Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 1, 177-184

ISSN: 1927-5307

ON THE SET OF TRANSITIVE INDICES FOR REDUCIBLE TOURNAMENT MATRICES

CHEN XIAOGEN

School of Information Science and Technology, Zhanjiang Normal University, Zhanjiang Guangdong 524048, PR China

Abstract

We obtain the transitive indices set of the reducible tournament matrices of order n. Keywords: Boolean matrix,Reducible tournament matrix,Primitive exponent, transitive index.

2000 AMS Subject Classification: 05C20, 15A18, 15B34, 15B48

1. Introduction

A Boolean matrix is a matrix over the binary Boolean algebra $\{0,1\}$, where the (Boolean)addition and (Boolean) multiplication in $\{0,1\}$ are defined as $a+b=\max \{a, b\}, a b=$ $\min \{a, b\}$ (we assume $0<1$). Let \mathfrak{B}_{n} denote the set of all $n \times n$ matrices over the Boolean algebra $\{0,1\}$.

For $A, B \in \mathfrak{B}_{n}$, if there is a permutation matrix P such that $P B P^{T}=A$, then we say B is permutation similar to A (written $B \sim A$).

A matrix $B \in \mathfrak{B}_{n}$ is reducible if $B \sim\left(\begin{array}{cc}B_{1} & 0 \\ C & B_{2}\end{array}\right)$, where B_{1} and B_{2} are square(nonvacuous), and B is irreducible if it is not reducible.

A matrix $B \in \mathfrak{B}_{n}$ is primitive if there is a nonnegative integer k such that $B^{k}=J$,the all-ones matrix. The least such k is called the exponent of B, denoted by $\gamma(B)$.

A matrix $B \in \mathfrak{B}_{n}$ is called transitive if $B^{2} \leq B$. Denote by $t(B)$ the least integer $s \geqq 1$ such that B^{s} is transitive, i.e. $B^{2 s} \leq B^{s}$.

In 1970, \breve{S}.Schwarz[1] introduced a concept of the transitive index and gave some results.
A matrix $A=\left[a_{i j}\right] \in \mathfrak{B}_{n}$ is called tournament matrix if $a_{i i}=0(i=1,2, \ldots, n)$ and $a_{i j}+a_{j i}=1(1 \leq i<j \leq n)$. Let \mathfrak{T}_{n} denote the set of all $n \times n$ tournament matrices. Notice that a matrix $T_{n} \in \mathfrak{T}_{n}$ satisfies the equation

$$
A_{n}+A_{n}^{T}=J_{n}-I_{n}
$$

where J_{n} is the matrix of all 1 's and I_{n} is the identity matrix.
Certain properties of tournament matrix have been investigated in $[2,3,5,6]$.

2. Preliminaries

The notation and terminology used in this paper will basically follow those in [4]. For convenience of the reader, we will include here the necessary definitions and basic results in $[5,6]$.

$$
\begin{aligned}
& \text { in [5,6]. } \\
& \text { Let } \bar{T}_{n}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0 & 0 & 1 \\
1 & \cdots & \cdots & 1 & 0 & 0
\end{array}\right)_{n \times n}(n \geq 3), \mathbb{T}_{l}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0
\end{array}\right)_{l \times l} \\
& \mathcal{T}_{3 m}=\left(\begin{array}{cccc}
\bar{T}_{3} & 0 & \cdots & 0 \\
J & \bar{T}_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
J & \cdots & J & \bar{T}_{3}
\end{array}\right), \mathcal{I}_{3 m}=\left(\begin{array}{cccc}
I_{3} & 0 & \cdots & 0 \\
J & I_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
J & \cdots & J & I_{3}
\end{array}\right),
\end{aligned}
$$

where J is the matrix of all 1^{\prime} s, I_{3} is the identity matrix of order 3 .

Lemma 2.1 ([3]) Let $T_{n} \in \mathfrak{T}_{n}$. Then

$$
T_{n} \sim\left(\begin{array}{ccccc}
A_{1} & 0 & 0 & \cdots & 0 \\
J & A_{2} & 0 & \cdots & 0 \\
J & J & A_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J & J & J & \cdots & A_{k}
\end{array}\right),
$$

where all the blocks J below the diagonal are matrices of 1 's,and the diagonal blocks A_{1}, \cdots, A_{k} are irreducible components of T_{n}. Let A_{i} be $n_{i} \times n_{i}$ matrix, $1 \leq i \leq k, 1 \leq$ $n_{i} \leq n$. Then k and n_{i} are uniquely determined by T_{n}.

