much classical work has been dedicated to this profound concept, with Noether’s the-

orem at the hub of its efficacy and development. Indeed, the concern about which differential

equations can be formulated via optimization in the calculus of variations, remains very cogent

in several modern computational scientific endeavors. Fractional calculus, being required for

extrapolation to generalized non-classical versions of Noether’s theorem, has paved the way for

inclusion of ‘conservation laws’ for certain dissipative systems. Needless to mention, this has

immensely expanded the utility of Noether’s theorem in extensive analysis of differential equa-

tions, particularly in the 21st century. In this study, we shall visit the formulation of Laplace’s

equation and Poisson’s equation, the latter which is often regarded as the static version of the

diffusion equation. The transition across these formulations is a vital concept highlighted in

[4] in appreciable detail. In conjunction with modern methods from the fractional calculus of

variations and some key classical methods summarized in the reference by Olver, substantive

symmetry considerations of the diffusion equation are examined from the vantage point of its

fractional Lagrangian. Reconciliation between partial differential equations that can be formu-

lated from the calculus of variations and those equations which possibly admit infinitesimal

symmetries is pointed out as a vital link being sought.

2. FORMULATION OF LAPLACE’S EQUATION AND POISSON’S EQUATION

Classical related equations and their formulation techniques shall be elucidated in this sec-

tion. We may begin with the task of optimizing a given functional defined on an improper subset

of some Banach functional space. In this event, we have the optimization theorem below as a

guarantor of existence of an extremal, given fulfillment of the included criteria.

Optimization Theorem (1) [ [3], pp.198 ] - Let E be a real reflexive Banach space, and the

functional f : E→ R∪{+∞} be convex, lower semi-continuous and proper. Then,

i.) for any non-empty K⊂E that is weakly compact (closed, convex and norm-bounded) ∃ v∈K

such that f (v) = min
v∈K

f (v);
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ii.) if in addition f is coercive, ∃ v ∈ E such that f (v) = min
v∈E

f (v).

If in addition f is strictly convex, then the minimizer v would exist uniquely in either case

mentioned above.

There are certain settings whereby this elegant optimization theorem is not quite relevant,

such as when the Banach space of reference cannot be made reflexive without losing other

crucial properties (such as continuous differentiability) of the test functions and candidates for

the optimal solution v. Moreover, although this theorem can be tweaked by negating f to speak

about local maxima, it does not reckon with criteria for seeking saddle points, which are evident

legitimate critical points. By differentiation in the Banach spaces of reference and appropriate

incorporation of the fundamental lemma of the calculus of variations, we are able to formulate

differential equations which any solution v must satisfy [8]. There is providence for a reverse

check via the Lax-Milgram theorem [ [2], pp.140 ] that a solution to the formulated differential

equation is indeed an extremal of the function f in the above given optimization theorem (1).

Lax-Milgram Theorem (2): Assume that a(u,v) is a continuous and coercive bilinear form on a

Hilbert Space H. Then given any ϕ ∈ H∗, there exists a unique u ∈ H such that

a(u,v) = 〈ϕ,v〉 ∀v ∈ H.

Moreover, if a is symmetric, then u is characterized by

1
2

a(u,u)−〈ϕ,u〉= min
v∈H

{
1
2

a(v,v)−〈ϕ,v〉
}
.

In this event, we may begin with the boundary-constrained differential equation and then at-

tempt to identify an associated optimization problem which its weak solution(s) must solve.

Hence, the Lax-Milgram theorem is a means to identify certain PDE’s which can be formulated

from optimization via the calculus of variations, with aid of standard multivariate integration

formulas. As for equations of classically dissipative systems that are constructed from fractional

Lagrangians, this particular scheme is not sufficient.

Intricacies of determination of admitted infinitesimal symmetries either starting from infin-

itesimal criteria of the PDE or the Lagrangian of its associated optimization problem shall be

compared for the equations of choice here in due course. It is worthy of note that although

sufficiently regular solutions of class Ck : k ∈ N are often desired, the peculiarities of structures
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available in reflexive functional spaces compel us to first formulate equations weakly in larger

Sobolev spaces (W k,p(Ω) : k ∈ N, p ≥ 1). Eventually, after establishing (unique) existence of

weak solutions, we may check whether weak solutions are sufficiently regular as desirable.

