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Abstract. P. J. Slater [21] in 1975 introduced the concepts of locating sets and locating number in

graphs. Subsequently with minor changes in terminology, this concept was elaborately studied by Harary

and Melter [14], Chartrand et al [5], Robert C. Brigham et al [19], Chartrand et al [10] and Varaporn

Saenpholphat and Ping Zhang [28]. Given an k-tuple of vectors, S = (v1, v2, . . . , vk), the neighbourhood

adjacency code of a vertex v with respect to S, denoted by ncS(v) and defined by (a1, a2, . . . , ak) where ai

is 1 if v and vi are adjacent and 0 otherwise. S is called a neighbourhood resolving set or a neighbourhood

r-set if ncS(u) 6= ncS(v) for any u, v ∈ V (G). A study of this new concept has been done in [25], [26].

In this paper, the study of minimal neighbourhood resolving sets and neighbourhood irredundant sets in

graphs are initiated.
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In the case of finite dimensional vector spaces, every ordered basis induces a scalar

coding of the vectors where the scalars are from the base field. While finite dimensional

vector spaces have rich structures, graphs have only one structure namely adjacency. If

a graph is connected, the adjacency gives rise to a metric. This metric can be used to

define a code for the verices. P. J. Slater [21] defined the code of a vertex v with respect

to a k-tuple of vertices S = (v1, v2, . . . , vk) as (d(v, v1), d(v, v2), . . . , d(v, vk)) where d(v, vj)

denotes the distance of the vertex v from the vertex vj. Thus, entries in the code of a

vertex may vary from 0 to diameter of G. If the codes of the vertices are to be distinct,

then the number of vertices in G is less than or equal to (diam(G)+1)k. If it is required to

extend this concept to disconnected graphs, it is not possible to use the distance property.

One can use adjacenty to define binary codes, the motivation for this having come from

finite dimensional vector spaces over Z2. There is an advantage as well as demerit in this

type of codes. The advantage is that the codes of the vertices can be defined even in

disconnected graphs. The drawback is that not all graphs will allow resolution using this

type of codes.

Given an k-tuple of vectors, S = (v1, v2, . . . , vk), the neighbourhood adjacency code of a

vertex v with respect to S is defined as (a1, a2, . . . , ak) where ai is 1 if v and vi are adjacent

and 0 otherwise. Whereas in a connected graph G = (V,E), V is always a resolving set,

the same is not true if we consider neighbourhood resolvability. If u and v are two vertices

which are non-adjacent and N(u) = N(v), u and v will have the same binary code with

respect to any subset of V , including V . Nevertheless, the neighbourhood resolvability

has certain advantages. This concept is introduced and studied in this paper.

In section 1, definitions, examples of neighbourhood resolving sets are given and mini-

mal neighbourhood resolving sets are studied. In the second section, the neighbourhood

resolving number for Complete graphs, paths and cycles are derived. The third section is

devoted to the study of neighbourhood irredundant sets. Several interesting results are

derived.
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2. Neighbourhood Resolving sets in Graphs

Definition 0.1. Let G be any graph. Let S ⊂ V (G). Consider the k-tuple (u1, u2, . . . , uk)

where S = {u1, u2, . . . , uk}, k ≥ 1. Let v ∈ V (G). Define a binary neighbourhood code of

v with respect to the k-tuple (u1, u2, . . . , uk), denoted by ncS(v) as a k-tuple (r1, r2, . . . , rk)

where ri =


1, if v ∈ N(ui), 1 ≤ i ≤ k

0, otherwise

. S is called a neighbourhood resolving set or a

neighbourhood r-set if ncS(u) 6= ncS(v) for any u, v ∈ V (G).

Though neighbourhood is defined with respect to a specific order of the elements of S as a

k-tuple (where |S| = k), we loosely use the word, ”code of u with respect to S” meaning

there by code of u with respect to a particular k-tuple from S which is usually written as

(u1, u2, . . . , uk) if S = {u1, u2, . . . , uk}.

Example 0.2.

u u

uu

uu1

u2

u3u4

u5

G :

Now S = V (G) = {u1, u2, u3, u4, u5} is a neighbourhood resolving set of G,

since ncS(u1) = (0, 1, 0, 0, 1); ncS(u2) = (1, 0, 1, 0, 1);

ncS(u3) = (0, 1, 0, 1, 0); ncS(u4) = (0, 0, 1, 0, 1) and

ncS(u5) = (1, 1, 0, 1, 0).

