COMMON COUPLED FIXED AND COINCIDENCE POINTS RESULTS FOR RATIONAL TYPE CONTRACTION MAPPINGS IN COMPLEX VALUED S_b-METRIC SPACES

N. PRIYOBARTA1,*, THOUNAOJAM INDUBALA2, KONTHOUJAM SANGITA DEVI3, OINAM BUDHICHANDRA SINGH4

1Department of Mathematics, National Institute of Technology Manipur, Imphal, 795004 India
2Department of Mathematics, D.M. College of Arts, Dhanamanjuri University, Imphal, 795004 India
3Department of Mathematics, D.M. College of Science, Dhanamanjuri University, Imphal, 795004 India
4Department of Mathematics, Thambal Marik College, Oinam, Manipur-795134 India

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce a new rational type contraction mapping in complex valued S_b-metric space and find some common coupled fixed and coincidence points. Some results are also given as corollaries.

Keywords: complex valued S_b-metric space; coupled common fixed point; coupled coincidence point; rational type contraction.

2010 AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION AND PRELIMINARIES

Azam et al. [1] introduced the concept of complex valued metric space and proved some fixed point results for a pair of mappings for contraction condition satisfying a rational expression. Moreover, Shin Min Kang et al. [2] introduced the notion of complex valued G-metric space and proved contraction principle in this space. In 2014, Nabil M. Mlaiki [3] introduced the

*Corresponding author

E-mail address: ningthoujampriyo9@gmail.com

Received December 19, 2021
complex valued S-metric space and proved the existence and the uniqueness of a common fixed point of two self mappings in this space. Recently, Priyobarta et al. [4] introduced the concept of complex valued S_b-metric space and some topological properties. They also proved some fixed point theorems. Some more results on complex valued can be seen in [5-6].

The concept of rational type contraction is one of the interest for researchers and these can be found in [7-15]. On the other hand, there are various forms of generalization of metric space in the literature. Some of them can be found in [16-24]. The concept of coupled fixed point was introduced by Guo and Lakshmikantham [25]. The concept is further used by various authors in [26-27].

In this paper, we prove some common coupled and coincidence points theorems for rational type contractive mappings in complex valued S_b-metric space.

Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define a partial order \preceq on \mathbb{C} as follows:

$$z_1 \preceq z_2 \text{ if and only if } \Re(z_1) \leq \Re(z_2) \text{ and } \Im(z_1) \leq \Im(z_2).$$

If follows that $z_1 \preceq z_2$ if one of the following conditions is satisfied:

(C1): $\Re(z_1) = \Re(z_2)$ and $\Im(z_1) = \Im(z_2)$,

(C2): $\Re(z_1) < \Re(z_2)$ and $\Im(z_1) = \Im(z_2)$,

(C3): $\Re(z_1) = \Re(z_2)$ and $\Im(z_1) < \Im(z_2)$,

(C4): $\Re(z_1) < \Re(z_2)$ and $\Im(z_1) < \Im(z_2)$.

Particularly, we write $z_1 \not\preceq z_2$ if $z_1 \neq z_2$ and one (C2), (C3) and (C4) is satisfied and we write $z_1 \prec z_2$ if only (C4) is satisfied. The following statements hold:

(1) If $a, b \in \mathbb{R}$ with $a \leq b$, then $az \prec bz$ for all $z \in \mathbb{C}$.

(2) If $0 \preceq z_1 \not\preceq z_2$, then $|z_1| < |z_2|$.

(3) If $z_1 \preceq z_2$ and $z_2 \not\preceq z_3$, then $z_1 \prec z_3$.

Definition 1.1. [1] Let X be a nonempty set whereas \mathbb{C} be the set of complex numbers. Suppose that the mapping $d : X \times X \to \mathbb{C}$, satisfies the following conditions:

(d_1): $0 \not\preceq d(x, y)$, for all $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$;

(d_2): $d(x, y) = d(y, x)$ for all $x, y \in X$;

(d_3): $d(x, y) \preceq d(x, z) + d(z, y)$, for all $x, y, z \in X$.

Then \(d\) is called a complex valued metric on \(X\), and \((X, d)\) is called a complex valued metric space.

Example 1. [5] Let \(X = \mathbb{C}\) be a set of complex number. Define \(d : \mathbb{C} \times \mathbb{C} \to \mathbb{C}\), by

\[
d(z_1, z_2) = |x_1 - x_2| + i|y_1 - y_2|
\]

where \(z_1 = x_1 + iy_1\) and \(z_2 = x_2 + iy_2\). Then \((X, d)\) is a complex valued metric space.

Example 2. [6] Let \(X = \mathbb{C}\) be a set of complex number. Define \(d : \mathbb{C} \times \mathbb{C} \to \mathbb{C}\), by

\[
d(z_1, z_2) = e^{ik}|z_1 - z_2|
\]

where \(0 \leq k \leq \frac{\pi}{2}\), \(z_1 = x_1 + iy_1\) and \(z_2 = x_2 + iy_2\). Then \((X, d)\) is a complex valued metric space.