These are the rigors of classically identified procedures for confirming existence and unique-

ness of solutions to an appreciable class of partial differential equations. Hence, before even

reckoning with explicit solution techniques, the links to variational problems already become

evident in core P.D.E. analysis.

Formulation of Laplace’s Equation: Now, Laplace’s equation is famously formulated via opti-

mization of Dirichlet’s energy functional. The Dirichlet energy functional on Ω is given by

f : K ⊂C1(Ω) −→ R

v 7−→
∫

Ω

||∇v||2 dµ

for Ω⊂ Rn an open, bounded set with C1 topological boundary, where

K = {v ∈C1(Ω) : v|∂Ω = h}

and h is a particular differentiable function defined on the compact set ∂Ω.

The domain K′ of f in the weak setting is the pre-image of the singleton h ∈ L2(∂Ω) under the

continuous trace operator;

γ0 : H1(Ω)→ L2(∂Ω)

so K′ is (norm-) closed in W 1,2(Ω) := H1(Ω). Moreover, the set K′ is convex because

λu+ (1− λ )v ∈ K′ ∀λ ∈ [0,1] and every u,v ∈ K′. The functional f is continuous, coer-

cive and strictly convex on K′. For any function v0 in K′, it is easy to check that the set

B = {v ∈ K′ : f (v) ≤ f (v0)} is bounded due to the coercivity of f , giving us existence of a

minimizer for f on B and thus also on K′. The critical function v will exist uniquely due to

strict convexity of f [8].
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Given the minimizer v ∈ H1(Ω), the weak formulation for this problem is the following

boundary value PDE:
n

∑
i=1

∂ 2v
∂x2

i
= 0 in Ω;

v = h on ∂Ω

 · · ·(3).

Let x = (xi)
n
i=1 be the coordinates on Ω and dµ the volume element on Ω. Summarily, the

technique of formulation of the associated differential equation via optimization of a sufficiently

regular functional

v 7→
∫

Ω

F(x,v,∇v)dµ · · ·(4)

on a subset of L1(Ω) reveals that

Fv(x,v,∇v) = div F∇v(x,v,∇v) · · ·(5)

at any critical point v [8]. If Ω is an open subset of Rn, then we may replace the divergence

(div) operator above to express the formulation in (5) simply as

Fv(x,v,∇v) =
n

∑
i=1

∂

∂xi
Fvxi

(x,v,∇v) .

These are the multivariate Euler-Lagrange equations, and we have that any critical point v of

(4) must be a solution of (5).

The symmetries admitted by the Laplace equation (3) are identified as the conformal Lie

groups and they include the infinitesimal rotations, translations and scalings; which may be

relevantly utilized to simplify or explicitly solve the equation provided they leave the boundary

constraint [v = h on ∂Ω] of (3) invariant. More generic, engaging observations linking

variational procedures and admitted symmetries in associated systems of differential equations

shall be elucidated in each of the succeeding sections.

Formulation of Poisson’s Equation: Let u be a particular element of L2(Ω) for Ω in Rn an open,

bounded set with C1 topological boundary. In the weak setting, Poisson’s equation:

n

∑
i=1

∂ 2v
∂x2

i
= u in Ω;

v = 0 on ∂Ω

 · · ·(6),
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is formulated by optimizing the functional

f : H1
0 (Ω) −→ R

v 7−→
∫

Ω

(
1
2
||∇v||2−u.v

)
dµ.

Arguments using the given optimization theorem (1) above yield existence of a unique mini-

mizer. Moreover, engagement of the multivariate Euler-Lagrange equations in the Lagrangian

reveals that any critical point v satisfies the Poisson equation:
n

∑
i=1

∂ 2v
∂x2

i
= u in Ω; formulated

on the reflexive Hilbert space H1
0 (Ω).

3. INFINITESIMAL SYMMETRIES DETERMINED FROM LAGRANGIANS

Consider a functional I =
∫

Ω

F(x,v,∇v)dµ , perturbed by one-parameter infinitesimal varia-

tions (x̃, ṽ) of the independent variables (xi)
n
i=1 = x and the dependent variable v:

(x̃, ṽ) = (x,v)+ ε(ξ ,η).

The above variations also induce a variation of the gradient ∇v, which we denote

ṽx̃ = ∇v+ εη
x +o(ε2).