Observation 0.3. The above definition holds good even if G is disconnected.

In the following theorem characterisation of connected graphs which admit neighbour-

hood resolving sets is given.
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Theorem 0.4. [25] Let G be a connected graph of order n ≥ 3. Then G does not have

any neighbourhood resolving set if and only if there exist two non adjacent vertices u and

v in V (G) such that N(u) = N(v).

Theorem 0.5. Let G = (V,E) be a simple graph. A neighbourhood resolving subset S of

V is minimal if and only if one of the following conditions holds for every u ∈ S.

(i) There exist x, y ∈ V − S such that (x and y are either both adjacent to v or both are

non-adjacent to v for all v ∈ S − {u}) and (x is adjacent to u; y is not adjacent to u or

x is not adjacent to u; y is adjacent to u).

(ii) There exists x ∈ V − S such that x is adjacent to u and x and u are both either

adjacent to v or non adjacent to v, for every v ∈ S − {u}.

(iii) There exist x, y ∈ S − {u} such that x is not adjacent to y and (x and y are either

both adjacent to v or both are non-adjacent to v for all v ∈ S − {u}) and (x is adjacent

to u; y is not adjacent to u or x is not adjacent to u; y is adjacent to u).

(iv) There exists x ∈ S − {u} and y ∈ V − S such that x is not adjacent to y and (x and

y are either both adjacent to v or both are non-adjacent to v for all v ∈ S − {u}) and (x

is adjacent to u; y is not adjacent to u or x is not adjacent to u; y is adjacent to u).

(v) If v ∈ S − {u}, then u and v are not adjacent and codes of u and v differ at some

place corresponding to w ∈ S − {u, v}.

Proof : If any one of the conditions hold then S − {u} is not a neighbourhood resolving

set of G.

Conversely, Suppose S is minimal.

Let u ∈ S. Suppose (i),(ii),(iv) and (v) do not hold.

Suppose (iii) also does not hold. Then for every x, y ∈ S − {u}, x is adjacent to y or (if

x is adjacent to v then y is not adjacent to v or vice versa for some v ∈ S − {u}) or (x is

not adjacent to u or y is adjacent to u and x is adjacent to u or y is not adjacent to u).

That is if x, y ∈ S − {u}, either x is adjacent to y or if x is adjacent to v then y is not

adjacent to v or vice versa for some v ∈ S − {u}) or (x and y are both adjacent to u or

both not adjacent to u).
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If x is adjacent to y then ncS−{u}(x) 6= ncS−{u}(y).

If x is not adjacent to y and if x is adjacent to v then y is not adjacent to v for some

v ∈ S − {u}, then x and y are either both adjacent to u or both non adjacent to u.

Therefore x and y have the same code value at the place corresponding to x,y and u.

Since S is a neighbourhood resolving set of G, there exists a place corresponding to some

v ∈ S − {u, x, y} such that x and y have different code values.

Therefore ncS−{u}(x) 6= ncS−{u}(y). This is true for every x, y ∈ S − {u}. Therefore

S − {u} is a neighbourhood resolving set of G.

Suppose (ii),(iii),(iv) and (v) do not hold.

Suppose (i) also does not hold. Then for every x, y ∈ V − S, (if x is adjacent to v then y

is not adjacent to v or vice versa for some v ∈ S − {u}) or (x is not adjacent to u or y is

adjacent to u and x is adjacent to u or y is not adjacent to u).

If x is adjacent to v then y is not adjacent to v, for some v ∈ S − {u}.

Then x, y have different code value in the place corresponding to v. If the other condition

holds then x and y are either both adjacent to u or both non-adjacent to u. Therefore x and

y have the same code value in the place corresponding to u. Since S is a neighbourhood

resolving set of G, there exist w ∈ S, w 6= u such that x and y have different code value

in the place of w. Therefore S − {u} is a neighbourhood resolving set of G.

Suppose (i),(iii),(iv) and (v) do not hold.

Suppose (ii) also does not hold. Then for every x ∈ V − S, x is not adjacent to u or

(there exists v ∈ S − {u} such that x is not adjacent to v and u is not adjacent to v or

viceversa). That is x and u have the same code in the place corresponding to u in S.

Since S is a neighbourhood resolving set of G, there exists w ∈ S, w 6= u such that x and

u have different code value in the place of w. Therefore ncS−{u}(x) 6= ncS−{u}(u).

