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Abstract. This paper is aimed at developing an approach of a real life decision making problem with respect to

an weighted fuzzy soft set with preference. This paper introduces weighted fuzzy soft set and studies some of its

properties. This paper also enquires about the relations on weighted fuzzy soft sets. Finally, a real life decision

making problem in weighted fuzzy soft set is proposed.
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1. INTRODUCTION

Many real life problems in society, economics, management and engineering are uncertain

and imprecise. To dealing with uncertainty there are many theories, such as probability theory,

fuzzy set theory [2], intuitionistic fuzzy set theory [3], interval mathematics, rough set theory

[4] etc. But all these theories have their own difficulties due to lack of parametrization of the

theories. Molodtsov [1] proposed the notion of soft set theory to deal with the intrinsic flows

of the above mention theories. Maji et al. [7, 8] continued the study and gave first practical

example of the soft set in decision making problem by constructing comparison table. It is ob-

served that the application of soft set theory is in various areas, such as forecasting [5], decision
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making [7, 11] etc.

Maji et al. [9] introduced the notion of fuzzy soft set and studied some of its properties.

Mazumder-Samanta [10] generalized the concept of fuzzy soft set. Feng et al. [5] presented

a decision making problem based on fuzzy soft set. Due to its ability to parametrization, the

theory and applications of fuzzy soft set obtained lots of interest in past years.

In this paper we introduce weighted fuzzy soft set. It is more realistic as corresponding to each

parameter there is a degree of preference. Relations on weighted fuzzy soft set is defined and

some of its properties are studied. Finally an adjustable approach to decision making problem

is proposed with respect to weighted fuzzy soft set.

2. PRELIMINARIES

Here we have given some basic definitions and results which will be needed later for this

paper.

Definition 2.1. [1]. Let U be the initial universe of objects and P be the set of parameters.

Consider a mapping S : P→ P(U) where P(U) is the power set of U, then the pair (S,P) is

called a soft set over U.

Definition 2.2. [9]. Let [0, 1]U be the set of all fuzzy subsets over U and A ⊂ P where P is

the set of all parameters. Also Let S̄ : A→ [0, 1]U be a mapping then the pair (S̄,A) is said to

be a fuzzy soft set over U.

Example 2.3. Suppose for a farm house protection the owner of the farm house

wanted to buy a trained dog. There is five high quality trained dogs are available

for consideration U = {t1, t2, t3, t4, t5} and A ⊂ P where P is the set of parameters and

A = {p1 = Temperment, p2 = Life span, p3 = Medical issues}. Then the fuzzy soft sets are the

collection of followings.

S̄(p1) = {(t1,0.6),(t2,0.3),(t3,0.69),(t4,0.5),(t5,0.8)}

S̄(p2) = {(t1,0.5),(t2,0.9),(t3,0.6),(t4,0.4),(t5,0.69)}

S̄(p3) = {(t1,0.7),(t2,0.79),(t3,0.69),(t4,0.3),(t5,0.49)}



A DECISION MAKING APPROACH BASED ON WEIGHTED FUZZY SOFT SET 3

p1 p2 p3

t1 0.6 0.5 0.7

t2 0.3 0.9 0.8

t3 0.7 0.6 0.7

t4 0.5 0.4 0.3

t5 0.8 0.7 0.5

TABLE 1. Tabular representation of the fuzzy soft set. Now a computation table

is formed for the 0.6 level soft set (i.e, at least 60 % capability) with respect to

each parameter.

p1 p2 p3

t1 1 0 1

t2 0 1 1

t3 1 1 1

t4 0 0 0

t5 1 1 0

TABLE 2. Tabular representation of 0.6 level soft level. Clearly the owner of the

farm house buy the dog t3 as it satisfies all the paprameters.

Definition 2.4. ([9]). Intrersection of two fuzzy soft sets (S̄,A) and (T̄ ,B) over a common

universe U is the fuzzy soft set (Ī,C) where C = A∩B, and ∀e∈C, Ī(e) = S̄(e)∩ T̄ (e). We write

(S̄,A)∩̄(T̄ ,B) = (Ī,C).