Lemma2.2([6]) If $T_{n} \in \mathfrak{T}_{n}$ and $n \geq 4$. Then T_{n} is primitive if and only if T_{n} is irreducible.

It is obvious that 3×3 tournament matrix is not primitive, the primitive exponent of 4×4 irreducible tournament matrix is 9 . For $n>4$, we have

Lemma 2.3([6]) If $T_{n} \in \mathfrak{T}_{n}$ and $n \geq 5$, then $\gamma\left(T_{n}\right) \leq n+2$.

Lemma2.4([5]) Let $n \geq 5$, then $\gamma\left(\bar{T}_{n}\right)=n+2$.

Lemma2.5([5]) If $n \geq 5, T_{n} \in \mathfrak{T}_{n}$ is irreducible. Then $\gamma\left(T_{n}\right)=n+2$ if and only if T_{n} is isomorphic to \bar{T}_{n}.

Lemma2.6([6]) If $3 \leq e \leq n+2$ and $n \geq 6$, then there exists an irreducible $T_{n} \in \mathfrak{T}_{n}$ such that $\gamma\left(T_{n}\right)=e$.

3. Main results

It is evident that if $A \in \mathfrak{B}_{n}$ is primitive digraph, then $t(A)=\gamma(A)$. For primitive tournament matrix T_{n}, its primitive exponent is determined by Moon and Pullman in [6].

In this paper we obtain results on transitive index of reducible tournament matrices.

Theorem 3.1 Let $T_{n} \in \mathfrak{T}_{n}$ be reducible matrix and $n \geq 8$. Then there exists a positive integer $s \leq n+1$ such that

$$
T_{n}^{s} \sim A^{\star}=\left(\begin{array}{ccccc}
B_{1} & 0 & 0 & \cdots & 0 \\
J & B_{2} & 0 & \cdots & 0 \\
J & J & B_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J & J & J & \cdots & B_{g}
\end{array}\right)
$$

where all the blocks J below the diagonal are matrices of 1's, and the diagonal blocks B_{i} is zero matrix of order l_{i}, or $\mathcal{I}_{3 q_{i}}$, or matrix of 1 's of order $m_{i}\left(4 \leq m_{i}<n\right), 1 \leq i \leq g$. $0 \leq 3 q_{i}, l_{i} \leq n$, and q_{i}, l_{i}, m_{i}, g are uniquely determined by T_{n}.

Proof. It is obvious that the irreducible tournament matrix of order 1 is zero matrix of order 1 , the irreducible tournament matrix of order 2 is not exists, and the irreducible tournament matrix of order 3 is isomorphic to \bar{T}_{3}. Hence, in Lemma2.1, the diagonal blocks A_{i} is zero matrix of order 1 , or \bar{T}_{3},or irreducible tournament matrix of order $m_{i}\left(4 \leq m_{i}<n\right)$.

Let $A_{i} \neq(0)_{1 \times 1}$ (if there exists) , $A_{i+1}=A_{i+2}=\ldots=A_{i+l_{i}}=(0)_{1 \times 1}, A_{i+l_{i}+1} \neq(0)_{1 \times 1}($ if there exists). Then

$$
\left(\begin{array}{cccc}
A_{i+1} & 0 & \cdots & 0 \\
J & A_{i+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
J & J & \cdots & A_{i+l_{i}}
\end{array}\right)=\mathbb{T}_{l_{i}}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0
\end{array}\right)_{l_{i} \times l_{i}}
$$

Let $A_{j} \neq \bar{T}_{3}$ (if there exists), $A_{j+1}=A_{j+2}=\ldots=A_{j+q_{i}}=\bar{T}_{3}, A_{j+q_{i}+1} \neq \bar{T}_{3}$ (if there exists). Then

$$
\left(\begin{array}{cccc}
A_{j+1} & 0 & \cdots & 0 \\
J & A_{j+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
J & J & \cdots & A_{j+q_{i}}
\end{array}\right)=\mathcal{T}_{3 q_{i}}=\left(\begin{array}{cccc}
\bar{T}_{3} & 0 & \cdots & 0 \\
J & \bar{T}_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
J & \cdots & J & \bar{T}_{3}
\end{array}\right)_{3 q_{i} \times 3 q_{i}}
$$