If x is adjacent to u, then there exists v ∈ S−{u} such that x is adjacent to v and u is not

adjacent to v. Therefore x and u have the different code value in the place corresponding

to v. That is ncS−{u}(x) 6= ncS−{u}(u).

Therefore S − {u} is a neighbourhood resolving set of G.

Suppose (i),(ii),(iii) and (v) do not hold.
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Suppose (iv) also does not hold. Then for every x ∈ S − {u} and y ∈ V − S, such that x

is adjacent to y or (if x is adjacent to v then y is not adjacent to v or vice versa for some

v ∈ S − {u}) or (x is not adjacent to u or y is adjacent to u and x is adjacent to u or y

is not adjacent to u).

If x is adjacent to y, then ncS−{u}(x) 6= ncS−{u}(y).

If x is not adjacent to y and if x is adjacent to v then y is not adjacent to v for some

v ∈ S − {u}. Then x and y have different code value in the place corresponding to v. If

the other condition holds, then x and y are either both adjacent to u or both non-adjacent

to u. Therefore x and y have the same code value in the place corresponding to u.

Since S is a neighbourhood resolving set of G, there exists w ∈ S, w 6= u such that x and

y have different code value in the place of w.

Therefore S − {u} is a neighbourhood resolving set of G.

Suppose (i),(ii),(iii) and (iv) do not hold.

Suppose (v) also does not hold. Then for every v ∈ S−{u}, ncS(u) and ncS(v) differ only

at the place corresponding to u which implies that u and v are adjacent and (u and v are

either both adjacent to w or both non adjacent to w for every w ∈ S − {u, v}. Therefore

ncS−{u}(u) 6= ncS−{u}(v).

Therefore S − {u} is a neighbourhood resolving set of G.

Hence S is minimal.

Definition 0.6. Let S be a subset of V (G). Let u ∈ S. Then two vertices x, y ∈ V are

said to be privately resolved by u if ncS(x) and ncS(y) differ only at the place corresponding

to u.

Example 0.7.

u u u u

u

2 31 4

5

G :
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Let S = {1, 2, 3}. Now the vertices 2 and 4 are privately resolved by 1, since ncS(2) =

(1, 0, 1) and ncS(4) = (0, 0, 1).

Similarly the vertices 3 and 4 are privately resolved by 2.

The theorem 0.5 can be restated as follows:

Theorem 0.8. Let S be a neighbourhood resolving set of G. Then S is a minimal neigh-

bourhood resolving set of G if and only if for every u ∈ S, there exist x, y ∈ V which are

privately resolved by u.

Illustration 0.9.

s s s s s
s

1 2 3 4 5

6

G :

Let S = {1, 2, 4}. Now ncS(1) = (0, 1, 0) ; ncS(2) = (1, 0, 0) ; ncS(3) = (0, 1, 1); ncS(4) =

(0, 0, 0) ; ncS(5) = (0, 0, 1) ; ncS(6) = (1, 1, 0).

The vertices 1 and 3 are privately resolved by 4; 3 and 5 are privately resolved by 2 ; 1

and 6 are privately resolved by 1.

Therefore S is a minimal neighbourhood resolving set of G.

Observation 0.10. A minimum neighbourhood resolving set of a graph G is a minimal

neighbourhood resolving set, but the converse is not true.

For: Consider K+
4 .

r r
rr

r

r r

r

u5 u6

u1 u2

u3

u7

u4

u8

K+
4 :

Let S = {u1, u2, u5, u6, u8}.
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u1 and u6 are privately resolved by u5; u5 and u8 are privately resolved by u1.

u6 and u7 are privately resolved by u2; u2 and u5 are privately resolved by u6.

u3 and u4 are privately resolved by u8.

Therefore S is a minimal neighbourhood resolving set of G, but not minimum.

{u1, u2, u3} is a minimum neighbourhood resolving set of G.(Given that nr(G) = 3).

Theorem 0.11. Let S be an nr-set of G. Then for every x ∈ S, there exist at least two

vertices in V which are privately resolved by u.

Proof : Since S is an nr-set of G, S is a minimal nr-set of G. Hence the proof.

Definition 0.12. The least cardinality of a minimal neighbourhood resloving set of G is

called the neighbourhood resolving number of G and is denoted by nr(G). The maximum

cardinality of a minimal neighbourhood resolving set of G is called the upper neighbourhood

resolving number of G and is denoted by NR(G).