We require those variations which leave I invariant at its critical point(s) with respect to the

parameter ε at ε = 0. This is to say, we require

d
dε

[∫
Ω̃

F [(x,v,∇v)+ ε(ξ ,η ,ηx)]dµ̃

]
|ε=0 = 0.

The higher order terms o(ε2) in the variation [ ṽx̃ = ∇v+ εηx + o(ε2) ] are dropped because

their derivatives evaluated at ε = 0 vanish, being a countable sum of zeros. Hence,

d
dε

[∫
Ω̃

F [(x,v,∇v)+ ε(ξ ,η ,ηx)]dµ̃

]
=

∫
Ω̃

d
dε

[F [(x,v,∇v)+ ε(ξ ,η ,ηx)]dµ̃]

=
∫

Ω̃

[
(ξ .Fx +η .Fv +η

x.F∇v)dµ̃ +(F [(x,v,∇v)+ ε(ξ ,η ,ηx)])
d

dε
[dµ̃]

]
=

∫
Ω̃

[(
ξi

∂

∂xi
+η

∂

∂v
+η

xi
∂

∂vxi

)
Fdµ̃ +(F [(x,v,∇v)+ ε(ξ ,η ,ηx)])

d
dε

[det[J]]dµ

]
.
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In the above expression, [J] is the Jacobian for the coordinate transformation from the system

(x,v) to (x̃, ṽ), and the unperturbed Lagrangian is F = F(x,v,∇v) . According to Olver [[7],

pp.254], we have

d
dε

[det[J]]|ε=0 = div(ξ ) :=
n

∑
i=1

Dxiξi ,

which leads to the result:

d
dε

[∫
Ω̃

F [(x,v,∇v)+ ε(ξ ,η ,ηx)]dµ̃

]
|ε=0

=
∫

Ω

[(
ξi

∂

∂xi
+η

∂

∂v
+η

xi
∂

∂vxi

)
◦F +F.div(ξ )

]
dµ.

For the above integral to give the desired zero result, we require a pointwise null result for the

integrand: (
ξi

∂

∂xi
+η

∂

∂v
+η

xi
∂

∂vxi

)
◦F +F.div(ξ )≡ 0 · · ·(7).

At this juncture, we reckon that the vector field
(

ξi
∂

∂xi
+η

∂

∂v +ηxi ∂

∂vxi

)
is the first prolon-

gation [pr(1)v] of an infinitesimal symmetry [v = ξi
∂

∂xi
+η

∂

∂v ] admitted by critical points of

the functional I. Infinitesimal symmetries computed in this manner are identified as variational

symmetries of I, with the prolongation vector coefficient(s) obtained as

ξi =
d

dε
[x̃i]|ε=0 , η =

d
dε

[ṽ]|ε=0 , η
xi =

d
dε

[ṽx̃i]|ε=0 .

All the above are consistent with the definitions in formally established literature, and the op-

portunity to reconcile infinitesimal symmetries with variational techniques on the Lagrangian

from the first principles presents us with a viable platform for symmetry considerations for dif-

ferential equations formulated from Lagrangians. It is also well-known that infinitesimal sym-

metries from Lagrangians are admitted by the associated Euler-Lagrange equations. The result

in (7) is relevant for computing symmetries of both equations (3) and (6), being formulated from

classical Lagrangians with maximum first-order derivatives. An extension of the formulation

to Lagrangians with higher order integer derivatives can be naturally done to address differen-

tial equation formulations in other cases. For our scope, we eventually aim to extrapolate this

technique to computing infinitesimal symmetries from fractional Lagrangians, in order to bring

formulations for dissipative systems (such as the diffusion equation) into consideration. Before
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expounding this concept in further detail, it is needful to discuss the relevance of Noether’s the-

orem in analysis of classical cases, with prospects for Noether’s generalized theorem extended

to fractional Lagrangians. The generalized theorem is a means to determine analogous conser-

vation laws at play in classically dissipative systems, which creates a more robust framework to

formulate previously elusive physical quantities such as heat and friction.