There exists that one among $n-1, n, n+1$ is multiple of 3 , and set such number be s. Since T_{n} is Boolean matrix of reducible tournament with order $n(\geq 8), \mathcal{T}_{3 q_{i}}{ }^{s}=\mathcal{I}_{3 q_{i}}, \mathbb{T}_{l_{i}}{ }^{s}=$ $(0)_{l_{i} \times l_{i}}$. If A_{i} is irreducible tournament matrix of order $m_{i}\left(4 \leq m_{i}<n\right)$ in Lemma2.1. Then $A_{i}{ }^{s}=J$. By Lemma2.3, the conclusion established and we complete the proof.

Note that $t\left(\mathbb{T}_{n}\right)=1, t\left(\mathcal{T}_{3 n}\right)=3, n>1$.
Let $T_{n} \in \mathfrak{T}_{n}$ be reducible matrix. Then Hence $T_{2} \sim \mathbb{T}_{2}, T_{3} \sim \mathbb{T}_{3}$. We have $t\left(T_{2}\right)=$ $t\left(T_{3}\right)=1$.

For T_{4}. By Lemma 2.1, $T_{4} \sim \mathbb{T}_{4}$ or $T_{4} \sim \bar{A}_{4}=\left(\begin{array}{cc}0 & 0 \\ J & \bar{T}_{3}\end{array}\right)$, or $T_{4} \sim \tilde{A}_{4}=\left(\begin{array}{cc}\bar{T}_{3} & 0 \\ J & 0\end{array}\right)$. Since $t\left(\mathbb{T}_{4}\right)=1, t\left(\bar{A}_{4}\right)=t\left(\tilde{A}_{4}\right)=3$, hence $t\left(T_{4}\right) \leq 3$.

For T_{5}. By Lemma 2.2, $T_{5} \sim \mathbb{T}_{5}$, or $T_{5} \sim \tilde{A}_{5}=\left(\begin{array}{cc}\mathbb{T}_{2} & 0 \\ J & \bar{T}_{3}\end{array}\right)$, or $T_{5} \sim \hat{A}_{5}=$ $\left(\begin{array}{cc}\bar{T}_{3} & 0 \\ J & \mathbb{T}_{2}\end{array}\right)$, or $T_{5} \sim \hat{\hat{A}_{5}}=\left(\begin{array}{ccc}\mathbb{T}_{1} & 0 & \\ J & \bar{T}_{3} & 0 \\ J & J & \mathbb{T}_{1}\end{array}\right)$, or $T_{5} \sim \bar{A}_{5}=\left(\begin{array}{cc}0 & 0 \\ J & B_{4}\end{array}\right)$, or $T_{5} \sim \check{A}_{5}=$ $\left(\begin{array}{cc}B_{4} & 0 \\ J & 0\end{array}\right)$, where B_{4} is primitive tournament matrix of order 4. Clearly, $t\left(\mathbb{T}_{5}\right)=1$, $t\left(\tilde{A}_{5}\right)=t\left(\hat{A}_{5}\right)=t\left(\hat{A}_{5}\right)=3, t\left(\bar{A}_{5}\right)=t\left(\check{A}_{5}\right)=9$. Hence $t\left(T_{5}\right) \leq 9$.

Similarly, $t\left(T_{i}\right) \leq 9, i=6$, 7. Let $\bar{A}_{6}=\left(\begin{array}{cc}\mathbb{T}_{2} & 0 \\ J & B_{4}\end{array}\right), \bar{A}_{7}=\left(\begin{array}{cc}\mathbb{T}_{3} & 0 \\ J & B_{4}\end{array}\right)$, where B_{4} is primitive tournament matrix of order 4. It is easy to see that $t\left(\bar{T}_{6}\right)=t\left(\bar{T}_{7}\right)=9$.

For $n \geq 8$, we have

Theorem 3.2 Let $T_{n} \in \mathfrak{T}_{n}$ be reducible matrix and $n \geq 8$. Then $t\left(T_{n}\right) \leq n+1$.