Clearly nr(G) ≤ NR(G). A neighbourhood resolving set S of G is called a minimum

neighbourhood resolving set or nr-set if S is a neighbourhood resolving set with cardinality

nr(G).

Example 0.13.

t t

tt
t

t t

�
�

��

u1
u2

u3
u4

u5 u6

u7

G :

Both {u1, u2, u3} and {u1, u2, u5, u6, u7} are minimal neighbourhood resolving sets of G.

It can be easily seen that nr(G) = 3 and NR(G) = 5.

Observation 0.14. If minimum neighbourhood resolving set exists in a given graph,

then it need not be unique. For example, in C6 with V (C6) = {v1, v2, v3, v4, v5, v6}, both

{v2, v3, v4, v5} and {v1, v2, v4, v5} are minimum neighbourhood resolving sets of C6.
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3. Neighbourhood resolving number of Standard graphs

Result 0.15. For a complete graph Kn, nr(Kn) = n− 1, n ≥ 2.

Proof : Let V (Kn) = {u1, u2, . . . , un}.

Let T = {u1, u2, . . . , un−1}. Now |T | = n− 1.

ncT (ui), 1 ≤ i ≤ n will receive 0 in the place corresponding to the vertex ui of T and 1 in

all other places corresponding to the vertices of T and ncT (un) will receive the 1-code.

Therefore T is a neighbourhood resolving set of Kn.

Therefore nr(Kn) ≤ |T | = n− 1.

Suppose T 1 is an nr-set of Kn. Suppose |T 1| ≤ n− 2.

Let |T 1| = t ≤ n − 2 and let without loss of generality T 1 = {u1, u2, . . . , ut}, then un−1

and un receive the 1-code with respect to T 1.

Therefore T 1 is not a neighbourhood resolving set of Kn, a contradiction.

Therefore |T 1| ≥ n− 1. That is nr(Kn) ≥ n− 1. Hence nr(Kn) = n− 1.

Lemma 0.16. Let T be an nr-set of Pn. Then nr(Pn) ≥ b2n
3
c, n ≥ 6.

Proof : Let S be a minimal neighbourhood resolving set of Pn.

Claim : Either S has at least four vertices from any six consecutive vertices of Pn or

if S has three vertices from a set of six consecutive vertices of Pn, then S has five vertices

from another set of six consecutive vertices.

If S has at least four vertices from any six consecutive vertices of Pn, then |S| ≥ 2n
3

and

hence nr(Pn) ≥ 2n
3
≥ b2n

3
c.

Suppose |S ∩ {u6i−5, u6i−4, u6i−3, u6i−2, u6i−1, u6i}| = 3, for some i, 1 ≤ i ≤ m.

Case(i) : Let T = {u6i−5, u6i−3, u6i−1} or {u6i−3, u6i−2, u6i−1} or {u6i−5, u6i−2, u6i−1} or

{u6i−5, u6i−3, u6i−2}.

Then ncS(u6i−3) = ncS(u6i−1), a contradiction, since S is a neighbourhood resolving set

of Pn.

Case(ii) : Let T = {u6i−4, u6i−2, u6i} or {u6i−4, u6i−3, u6i−2} or {u6i−4, u6i−3, u6i} or

{u6i−3, u6i−2, u6i}.
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Then ncS(u6i−4) = ncS(u6i−2), a contradiction, since S is a neighbourhood resolving set

of Pn.

Case(iii) : Let T = {u6i−5, u6i−4, u6i−3}

Then u6i−1 receives 0-code with respect to S.

If n = u6i or u6i+1 /∈ S, then ncS(u6i−1) = ncS(u6i), a contradiction.

Therefore u6i+1 ∈ S.

If u6i+2 /∈ S, then ncS(u6i−1) = ncS(u6i+1), a contradiction.

Therefore u6i+2 ∈ S.

If u6i+3 /∈ S, then ncS(u6i) = ncS(u6i+2), a contradiction.

Therefore u6i+3 ∈ S.

If u6i+4 /∈ S, then ncS(u6i+1) = ncS(u6i+3), a contradiction.

Therefore u6i+4 ∈ S.

If either u6i+5 or u6i+6 ∈ S, then we are through.

Suppose u6i+5 /∈ S and u6i+6 /∈ S.