Noether’s classical theorem (1918) reckons with the qualitative correspondence between

symmetries and conservation laws in physical systems, as well as the quantitative correspon-

dence in their associated differential equations. More specifically, this theorem states that a con-

servation law in variational mechanics follows whenever the Lagrangian function is invariant

under a one-parameter continuous group of transformations, that transform dependent and/or

independent variables [[6], pp.56]. In particular, if the integral in the Lagrangian is nondegener-

ate, there is a one-to-one correspondence between equivalence classes of nontrivial conservation

laws of the Euler-Lagrange equations and equivalence classes of variational symmetries of the

functional [[7], pp.334]. This theorem has been referenced ubiquitously since its establishment,

but still remains indispensable in analysis of standard phenomena in general modern mechan-

ics, such as energy and momentum. Other phenomena in variational mechanics such as friction,

which are non-conservative (dissipative), may be addressed by formulations of the generalized

theorem; reliant on transitioning from classical to fractional calculus techniques [[6], pp.25]. In

quantitative terms, for a system of differential equations ∆(x,u(n)) = 0, a conservation law is

simply defined as a divergence expression

Div P = 0

which vanishes for all solutions u = f (x) of the given system. We have P =

(P1(x,u(n)), · · · ,Pm(x,u(n))) as an m-tuple of smooth functions of x,u and the derivatives of

u, while Div P represents the total divergence. [[7], pp.261]

4. FORMULATION OF THE DIFFUSION EQUATION

The diffusion equation

ut = uxx ,



SYMMETRY CONSIDERATIONS FOR DIFFERENTIAL EQUATION FORMULATIONS 9

otherwise called the heat equation, is a common evolution equation describing a dissipative

physical process. It is well-known that this equation cannot be formulated from a classical

Lagrangian, owing partly to its non-conservative nature. However, the available access to non-

classical fractional variational techniques provides us with a valuable platform to adapt this

equation into the formulation mode of its static counterpart - the Poisson equation, as displayed

previously. Before doing so, it is vital to go through a few details of requisite fractional calculus

for fractional variational formulation.

Fundamental Tools of Fractional Calculus: In solutions u(t,x), we differentiate fractionally

with respect to time (t) in certain stages, while we maintain integer derivatives with respect to

the spatial variable (x) all through. We hereby have to make reference to the Riemann-Liouville

and Caputo fractional derivatives, as they relate to the Riemann-Liouville fractional Integral.

The left Riemann-Liouville fractional integral of order α (0 < α < 1) of a function u(t) with

respect to t is given as:

aIα
t u(t) =

1
Γ(α)

∫ t

a
(t− τ)α−1u(τ)dτ .

Note that Γ denotes the hypergeometric Gamma function, which extends the usual factorial

from the natural numbers to R− (Z−∪{0}), such that

Γ(n+1) = n! ∀n ∈ N∪{0}; Γ(p+1) = pΓ(p) ∀p ∈ R− (Z−∪{0}) .

Hence, the left Riemann-Liouville fractional derivative of order α (0 < α < 1) of u(t) with

respect to t is given as:

aDα
t [u](t) =

d
dt
[aI1−α

t u(t)] =
1

Γ(1−α)

d
dt

∫ t

a

u(τ)
(t− τ)α

dτ .

The operators aI1−α
t and d

dt do not commute, and switching their order from the Riemann-

Liouville definition to aI1−α
t ◦ d

dt gives us the left Caputo fractional differential operator, de-

noted C
a Dα

t . Importantly, we have that

C
a Dα

t [u](t) = aDα
t [u](t)−

u(a)
(t−a)αΓ(1−α)

.

As for the right fractional differential operators, we have the right Riemann-Liouville derivative

of order α :

tDα
b [u](t) =−

d
dt
[tI1−α

b u(t)] =
−1

Γ(1−α)

d
dt

∫ b

t

u(τ)
(τ− t)α

dτ ,
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and the right Caputo derivative of order α:

C
t Dα

b [u](t) =−tI1−α

b

[
du
dt

]
=−tDα

b [u](t)+
u(b)

(b− t)αΓ(1−α)
.

We shall feature only left fractional differential operators in the Lagrangians of this study, since

we only consider evolutions toward the future and not the past. In [4], there is an effort by the

authors to motivate development of a doubled phase space (u+,u−) as an aspect of dynamical

modeling of the future and past of an evolution process.