Definition 2.5. ([9]). Union of two fuzzy soft sets (S̄,A) and (T̄ ,B) over a common universe

U is the fuzzy soft set (J̄,C) where C = A∪B, and ∀e ∈C,

J̄(e) =


S̄(e), if e ∈ A−B

T̄ (e), if e ∈ B−A

S̄(e)∪ T̄ (e), if e ∈ A∩B.

We write (S̄,A)∪̄(T̄ ,B) = (J̄,C).
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Definition 2.6. [9]. For two fuzzy soft sets (S̄,A) and (T̄ ,B) over a common universe U, we

say that (S̄,A) is a fuzzy soft subset of (T̄ ,B) if

(i) A⊂ B, and

(ii) ∀e ∈ A, S̄(e) is a fuzzy subset of T̄ (e).

It is denoted by (S̄,A)⊂̄(T̄ ,B).

Definition 2.7. ([12]). A binary operation ∗ : [0,1]× [0,1] → [0,1] is continuous t-norm

if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative ,

(ii) ∗ is continuous ,

(iii) a∗1 = a, ∀a ∈ [0,1],

(iv) a∗b≤ c∗d if a≤ c , b≤ d, a, b, c, d ∈ [0, 1].

Some examples of continuous t-norm are:

i)a ∗ b = ab,

ii)a ∗ b = min{a,b},

iii)a ∗ b = max{a+b−1,0}.

Definition 2.8. ([12]). A binary operation � : [0,1]× [0,1]→ [0,1] is continuous t-conorm

if � satisfies the following conditions :

(i) � is commutative and associative ,

(ii) � is continuous ,

(iii) a�0 = a, ∀a ∈ [0,1],

(iv) a�b≤ c�d whenever a≤ c, b≤ d and a, b, c, d ∈ [0,1 ].

Some examples of continuous t-conorm are:

i)a � b = a+b−ab,

ii)a � b = max{a,b},

iii)a � b = min{a+b,1}.
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3. WEIGHTED FUZZY SOFT SETS

Throughout this paper, U be the initial universe, and P be the set of parameters related to the

elements in U , and A,B,C ⊆ P and α,β ,γ are the fuzzy subsets of A,B,C respectively.

Definition 3.1. Let F̄ : A→ [0, 1]U be a mapping and α be preference fuzzy subset of A.

Then consider the mapping F̄α(p) : A→ [0, 1]U × [0,1] where F̄α(p) = (F̄ (p), α(p))

=
(
{(x, µ

F̄ (p)
(x)) : x ∈U}, α(p)

)
is called a weighted fuzzy soft set over (U,P)

Example 3.2. Suppose 5 shortlisted students are under consideration for best stu-

dent of an engineering college. Let U = {b1,b2,b3,b4,b5} and A ⊂ P where P is

the set of parameters and A = {p1 = problem solving ability, p2 = innovative idea, p3 =

ability for application to an idea }. If we consider α : A→ [0,1] by α(p1) = 0.6, α(p2) =

0.5, α(p3) = 0.7

We now define F̄α as follows:

F̄ (p1) = ({(b1,0.6),(b2,0.3),(b3,0.7),(b4,0.5),(b5,0.8)}, 0.6)

F̄ (p2) = ({(b1,0.5),(b2,0.9),(b3,0.6),(b4,0.4),(b5,0.7)}, 0.5)

F̄ (p3) = ({(b1,0.7),(b2,0.8),(b3,0.7),(b4,0.3),(b5,0.5)}, 0.7)

Then clearly F̄α will be called weighted fuzzy soft set.

Definition 3.3. Consider two weighted fuzzy soft sets F̄α and Ḡβ over the soft universe

(U,P). Then F̄α is called a weighted fuzzy soft subset of Ḡβ if the following conditions are

satisfied.