Proof. By Theorem 3.1, there exists a positive integer $s \leq n+1$ such that

$$
T_{n}^{s} \sim A^{\star}=\left(\begin{array}{ccccc}
B_{1} & 0 & 0 & \cdots & 0 \\
J & B_{2} & 0 & \cdots & 0 \\
J & J & B_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J & J & J & \cdots & B_{g}
\end{array}\right)
$$

where all the blocks J below the diagonal are matrices of 1 's, and the diagonal blocks B_{i} is zero matrix of order l_{i}, or $\mathcal{I}_{3 q_{i}}$, or matrices of 1 's of order $m_{i}\left(4 \leq m_{i}<n\right), 1 \leq i \leq g$. $0 \leq 3 q_{i}, l_{i} \leq n$, and q_{i}, l_{i}, m_{i}, g are uniquely determined by T_{n}. Obviously, $\left(A^{\star}\right)^{2} \leq A^{\star}$. A^{\star} is transitive matrix. Hence $t\left(T_{n}\right)=t\left(A^{\star}\right) \leq s \leq n+1$. This completes the proof.
Let $T_{n}^{(1)}=\left(\begin{array}{cc}0 & 0 \\ J & \bar{T}_{n-1}\end{array}\right), \tilde{T}_{n}^{(1)}=\left(\begin{array}{cc}\bar{T}_{n-1} & 0 \\ J & 0\end{array}\right), T_{n}^{(2)}=\left(\begin{array}{cc}\bar{T}_{3} & 0 \\ J & \bar{T}_{n-3}\end{array}\right)$ and $\tilde{T}_{n}^{(2)}=$ $\left(\begin{array}{cc}\bar{T}_{n-3} & 0 \\ J & \bar{T}_{3}\end{array}\right)$. Then $T_{n}^{(1)}, \tilde{T}_{n}^{(1)}, T_{n}^{(2)}, \tilde{T}_{n}^{(2)} \in \mathfrak{T}_{n}$. By Lemma2.5, $t\left(\bar{T}_{n-1}\right)=n-1+2=$ $n+1(n \geq 8)$. Hence
$t\left(T_{n}^{(1)}\right)=t\left(\tilde{T}_{n}^{(1)}\right)=t\left(\bar{T}_{n-1}\right)=n+1(n \geq 8)$.

Theorem 3.3 Let $T_{n} \in \mathfrak{T}_{n}$ be reducible matrix and $n \geq 8$. Then
(1) If $n \equiv 0$ or $1(\bmod 3)$. Then $t\left(T_{n}\right)=n+1$ if and only if T_{n} is isomorphic to $T_{n}^{(1)}$ or $\tilde{T}_{n}^{(1)}$.
(2) If $n \equiv 2(\bmod 3)$. Then $t\left(T_{n}\right)=n+1$ if and only if T_{n} is isomorphic to $T_{n}^{(1)}$, or $\tilde{T}_{n}^{(1)}$, or $T_{n}^{(2)}$, or $\tilde{T}_{n}^{(2)}$.

Proof. (1) Suppose $n \equiv 0$ or $1(\bmod 3)$. If T_{n} is isomorphic to $T_{n}^{(1)}$ or $\tilde{T}_{n}^{(1)}$, by Theorem 3.3, $t\left(T_{n}\right)=t\left(T_{n}^{(1)}\right)=t\left(\tilde{T}_{n}^{(1)}\right)=n+1$.

Conversely, suppose $t\left(T_{n}\right)=n+1$. If there exists B_{i} that is $\mathcal{I}_{3 q_{i}}, 1 \leq i \leq g, 1 \leq 3 q_{i}$, then set $s=n$ if $n \equiv 0(\bmod 3)$ and $s=n-1$, if $n \equiv 1(\bmod 3)$,in Theorem 3.1. Hence s is
multiple of 3. By Theorem 3.2, $s<n+1$, and $t\left(T_{n}\right) \leq s<n+1$. This is impossible. By Lemma 2.5 and Theorem 3.1, $T_{n} \sim\left(\begin{array}{cc}0 & 0 \\ J & A_{0}\end{array}\right)$, or $T_{n} \sim\left(\begin{array}{cc}A_{0} & 0 \\ J & 0\end{array}\right)$, where J is matrices of 1's, A_{0} is irreducible tournament matrix of order $n-1$. By Lemma 2.5, we have that T_{n} is isomorphic to $T_{n}^{(1)}$ or $\tilde{T}_{n}^{(1)}$.
(2) Suppose $n \equiv 2(\bmod 3)$. If T_{n} is isomorphic to $T_{n}^{(1)}$, or $\tilde{T}_{n}^{(1)}$, or $T_{n}^{(2)}$, or $\tilde{T}_{n}^{(2)}$, then $t\left(T_{n}\right)=t\left(T_{n}^{(1)}\right)=t\left(\tilde{T}_{n}^{(1)}\right)=n+1$. It is easy to verify that $t\left(T_{n}\right)=t\left(T_{n}^{(2)}\right)=t\left(\tilde{T}_{n}^{(2)}\right)=n+1$. Conversely, suppose $t\left(T_{n}\right)=n+1$.