Then if u6i+7 /∈ S, then ncS(u6i−1) = ncS(u6i+6), a contradiciton.

Therefore u6i+7 ∈ S.

Arguing as before, we get u6i+7, u6i+8, u6i+9, u6i+10 ∈ S.

If either u6i+11 or u6i+12 ∈ S, then we are through.

Suppose u6i+11 and u6i+12 /∈ S.

Proceeding like this, suppose S contains exactly four elements from every six consecutive

vertices from u6i+1 to u6m. If n = 6m and both u6m−1 and u6m /∈ S, then ncS(u6m) =

ncS(u6i−1), a contradiction. Therefore either u6m−1 or u6m belongs to S. Since n =

6m, u6m−1 ∈ S. Therefore S contains five vertices from the six consecutive vertices

u6m−5 to u6m. If n = 6m + 1, then either u6m, u6m+1 ∈ S or u6m−1, u6m ∈ S. In both

the cases S satisfies the claim. if n = 6m + 2, then either u6m−1, u6m, u6m+1 ∈ S or

u6m, u6m+1, u6m+2 ∈ S. In both the cases S satisfies the claim. Suppose if n = 6m + 3,

then either u6m−1, u6m, u6m+1, u6m+2 ∈ S or u6m, u6m+1, u6m+2, u6m+3 ∈ S. In both the

cases S satisfies the claim. If n = 6m+4, then u6m, u6m+1, u6m+3, u6m+4 ∈ S. Therefore S

satisfies the claim. If n = 6m + 5, then u6m+1, u6m+2, u6m+3, u6m+4 ∈ S. Then S contains



1022 S. SUGANTHI1∗, V. SWAMINATHAN1, G. JOTHILAKSHMI2 AND A. P. PUSHPALATHA2

exactly foue elements from every six consecutive elements starting from u6i+1 to u6m and

four elements from u6m+1 to u6m+5. In all cases, |S| ≥ 2n
3

and hence nr(Pn) ≥ 2n
3
≥ b2n

3
c.

Case (iv) : Let T = {u6i−2, u6i−1, u6i} or {u6i−5, u6i−4, u6i−2} or {u6i−3, u6i−1, u6i}.

This case is similar to Case (iii).

Case (v) : Let T = {u6i−5, u6i−4, u6i−1}. If n = u6i or u6i+1 /∈ S, then ncS(u6i−2) =

ncS(u6i), a contradiction. Therefore u6i+1 ∈ S.

If u6i+2 /∈ S, then then ncS(u6i−1) = ncS(u6i+1), a contradiction. Therefore u6i+2 ∈ S.

Suppose u6i+3 ∈ S. If u6i+4 /∈ S, then ncS(u6i+1) = ncS(u6i+3), a contradiction. Therefore

u6i+4 ∈ S.

Then proceeding as in case of Case(iii), we get that S satisfies the claim. Suppose u6i+3 /∈

S. Then u6i+4 ∈ S (otherwise ncS(u6i+1) = ncS(u6i+3), a contradiction). Similarly

u6i+5 ∈ S. A similar argument shows that S satisfies the claim.

Case (vi) : Let T = {u6i−4, u6i−1, u6i} or {u6i−4, u6i−2, u6i−1} or {u6i−4, u6i−3, u6i−1}.

This case is similar to Case(v).

Case (vii) : Let T = {u6i−5, u6i−4, u6i}. Then u6i−2 receives 0-code with respect to S.

By similar argument, it is can be shown that u6i+1, u6i+2, u6i+3 ∈ S. If u6i+4 and u6i+5 and

u6i+6 /∈ S, then ncs(u6i+5) = ncS(u6i−2), a contradiction. Therefore either u6i+4 or u6i+5

or u6i+6 ∈ S. Then arguing as in the case of Case (iii) and Case(v), we get S satisfies the

claim.

Case (viii) : Let T = {u6i−5, u6i−1, u6i} or {u6i−5, u6i−3, u6i} or {u6i−5, u6i−2, u6i}.

This case is similar to Case(vii).

Therefore in all case, if S has three vertices from a set of six consecutive vertices of Pn,

then S has five vertices from another set of six consecutive vertices and hence |S| ≥ 2n
3

.

Therefore nr(Pn) ≥ 2n
3
≥ b2n

3
c.

Result 0.17. For a path Pn, n ≥ 6, nr(Pn) = b2n
3
c.