(i) α is a fuzzy subset of β ,

(ii) A⊆ B, and

(iii) µF̄ (p)(x) ≤ µḠ (p)(x),∀x ∈Uand p ∈ A i.e., F̄ (p) is a fuzzy subset of Ḡ (p),∀p ∈ A. It is

denoted by F̄α⊆̄Ḡβ

Example 3.4. Suppose F̄β be a weighted fuzzy soft set over the same universe as in the

previous example and Ḡβ be defined as the following manner:

Ḡβ (p1) = ({(b1,0.7),(b2,0.5),(b3,0.8),(b4,0.7),(b5,0.9)}, 0.7)
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Ḡβ (p2) = ({(b1,0.8),(b2,0.9),(b3,0.65),(b4,0.6),(b5,0.8)}, 0.6)

Ḡβ (p3) = ({(b1,0.75),(b2,0.85),(b3,0.7),(b4,0.5),(b5,0.6)}, 0.75)

Ḡβ (p4) = ({(b1,0.6),(b2,0.7),(b3,0.5),(b4,0.65),(b5,0.7)}, 0.5)

where β = {p1, p2, p3, p4}, p1, p2, p3 are same as in the previous exmple and p4 stands for

‘good academic score’. Now if we take F̄α as in the previous example and Ḡβ then we see that

F̄α⊆̄Ḡβ . i.e. F̄α is a weighted fuzzy soft subset of Ḡβ

Definition 3.5. Let F̄α and Ḡβ be two weighted fuzzy soft sets over the soft set universe

(U,P). Then the intersection of F̄α and Ḡβ is denoted by F̄α ∩̄Ḡβ and is defined by a weighted

fuzzy soft set H̄γ where H̄γ : A∩B→ F(U)× [0,1] is a function defined by

H̄γ(p) =
(
{(x, µ

H̄ (p)
(x), : x ∈ U}, γ(p)

)
where µ

H̄ (p)
(x) = µ

F̄ (p)
(x)∗µ

Ḡ (p)
(x) and γ(p) = α(p)∗β (p)

Example 3.6. Consider two weighted fuzzy soft sets F̄α and Ḡβ in the previous example and

suppose the t-norm ∗ is defined by a∗b = ab. Here A∩B = {p1, p2, p3}. Then

(F̄α ∩̄Ḡβ )(p1) = ({(b1,0.42),(b2,0.15),(b3,0.56),(b4,0.35),(b5,0.22)}, 0.42)

(F̄α ∩̄Ḡβ )(p2) = ({(b1,0.4),(b2,0.81),(b3,0.39),(b4,0.24),(b5,0.56)}, 0.525)

(F̄α ∩̄Ḡβ )(p3) = ({(b1,0.525),(b2,0.68),(b3,0.49),(b4,0.195),(b5,0.35)}, 0.3)

Definition 3.7. Let F̄α and Ḡβ be two weighted fuzzy soft sets over the soft set universe

(U,P). Then the union of F̄α and Ḡβ is denoted by F̄α ∪̄Ḡβ and is defined by a weighted fuzzy

soft set H̄γ where H̄γ : A∪B→ F(U)× [0,1] is a function defined by

∀x ∈ U,

H̄γ(p) =



(
{(x, µ

F̄ (p)
(x)}, γ(p)

)
, if p ∈ A−B(

{(x, µ
Ḡ (p)

(x)}, γ(p)
)
, if p ∈ B−A(

{(x, µ
H̄ (p)

(x)}, γ(p)
)
, if p ∈ A∩B.

where µ
H̄ (p)

(x) = µ
F̄ (p)

(x)�µ
Ḡ (p)

(x) and γ(p) = α(p)�β (p)

Example 3.8. Again consider the above example in which the two weighted fuzzy soft

sets F̄α and Ḡβ are defined. Also A∪B = {p1, p2, p3, p4}. Suppose t- conorm is defined as
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a�b = a+b−ab. Then

(F̄α ∪̄Ḡβ )(p1) = ({(b1,0.88),(b2,0.65),(b3,0.94),(b4,0.85),(b5,0.98)}, 0.88)