We shall impose the boundary value constraint [u(0,x) = 0] a-priori in any case, so that the

left Caputo and Riemann-Liouville derivatives coincide. We shall hence employ the more con-

venient notations [Dα
−u] and [Dα

+u] to stand for [C0 Dα
t [u](t) = 0Dα

t [u](t)] and [tDα
b [u](t)]

respectively. With these observations, we have that the diffusion equation in one spatial dimen-

sion is formulated via optimization of the following fractional Lagrangian functional [4]:

I =
∫ x1

x0

∫ b

0

[
(ux)

2− (D0.5
− u)2

]
dtdx · · ·(8).

We may attempt to assess optimality conditions of the functional in (8) by checking if the

criteria in Theorem (1) are satisfied. Consider this functional to be set on a reflexive Sobolev

space W 1,p([0,b]× [x0,x1]) : 1 < p < ∞, wherein the constituent terms of its Lagrangian:

u 7→ (ux)
2 and u 7→ −(D0.5

− u)2 ,

are continuous. However, this function lacks convexity and coercivity. Moreover, use of the

Lax-Milgram theorem starting from the boundary-constrained diffusion equation still does not

guarantee existence and uniqueness of solution, despite its adaptable relevance in coining the

associated integral (8) to be optimized. In this event, we have to work in the Hilbert space

W 1,2([0,b]× [x0,x1]) := H1(Ω). For every v ∈ H1(Ω), we have that:

uxx = ut ⇒
∫

Ω

uxx.v =
∫

Ω

ut .v ⇒
∫

∂Ω

∂h
∂N

vdσ −
∫

Ω

ux.vx =
∫

Ω

ut .v.

In the final implication above, we have engaged Green’s integration formula with [ u|∂Ω = h ]

as the boundary constraint and N as the Gauss map on ∂Ω. Reverting to the statement of

Theorem (2), we have the continuous bilinear form [a(u,v)=
∫

Ω
ux.vx+

∫
Ω

ut .v] and the bounded

linear form 〈ϕ,v〉 =
∫

∂Ω
∂h
∂N vdσ , as crucial features. However, the form a(u,v) here is neither
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coercive nor symmetric, thwarting prospects of the diffusion equation’s link to optimization

of a classical Lagrangian. Realization of the fractional Lagrangian functional (8) requires the

fractional integration by parts formula [1], [5] to make the term [
∫

Ω
ut .v] in the given expression

for a(u,v) into a symmetric form with fractional derivatives:∫
Ω

ut .v =
∫

Ω

−[D0.5
+ ◦D0.5

− ](u).v =−
∫

Ω

D0.5
− u.D0.5

− v,

while overlooking the trace boundary linear form. (Consequences of taking this latter action

of dropping the boundary term are considered in the following ‘Computational Results’ sec-

tion.) Lax-Milgram theorem is suited to establishing well posed-ness in elliptic PDE’s but the

diffusion equation is parabolic, which is why the theorems cited hitherto do not give definitive

results on solution existence and uniqueness here, although they did for the prior elliptic exam-

ples of Laplace’s equation and Poisson’s equation. By all indications, the critical point(s) of

the functional in (8) are saddle points instead of extremals, which is another deviation from the

prior examples. To establish existence and uniqueness of solution to the diffusion equation, we

have the version of Lax-Milgram theorem for parabolic P.D.E’s, called J.L. Lion’s theorem [[2],

pp.340-341].

Speaking now of symmetries from the fractional Lagrangian, we have a similar setting to the

classical case, outlined as follows. Consider a functional I =
∫ x1

x0

∫ b

0
F(t,x,u,Dα

t u,ux) dtdx,

perturbed by one-parameter infinitesimal variations (t̃, x̃, ũ) of the independent variables (t,x)

and the dependent variable u:

(t̃, x̃, ũ) = (t,x,u)+ ε(τ,ξ ,η) .

The above variations also induce variations of the fractional derivative Dα
−u := uα

t and the

integer derivative ux, which we respectively denote

Dα

t̃ ũ = Dα
t u+ εη

α,t +o(ε2) and ũx̃ = ux + εη
x +o(ε2).