Proof : Let V (Pn) = {u1, u2, . . . , u6m−1, u6m}.

Case (i) : n = 6m.

Let T = {u2, u3, u4, u5, u8, u9, u10, u11, . . . , u6m−4, u6m−3,
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u6m−2, u6m−1}.

Now |T | = 4m = 4(n
6
) = 2n

3
.

With respect to T , for every i, 1 ≤ i ≤ m, u6i−5 has 1 in the (4i − 3)th place and 0

elsewhere; u6i−4 has 1 in the (4i− 2)th place and 0 elsewhere; u6i−3 has 1 in the (4i− 1)th

and (4i− 3)th places and 0 elsewhere; u6i−2 has 1 in the (4i− 2)th and (4i)th places and 0

elsewhere; u6i−1 has 1 in the (4i− 1)th place and 0 elsewhere; u6i has 1 in the (4i)th place

and 0 elsewhere.

Thus T resolves u6i−5 to u6i, for every i, 1 ≤ i ≤ m.

Therefore T is a neighbourhood resolving set of Pn.

Therefore nr(Pn) ≤ |T | = 2n
3

.

Since n = 6m, 2n
3

= b2n
3
c. Therefore nr(Pn) ≤ b2n

3
c and by previous lemma nr(Pn) ≥

b2n
3
c. Hence nr(Pn) = b2n

3
c.

Case (ii) : n = 6m + 1.

Let T = {u2, u3, u4, u5, u8, u9, u10, u11, . . . , u6m−4, u6m−3,

u6m−2, u6m−1}.

Now |T | = 4m = 4(n−1
6

) = 2n−2
3

.

With respect to T , for every i, 1 ≤ i ≤ m, u6i−5 has 1 in the (4i − 3)th place and 0

elsewhere; u6i−4 has 1 in the (4i− 2)th place and 0 elsewhere; u6i−3 has 1 in the (4i− 1)th

and (4i− 3)th places and 0 elsewhere; u6i−2 has 1 in the (4i− 2)th and (4i)th places and 0

elsewhere; u6i−1 has 1 in the (4i− 1)th place and 0 elsewhere; u6i has 1 in the (4i)th place

and 0 elsewhere and u6m+1 receives 0-code.

Thus T resolves u6i−5 to u6i, for every i, 1 ≤ i ≤ m and T resolves ui and u6m+1, for every

i, 1 ≤ i ≤ 6m.

Therefore T is a neighbourhood resolving set of Pn.

Therefore nr(Pn) ≤ |T | = 2n−2
3

.

Since n = 6m + 1, 2n−2
3

= b2n
3
c. Therefore nr(Pn) ≤ b2n

3
c and by previous lemma

nr(Pn) ≥ b2n
3
c. Hence nr(Pn) = b2n

3
c.

Case (iii) : n = 6m + 2.

Let T = {u2, u3, u4, u5, u8, u9, u10, u11, . . . , u6m−4, u6m−3, u6m−2,
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u6m−1, u6m+2}.

Now |T | = 4m + 1 = 4(n−2
6

) + 1 = 2n−1
3

.

With respect to T , for every i, 1 ≤ i ≤ m, u6i−5 has 1 in the (4i − 3)th place and 0

elsewhere; u6i−4 has 1 in the (4i− 2)th place and 0 elsewhere; u6i−3 has 1 in the (4i− 1)th

and (4i− 3)th places and 0 elsewhere; u6i−2 has 1 in the (4i− 2)th and (4i)th places and 0

elsewhere; u6i−1 has 1 in the (4i− 1)th place and 0 elsewhere; u6i has 1 in the (4i)th place

and 0 elsewhere; u6m+1 has 1 in the (4m + 1)th place and 0 elsewhere and u6m+2 receives

0-code.

Thus T resolves u6i−5 to u6i, for every i, 1 ≤ i ≤ m; u6m+1 and u6m+2; u6m+1 and ui where

1 ≤ i ≤ 6m and u6m+2 and ui where 1 ≤ i ≤ 6m.

Therefore T is a neighbourhood resolving set of Pn.

Therefore nr(Pn) ≤ |T | = 2n−1
3

.

Since n = 6m + 2, 2n−1
3

= b2n
3
c. Therefore nr(Pn) ≤ b2n

3
c and by previous lemma

nr(Pn) ≥ b2n
3
c. Hence nr(Pn) = b2n

3
c.