(F̄α ∪̄Ḡβ )(p2) = ({(b1,0.9),(b2,0.99),(b3,0.86),(b4,0.76),(b5,0.94)}, 0.925)

(F̄α ∪̄Ḡβ )(p3) = ({(b1,0.925),(b2,0.97),(b3,0.91),(b4,0.65),(b5,0.8)}, 0.8)

(F̄α ∪̄Ḡβ )(p4) = ({(b1,0.6),(b2,0.7),(b3,0.5),(b4,0.65),(b5,0.7)}, 0.5)

Proposition 3.9. Let F̄α , Ḡβ and H̄γ be any three weighted fuzzy soft sets over (U,P). Then

(i) F̄α ∪̄ Ḡβ = Ḡβ ∪̄F̄α . (Commutative Property)

(ii) F̄α ∩̄ Ḡβ = Ḡβ ∩̄F̄α . (Commutative Property)

(iii) F̄α ∪̄(Ḡβ ∪̄H̄γ) = (F̄α ∪̄ Ḡβ )∪̄H̄γ . (Associative Property)

(iv) F̄α ∩̄(Ḡβ ∩̄H̄γ) = (F̄α ∩̄ Ḡβ )∩̄H̄γ . (Associative Property)

Proof. The proof is obvious as t-norm function and t-conorm functions are commutative and

associative.

4. RELATIONS ON WEIGHTED FUZZY SOFT SETS

Throughout this section F̄α : A→ F(U) and Ḡβ : B→ F(U) two weighted fuzzy soft sets

over (U,P).

Definition 4.1. Suppose F̄α and Ḡβ be two weighted fuzzy soft sets over (U,P). By a

weighted fuzzy soft relation R from F̄α to Ḡβ we mean a function R : A×B→ F(U)× [0,1]

such that

R(a,b)⊆F̄α(a)∩̄Ḡβ (b), ∀(a,b) ∈ A×B.

Definition 4.2. Let R be a weighted fuzzy soft relation from F̄α to Ḡβ . Then the inverse rela-

tion of R from Ḡβ to F̄α is denoted by R−1 and is defined by R−1(b,a) = R(a,b), ∀(a,b) ∈

A×B.

If R is a weighted fuzzy soft relation from F̄α to Ḡβ then R−1 is also a weighted fuzzy soft

relation from Ḡβ to F̄α .
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Theorem 4.3. If R1 and R2 are weighted fuzzy soft relations from F̄α to F̄β ,

(i) (R−1
1 )
−1

= R1.

(ii) R1 ⊆R2 ⇒ R−1
1 ⊆ R−1

2 .

Proof. Let (a,b) ∈ A×B.

Then (i) R1(a,b) = R−1
1 (b,a) = (R−1

1 )
−1
(a,b).

Therefore (R−1
1 )
−1

= R1.

And (ii) R1(a,b)⊆R2(a,b)

⇒ (R−1
1 )
−1
(a,b)⊆ (R−1

2 )
−1
(a,b)

⇒ R−1
1 (b,a)⊆R−1

2 (b,a).

Therefore, R−1
1 ⊆R−1

2 .

Definition 4.4. Let R1 and R2 be two weighted fuzzy soft relations from F̄α to Ḡβ and Ḡβ

to H̄γ respectively. Then the composition of two weighted fuzzy soft relations from F̄α to H̄γ is

denoted by R1 ◦R2 and defined as (R1 ◦R2)(a,c) = ∪̄
b∈B

(R1(a,b)∩̄R2(b,c)) ,

∀(a,c) ∈ A×C

Theorem 4.5. Let R1 and R2 be two weighted fuzzy soft relations from F̄α to Ḡβ and Ḡβ to

H̄γ respectively. Then the composition of this two weighted fuzzy soft relations i.e. (R1 ◦R2)

is also a weighted fuzzy soft relation.