We require those variations which leave I invariant at its critical point(s) with respect to the

parameter ε at ε = 0 [5]. This is to say, we require

d
dε

[∫
Ω̃

F [(t,x,u,Dα
t u,ux)+ ε(τ,ξ ,η ,ηα,t ,ηx)]dµ̃

]
|ε=0 = 0. Hence,
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d
dε

[∫
Ω̃

F [(t,x,u,Dα
t u,ux)+ ε(τ,ξ ,η ,ηα,t ,ηx)]dµ̃

]
=

∫
Ω̃

d
dε

[
F [(t,x,u,Dα

t u,ux)+ ε(τ,ξ ,η ,ηα,t ,ηx)]dµ̃
]

=
∫

Ω̃

[
(τ.Ft +ξ .Fx +η .Fu +η

α,tFuα
t
+η

x.Fux)dµ̃
]
+∫

Ω̃

[
F [(t,x,u,Dα

t u,ux)+ ε(τ,ξ ,η ,ηα,t ,ηx)]
d

dε
[dµ̃]

]
=

∫
Ω̃

[
(τ.

∂

∂ t
+ξ .

∂

∂x
+η .

∂

∂u
+η

α,t .
∂

∂uα
t
+η

x.
∂

∂ux
)Fdµ̃

]
+∫

Ω̃

[
F [(t,x,u,Dα

t u,ux)+ ε(τ,ξ ,η ,ηα,t ,ηx)]
d

dε
[det[J]]dµ

]
.

In the above expression, [J] is the Jacobian for the coordinate transformation from the system

(t,x,u) to (t̃, x̃, ũ), and the unperturbed Lagrangian is F = F(t,x,u,Dα
t u,ux) . As such, we have

the result:

d
dε

[∫
Ω̃

F [(t,x,u,Dα
t u,ux)+ ε(τ,ξ ,η ,ηα,t ,ηx)]dµ̃

]
|ε=0

=
∫ x1

x0

∫ b

0

[
(τ.

∂

∂ t
+ξ .

∂

∂x
+η .

∂

∂u
+η

α,t .
∂

∂uα
t
+η

x.
∂

∂ux
)F +F.div(τ,ξ )

]
dt ∧dx.

For the above integral to give the desired zero result, we require a pointwise null result for the

integrand:

(
τ.

∂

∂ t
+ξ .

∂

∂x
+η .

∂

∂u
+η

α,t .
∂

∂uα
t
+η

x.
∂

∂ux

)
◦F +F.div(τ,ξ )≡ 0 · · ·(9)

Here, the vector field
(

τ.
∂

∂ t
+ξ .

∂

∂x
+η .

∂

∂u
+ηα,t .

∂

∂uα
t
+ηx.

∂

∂ux

)
is the fractional prolonga-

tion [pr(α,1)v] of an infinitesimal symmetry [v = τ
∂

∂ t + ξ
∂

∂x +η
∂

∂u ] admitted by critical points

of the functional I. The fractional prolongation coefficient in the above vector field [ηα,t ] is

obtained via the generalized chain and Leibniz rules of fractional calculus [9]. Its explicit ex-

pression relevant in our formulation for [α = 0.5] is hereby given as follows:

η0.5,t = ∂ 0.5
t η +(ηu− 1

2Dtτ)∂
0.5
t u−u∂ 0.5

t (ηu)+µ−
∞

∑
k=1

 0.5

k

Dk
t ξ .∂ 0.5−k

t (ux)

+
∞

∑
k=1

 0.5

k

∂
k
t (ηu)−

 0.5

k+1

Dk+1
t τ

∂
0.5−k
t u ,
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where µ in the above expression is given as

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

 0.5

n

 n

m

 k

r

 1
k!
.
tn−0.5(−u)r

Γ(n+0.5)
.
∂ m(uk−r)

∂ tm .
∂ n−m

∂ tn−m

(
∂ kη

∂uk

)
.

We refer the reader to [10] for details of how the above coefficient is determined.

5. COMPUTATIONAL RESULTS

Importantly, we reckon that each variational symmetry must also be a symmetry of the Euler-

Lagrange equations. For this reason, the set of simultaneous equations determined while ob-

serving the infinitesimal criterion

pr(v)[E] = 0 whenever E = 0;

for the Euler-Lagrange equations [E = 0] must also be valid for the equations of the variational

symmetries (7) and (9): for the classical and fractional Lagrangian cases above respectively. In

any event, an Euler-Lagrange equation is a formulated P.D.E without imposed boundary value

constraints. For the Poisson equation, we find by computation that if the P.D.E:

n

∑
i=1

∂ 2v
∂x2

i
= u in Ω ,

admits an infinitesimal symmetry [v = ξi
∂

∂xi
+η

∂

∂v ] then

pr(1)v[F1]+F1(Dxξ +Dtτ)+ k.F1 = 0 ,

where [F1 =
1
2 ||∇v||2− u.v] is the integrand of the Lagrangian associated to the Poisson equa-

tion, and the arbitrary constant k is ∂η

∂v for this case. At first glance, notice that the term k.F1

above appears to be anomalous to the infinitesimal criterion (7) derived previously, while be-

ginning symmetry computations from the Lagrangian.