Case (iv) : n = 6m + 3.

Let T = {u1, u2, u4, u5, u6, u7, u10, u11, u12, u13, . . . , u6m−2,

u6m−1, u6m, u6m+1}.

Now |T | = 4m = 4(n−3
6

) + 2 = 2n
3

.

With respect to T , for every i, 1 ≤ i ≤ m, u6i−3 has 1 in the (4i − 2)th and (4i − 1)th

places and 0 elsewhere; u6i−2 has 1 in the (4i)th place and 0 elsewhere; u6i−1 has 1 in the

(4i−1)th and (4i+1)th places and 0 elsewhere; u6i has 1 in the (4i)th and (4i+1)th places

and 0 elsewhere; u6i+1 has 1 in the (4i + 1)th place and 0 elsewhere; u6i+2 has 1 in the

(4i+ 2)th place and 0 elsewhere. u1 has 1 in the second place and 0 elsewhere; u2 receives

1 in the first place and 0 elsewhere and u6m+3 receives 0-code .

Thus T resolves u and v where u, v ∈ V (Pn) and u 6= v

Therefore T is a neighbourhood resolving set of Pn.

Therefore nr(Pn) ≤ |T | = 2n
3

.

Since n = 6m+ 3, 2n
3

= b2n
3
c. Therefore nr(Pn) ≤ b2n

3
c and by previous lemma nr(Pn) ≥

b2n
3
c. Hence nr(Pn) = b2n

3
c.
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Case (v) : n = 6m + 4.

Let T = {u1, u2, u4, u5, u6, u7, u10, u11, u12, u13, . . . , u6m−2,

u6m−1, u6m, u6m+1, u6m+4}.

Now |T | = 4m = 4(n−4
6

) + 3 = 2n+1
3

.

With respect to T , for every i, 1 ≤ i ≤ m, u6i−3 has 1 in the (4i − 2)th and (4i − 1)th

places and 0 elsewhere; u6i−2 has 1 in the (4i)th place and 0 elsewhere; u6i−1 has 1 in the

(4i−1)th and (4i+1)th places and 0 elsewhere; u6i has 1 in the (4i)th and (4i+1)th places

and 0 elsewhere; u6i+1 has 1 in the (4i + 1)th place and 0 elsewhere; u6i+2 has 1 in the

(4i+ 2)th place and 0 elsewhere. u1 has 1 in the second place and 0 elsewhere; u2 receives

1 in the first place and 0 elsewhere; u6m+3 has 1 in the last place and 0 elsewhere and

u6m+4 receives 0-code .

Thus T resolves u and v where u, v ∈ V (Pn) and u 6= v

Therefore T is a neighbourhood resolving set of Pn.

Therefore nr(Pn) ≤ |T | = 2n+1
3

.

Since n = 6m + 4, 2n+1
3

= b2n
3
c. Therefore nr(Pn) ≤ b2n

3
c and by previous lemma

nr(Pn) ≥ b2n
3
c. Hence nr(Pn) = b2n

3
c.

Case (vi) : n = 6m + 5.

Let T = {u2, u3, u4, u5, u8, u9, u10, u11, . . . , u6m−4, u6m−3, u6m−2,

u6m−1, u6m+1, u6m+2, u6m+4}.

Now |T | = 4m = 4(n−5
6

) + 3 = 2n−1
3

.

With respect to T , for every i, 1 ≤ i ≤ m, u6i−5 has 1 in the (4i − 3)th place and 0

elsewhere; u6i−4 has 1 in the (4i− 2)th place and 0 elsewhere; u6i−3 has 1 in the (4i− 1)th

and (4i)th places and 0 elsewhere; u6i−2 has 1 in the (4i− 2)th and (4i− 1)th places and 0

elsewhere; u6i−1 has 1 in the (4i− 1)th place and 0 elsewhere; u6i has 1 in the (4i)th place

and 0 elsewhere; u6m+1 has 1 in the (4m + 2)th place and 0 elsewhere; u6m+2 has 1 in the

(4m + 1)th place and 0 elsewhere; u6m+3 has 1 in the (4m + 2)th and (4m + 3)th places

and 0 elsewhere; u6m+4 receives 0-code and u6m+5 has 1 in the (4m + 3)th place and 0

elsewhere. Thus T resolves u and v where u, v ∈ V (Pn) and u 6= v

Therefore T is a neighbourhood resolving set of Pn.
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Therefore nr(Pn) ≤ |T | = 2n−1
3

.