Proof. We know that

R1(a,b)⊆ F̄α(a)∩̄Ḡβ (b)

= {({x, µ
F̄ (a)

(x)∗µ
Ḡ (b)

(x)}, α(a)∗β (b)) : x ∈U}, ∀(a,b) ∈ A×B.

R2(b,c)⊆ Ḡβ (b)∩̄H̄γ(c)

= {({x, µ
Ḡ (b)

(x)∗µ
H̄ (c)

(x)}, β (b)∗ γ(c)) : x ∈U}, ∀(b,c) ∈ B×C.

Therefore (R1 ◦R2)(a,c) = ∪̄
b∈B

(R1(a,b)∩̄R2(b,c))

= ∪̄
b∈B
{({x, (µ

F̄ (a)
(x)∗µ

Ḡ (b)
(x)) ∗ (µ

Ḡ (b)
(x)∗µ

H̄ (c)
(x))}, (α(a)∗β (b)) ∗ (β (b)∗ γ(c))) : x ∈

U}, ∀(a,c) ∈ A×C .

Now (µ
F̄ (a)

(x)∗µ
Ḡ (b)

(x)) ∗ (µ
Ḡ (b)

(x)∗µ
H̄ (c)

(x))

≤ µ
F̄ (a)

(x)∗ 1∗ 1∗µ
H̄ (c)

(x)

= µ
F̄ (a)

(x)∗ 1 ∗µ
H̄ (c)

(x)
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= µ
F̄ (a)

(x)∗µ
H̄ (c)

(x)

Again, (α(a)∗β (b)) ∗ (β (b)∗ γ(c))

≤ α(a)∗ 1∗ 1∗ γ(c)

= α(a)∗ 1 ∗ γ(c)

= α(a)∗ γ(c).

Therefore ∪̄
b∈B

(R1(a,b)∩̄R2(b,c))⊆ F̄α ∩̄H̄γ .

Hence R1 ◦R2 is a weighted fuzzy soft relation from F̄α to H̄γ .

Theorem 4.6. Let R1 and R2 be two weighted fuzzy soft relations from F̄α to Ḡβ and Ḡβ to

H̄γ respectively. Then (R1 ◦R2)
−1 = R−1

2 ◦R
−1
1

Proof. (R1 ◦R2)
−1(c,a) = (R1 ◦R2)(a,c)

= ∪̄
b∈B

(R1(a,b)∩̄R2(b,c)) = ∪̄
b∈B

(R2(b,c)∩̄R1(a,b))

= ∪̄
b∈B

(
R−1

2 (c,b)∩̄R−1
1 (b,a)

)
= (R−1

2 ◦R
−1
1 )(c,a).

where a ∈ A, b ∈ B, c ∈C.

Therefore (R1 ◦R2)
−1 = R−1

2 ◦R
−1
1 .

5. AN APPLICATION OF WEIGHTED FUZZY SOFT SET IN A DAILY LIFE DECISION

MAKING PROBLEM

In our daily life based problem, we can use application of weighted fuzzy soft set. Suppose

a person wants to buy a car depending on some parameters. Here we can help the person to

choose the best car for the person according to his preference.

Suppose initially the person shortlisted six cars U = {v1,v2,v3,v4,v5,v6} and the set of decesion

parameters is P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} where each pi (i = 1,2, ...,11)

stands respectively for

p1 = price of the car nearing the budget of the person,

p2 = chosen color of the car,

p3 = best resale value of the car,

p4 = larger interior space,

p5 = good safety features,

p6 = nearby service centre,
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p7 = most mileage per litre,

p8 = good exterior design or looks of the car,

p9 = minimum maintenence cost per year,

p10 = brand or company,

p11 = smart technology.

Suppose, that person will choose a car depending on the parameters p1, p4, p5, p7, p8, p10,

i.e., A = {p1, p4, p5, p7, p8, p10}.