If there does not exist B_{i} that is $\mathcal{I}_{3 q_{i}}, 1 \leq i \leq g, 1 \leq 3 q_{i}$, in Theorem 3.1. By Lemma 2.5 and Theorem 3.1, $T_{n} \sim\left(\begin{array}{cc}0 & 0 \\ J & A_{0}\end{array}\right)$, or $T_{n} \sim\left(\begin{array}{cc}A_{0} & 0 \\ J & 0\end{array}\right)$, where J is matrices of 1's, A_{0} is irreducible tournament matrix of order $n-1$. By Lemma 2.5 , we have that T_{n} is isomorphic to $T_{n}^{(1)}$ or $\tilde{T}_{n}^{(1)}$.

If there exists B_{i} that is $\mathcal{I}_{3 q_{i}}, 1 \leq i \leq g, 1 \leq 3 q_{i}$, in Theorem 3.1. By Lemma 2.5 and Theorem 3.1, $T_{n} \sim\left(\begin{array}{cc}\bar{T}_{3} & 0 \\ J & A_{0}\end{array}\right)$, or $T_{n} \sim\left(\begin{array}{cc}A_{0} & 0 \\ J & \bar{T}_{3}\end{array}\right)$, where J is matrices of 1 's, A_{0} is irreducible tournament matrix of order $n-3$. By Lemma 2.5 , we have that T_{n} is isomorphic to $T_{n}^{(2)}$ or $\tilde{T}_{n}^{(2)}$. This completes the proof.

Let $\mathfrak{S T R}_{n}$ denote the set of transitive indices of all reducible tournament matrices of order n. It is easy to verify that

$$
\begin{aligned}
& \mathfrak{S T R}{ }_{4}=\{1,3\}, \\
& \mathfrak{S T} \mathfrak{R}_{5}=\{1,3,9\}, \\
& \text { STM }{ }_{6}=\{1,3,4,6,7,9\}, \\
& \mathfrak{S T R}
\end{aligned}
$$

For $n \geq 8$, we have

Theorem 3.4 STR $_{n}=\{1,3,4, \ldots, n, n+1\}$, where $n \geq 8$.
Proof. Obviously, $t\left(\mathbb{T}_{n}\right)=1$. Let $T_{n}=\left(\begin{array}{cc}\bar{T}_{3} & 0 \\ J & \mathbb{T}_{n-3}\end{array}\right) \cdot t\left(T_{n}\right)=3$, hence, $1,3 \in \mathfrak{S T} \Re_{n}$.

By Lemma2.6, there exists an irreducible tournament matrix \hat{T}_{n-1} of order $n-1$ such that $\gamma\left(\hat{T}_{n-1}\right)=e$, where $4 \leq e \leq n+1, n \geq 8$. Let $T_{n}=\left(\begin{array}{cc}0 & 0 \\ J & \hat{T}_{n-1}\end{array}\right)$. Then $T_{n} \in \mathfrak{T}_{n}$ and $t\left(T_{n}\right)=\gamma\left(\hat{T}_{n-1}\right)=e$. This completes the proof.

Acknowledgements. This work is supported by the National Science Foundation of Guangdong(No:S2012010009759).

References

[1] Schwarz S, On the semigroup of binary relations on a finite set, Czechoslovak Mathematical Journal. 95 (1970), 632-670.
[2] Bo Zhou and Jian Shen, On generalized exponents of tournaments, TaiwaneseJ.Math.6(2002)565572.
[3] Richard A.Brualdi, Combinatorial matrix classes, First Edition, Cambridge University Press,New York, 2006.
[4] Bolian Liu, Combinatorial matrix theory,Second Edition, Science Press,Bejing, 2006.
[5] Xue-mei Ye, Characterization of the tournament with primitive exponent reaching its secondary value,Journal of Mathematical Research and Exposition. 4 (2007) 715-718.
[6] J.W.Moon and N.J.Pullman, On the power of tournament matrices,Comb.Theory. 3 (1967) 1-9.