For the diffusion equation, we find by way of computation that if [ut = uxx] admits an infinites-

imal symmetry [v = τ
∂

∂ t +ξ
∂

∂x +η
∂

∂u ] then

pr(0.5,1)v [F2]+F2.div(τ,ξ )+Q(x).F2 = 0 ,

where [F2 = (ux)
2− (D0.5

− u)2] is the integrand of the fractional Lagrangian (8) associated to the

diffusion equation, and the coefficient in the apparently anomalous term [Q(x).F2] for this case
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is given as

Q(x) = 2ηu +ξx.

Terminating our findings at this juncture would tend to suggest dearth of variational symmetries

for each case. However, further considerations from the proposition below suggest a possible

total or partial correspondence between existing variational symmetries and symmetries of the

Euler-Lagrange equations, given appropriate imposition of the trace boundary constraints.

As the proposition, a compelling cue from the above computational results is that the bound-

ary value constraints of well-posed P.D.E’s must be suitably incorporated in the associated La-

grangian functionals in order to fully realize the correspondence between variational symme-

tries and symmetries of the Euler-Lagrange equations. When attempting to obtain the associated

optimization problems from the boundary value P.D.E’s using the mechanism available in the

stated Lax-Milgram theorem (and its alternative versions) in each case, there is always a trace

boundary term, which none of the herein identified Lagrangians actually incorporate. It is fea-

sible and agreeable to concisely incorporate these boundary terms without leaving a second

integral in the Lagrangian by way of Stoke’s theorem for manifolds of finite volume:

∫
∂Ω

ρ =
∫

Ω

dρ ,

for an n-dimensional open set Ω and an (n− 1) differential form ρ . We have to also assume

relevance of the given Stoke’s theorem for weak exterior derivatives of ρ instead of just the

classically analytic functional cases, because existence and uniqueness theorems for P.D.E’s

cannot be extrapolated to spaces C∞(Ω). The formulation of Poisson’s equation is worth being

given a final thought at this point. Because its functional space of formulation is H1
0 (Ω), there

should be zero trace contribution to the Lagrangian, when starting formulation from the Euler-

Lagrange equation (that is, the P.D.E without imposed boundary value constraint). However, we

must recall that we have only equivalence classes of functions in the setting of Sobolev spaces,

meaning that v≡ 0 almost everywhere on ∂Ω in (6). Taking the weak exterior differential of the

trace value under this consideration would then cause a non-zero contribution to the Lagrangian.
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When imposed boundary values interact with the hypersurface ∂Ω appropriately, then we

have a greater chance of realizing more variational symmetries in P.D.E’s formulated from

the calculus of variations. As such, the observations made in this paper present a prospective

frontier for a meaningful and interesting interface between distribution theory, trace theory and

infinitesimal symmetry theory.

6. CONCLUSION

The factors of existence and uniqueness of solution (‘well posed-ness’), calculus compatible

with ambient functional solution spaces in the weak setting, imposed trace boundary values,

Euler-Lagrange and variational symmetries of P.D.E’s and their qualitative scientific interpre-

tations; are apparently tied together in the hereby included direction of mathematical research.

Pertaining to the question of which equations can be formulated from the calculus of variations,

an occasional answer is made available by engaging the Lax-Milgram theorem, as pointed out in

the paper. The extension of this prospect from elliptic P.D.E’s to parabolic ones via the modifi-

cations of J.L. Lion’s theorem provides a handy expansion of the scope of this endeavour, just as

the extrapolation from classical calculus of variations to fractional calculus of variations does.

Considering the often profound scientific implications of availability of group invariant equilib-

rium states in variational mechanics and beyond, the addressed underlying analytical nuances

in the requisite mathematical framework are vividly unearthed and formally documented.
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