Consider the fuzzy subset α : A→ [0,1] depending upon the preference of that person is given

below

α(p1) = 0.7, α(p4) = 0.5, α(p5) = 0.8, α(p7) = 0.6, α(p8) = 0.6, α(p10) = 0.4

Let us consider a weighted fuzzy soft set F̄α and it’s approximation is given below.

F̄α(p2) = ({(v1,0.7), (v2,0.6), (v3,0.8), (v4,0.7), (v5,0.5), (v6,0.9)}, 0.7)

F̄α(p4) = ({(v1,0.8), (v2,0.4), (v3,0.44), (v4,0.7), (v5,0.6), (v6,0.9)}, 0.5)

F̄α(p6) = ({(v1,0.9), (v2,0.8), (v3,0.7), (v4,0.7), (v5,0.64), (v6,0.7)}, 0.8)

F̄α(p7) = ({(v1,0.6), (v2,0.7), (v3,0.8), (v4,0.7), (v5,0.9), (v6,0.8)}, 0.6)

F̄α(p9) = ({(v1,0.5), (v2,0.6), (v3,0.7), (v4,0.54), (v5,0.7), (v6,0.8)}, 0.6)

F̄α(p10) = ({(v1,0.6), (v2,0.5), (v3,0.8), (v4,0.7), (v5,0.6), (v6,0.7)}, 0.4)

Algorithm:

(i) Input a fuzzy soft set in tabular form.

(ii) Give a threshold i.e. give a different level of soft set (or Choose mid-level soft set or input a

threshold fuzzy set or input top-bottom-level decision rule or input top-top-level decision rule

or input bottom-bottom-level decision rule) to make decision.

(iii) Compute the level soft set with respect to the threshold fuzzy soft set (or the mid-level soft

set or the top-bottom-level soft set or the top-top-level soft set or the bottom-bottom-level soft

set) in tabular form.

(iv) Compute the weighted score of vi, ∀ i in tabular form.

(v) If the maximum score occurs in k-th row then that person will buy the car vk.
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(vi) If k has more than one value then one of vk may be chosen.

p1 p4 p5 p7 p8 p10

v1 0.7 0.8 0.9 0.6 0.5 0.6

v2 0.6 0.4 0.8 0.7 0.6 0.5

v3 0.8 0.44 0.7 0.8 0.7 0.8

v4 0.7 0.7 0.7 0.7 0.54 0.7

v5 0.5 0.6 0.64 0.9 0.7 0.6

v6 0.9 0.9 0.7 0.8 0.8 0.7

TABLE 3. Tabular representation of the weighted fuzzy soft set

Suppose, there are given threshold of different level of soft sets of (Fα ,A) as follows.

Threshold of p1 = 0.8,

threshold of p4 = 0.7,

threshold of p5 = 0.85,

threshold of p7 = 0.7,

threshold of p8 = 0.7,

threshold of p10 = 0.5

Therefore, the tabular representation of level soft set depending on the above thresholds is:

p1 p4 p5 p7 p8 p10 αi

v1 0 1 1 0 0 1 3

v2 0 0 0 0 0 1 1

v3 1 0 0 1 1 1 4

v4 0 1 0 0 0 1 2

v5 0 0 0 1 1 1 3

v6 1 1 0 1 1 1 5

TABLE 4. Tabular representation of level soft set with respect to above thresholds
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(p1,0.7) (p4,0.5) (p5,0.8) (p7,0.6) (p8,0.6) (p10,0.4) Score

v1 0 0.5 0.8 0 0 0.4 1.7

v2 0 0 0 0 0 0.4 0.4

v3 0.7 0 0 0.6 0.6 0.4 2.3

v4 0 0.5 0 0 0 0.4 0.9

v5 0 0 0 0.6 0.6 0.4 1.6

v6 0.7 0.5 0 0.6 0.6 0.4 2.8

TABLE 5. Decision table

Thus here we see that the score of the car v6 is maximum. So the person will buy the car

v6 otherwise his next better option will be v3. It is obvious that for different problem we use

different type of lavel soft sets, the choice depends on the nature of data under consideration

and nature of problem under consideration.
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