Since n = 6m, 2n−1
3

= b2n
3
c. Therefore nr(Pn) ≤ b2n

3
c and by previous lemma nr(Pn) ≥

b2n
3
c. Hence nr(Pn) = b2n

3
c.

Remark 0.18. For a cycle Cn, n ≥ 6, nr(Cn) = b2n
3
c.

4. nr-irrendundant sets in Graphs

Definition 0.19. A subset S of V (G) is called an nr-irredundant set of G if for every

u ∈ S, there exist x, y ∈ V which are privately resolved by u.

Observation 0.20. Any minimal neighbourhood resolving set of G is an nr-irredundant

set of G. Converse is not true.

Example 0.21. Consider P6 with V (P6) = {u1, u2, u3, u4, u5, u6}.

Let S = {u1, u2, u3}.

Now S is a neighbourhood irredundant set of P6.

For : ncS(u1) = (0, 1, 0); ncS(u2) = (1, 0, 1); ncS(u3) = (0, 1, 0);

ncS(u4) = (0, 0, 1) and ncS(u5) = (0, 0, 0).

u2 and u4 are privately resolved by u1; u3 and u5 privately resolved by u2 and u4 and u5

privately resolved by u3.

Let S1= S ∪ {u4}. S1 does not privately resolve any pair of vertices of V (P6) with respect

to S1 and let S2 = S ∪ {u5}. S2 does not privately resolve any pair of vertices of V (P6)

with respect to S2. Hence S is a maximal neighbourhood irredundant set of P6.

Since ncS(u1) = ncS(u3), S is not a neighbourhood resolving set of G.

Theorem 0.22. If S is a neighbourhood resolving irredundant set of G, then any subset

of S is also a neighbourhood resolving irredundant set of G.

Proof : Let S be a neighbourhood resolving irredundant set of G.

Let T be any subset of S. Since S is a neighbourhood resolving irredundant set of G, for
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every u ∈ S, there exist x, y ∈ S which are privately resolved by u. Since y /∈ S, y /∈ T .

Therefore for every u ∈ T there exist x, y ∈ T which are privately resolved by u.

Therefore T is a neighbourhood resolving irredundant set of G.

Observation 0.23. Neighbourhood resolving irredundance is a hereditary property.

Observation 0.24. Let S be an nr-irredundant set of G. Then S is maximal if and only

if S is 1- maximal.

Theorem 0.25. Every minimal neighbourhood resolving set of G is a maximal neighbour-

hood resolving irredundant set of G.

Proof : Let S be a minimal neighbourhood resolving set of G. Then S is a neighbour-

hood resolving irredundant set of G.

Suppose S is not maximal. Then there exists u ∈ V − S such that S ∪ {u} is a neigh-

bourhood resolving irredundant set of G.

Therefore there exist x, y ∈ V such that x and y are privately resolved by u. Therefore

either x and y or y and u have the same code with respect to S, a contradiction, since S

is a neighbourhood resolving set of G.

Therefore S is a maximal neighbourhood resolving irredundant set of G.

Definition 0.26. The minimum cardinality of a maximal neighbourhood resolving irre-

dundant set of G is called the neighbourhood resolving irredundance number of G and is

denoted by irnr(G). The maximum cardinality is called the upper neighbourhood resolving

irrundance number of G and is denoted by IRnr(G).

Observation 0.27. For any graph G, irnr(G) ≤ nr(G) ≤ NR(G) ≤ IRnr(G).

Example 0.28. Consider P6 with V (P6) = {u1, u2, u3, u4, u5, u6}.

Let S = {u1, u2, u5}.

Now S is a neighbourhood resolving irredundant set of P6,



1028 S. SUGANTHI1∗, V. SWAMINATHAN1, G. JOTHILAKSHMI2 AND A. P. PUSHPALATHA2

since u1 and u5 are privately resolved by u2; u2 and u5 are privately resolved by u1 and u5

and u6 are privately resolved by u5.

Since S ∪ {u} where u = u3 or u4 or u6, is not a neighbourhood resolving irredundant set

of G, we have irnr(P6) = 3.

Clearly nr(P6) = 4.

Conclusion 0.29. Studies of perfect graphs with respect to any two of the above param-

eters in the inequality chain is under consideration.
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