Definition 1.2. [4] Let \(X\) be a nonempty set and \(s \geq 1\) be a given real number. Suppose that a mapping \(S : X^3 \to \mathbb{C}\) satisfies:

\[
(CS_b1): 0 < S(x, y, z) \text{ for all } x, y, z \in X \text{ with } x \neq y \neq z \neq x,
\]

\[
(CS_b2): S(x, y, z) = 0 \iff x = y = z,
\]

\[
(CS_b3): S(x, x, y) = S(y, y, x), \text{ for all } x, y \in X,
\]

\[
(CS_b4): S(x, y, z) \preceq s(S(x, x, a) + S(y, y, a) + S(z, z, a)) \text{ for all } x, y, z, a \in X.
\]

Then, \(S\) is called a complex valued \(S_b\)-metric and \((X, S)\) is called a complex valued \(S_b\)-metric space.

Definition 1.3. [4] A complex valued \(S_b\)-metric space \((X, S)\) is said to be symmetric if

\[
S(x, x, y) = S(y, y, x).
\]

Definition 1.4. [4] Let \((X, S)\) be a complex valued \(S_b\)-metric space, let \(\{x_n\}\) be a sequence in \(X\).

(i): \(\{x_n\}\) is a complex valued \(S_b\)-convergent to \(x\) if for every \(a \in \mathbb{C}\) with \(0 < a\), there exists \(k \in \mathbb{N}\) such that \(S(x_n, x_n, x) < a\) or \(S(x, x, x_n) < a\) for all \(n \geq k\) and denoted by

\[
\lim_{n \to \infty} x_n = x.
\]

(ii): A sequence \(\{x_n\}\) is called complex valued \(S_b\)-Cauchy if for every \(a \in \mathbb{C}\) with \(0 < a\), there exists \(k \in \mathbb{N}\) such that \(S(x_n, x_n, x_m) < a\) for each \(m, n \geq k\).
(iii): If every complex valued S_b-Cauchy sequence is complex valued S_b-convergent in (X, S), then (X, S) is said to be complex valued S_b-complete.

Proposition 1.1. [4] Let (X, S) be a complex valued S_b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is complex valued S_b-convergent to x if and only if $|S(x_n, x_n, x)| \to 0$ as $n \to \infty$ or $|S(x, x, x_n)| \to 0$ as $n \to \infty$.

Theorem 1.2. [4] Let (X, S) be a complex valued S_b-metric space, then for a sequence $\{x_n\}$ in X and point $x \in X$, the following are equivalent

(1): $\{x_n\}$ is a complex valued S_b-convergent to x.

(2): $|S(x_n, x_n, x)| \to 0$ as $n \to \infty$.

Theorem 1.3. [4] Let (X, S) be a complex valued S_b-metric space and $\{x_n\}$ be a sequence in X. Then, $\{x_n\}$ is complex valued S_b-Cauchy sequence if and only if $|S(x_n, x_m, x_l)| \to 0$ as $n, m, l \to \infty$.

Definition 1.5. [25] An element $(x, y) \in X \times X$ is called a

(1) coupled fixed point of a mapping $A : X \times X \to X$ if $x = A(x, y)$ and $y = A(y, x)$;

(2) coupled common fixed point of two mappings $A, B : X \times X \to X$ if $x = A(x, y) = B(x, y)$ and $y = A(y, x) = B(y, x)$.

Definition 1.6. [25, 26] Let X be a nonempty set. An element $(x, y) \in X \times X$ is called

i) a coupled fixed point of the mapping $f : X \times X \to X$ if $x = f(x, y)$ and $y = f(y, x)$.

ii) a coupled coincidence point of mappings $f : X \times X \to X$ and $T : X \to X$ if $T(x) = f(x, y)$ and $T(y) = f(y, x)$.

iii) a common coupled fixed point of mappings $f : X \times X \to X$ and $T : X \to X$ if $x = T(x) = f(x, y)$ and $y = T(y) = f(y, x)$.

2. **Main Results**

Now we prove the following theorems
\textbf{Theorem 2.1.} Let \((X, S)\) be a complete complex valued symmetric \(S_b\)-metric space with parameter \(s \geq 1\) and let the mappings \(f, g : X^2 \to X\) satisfying

\[
S(f(x, y), f(x, y), g(u, v)) \lesssim a_1 \frac{S(x, x, u) + S(y, y, v)}{2}
\]

\[
+ a_2 \frac{S(f(x, y), f(x, y), g(u, v))S(x, x, u)}{1 + S(x, x, u) + S(y, y, v)}
\]

\[
+ a_3 \frac{S(f(x, y), f(x, y), g(u, v))S(y, y, v)}{1 + S(x, x, u) + S(y, y, v)}
\]

\[
+ a_4 \frac{S(x, x, f(x, y))S(x, x, u)}{1 + S(x, x, u) + S(y, y, v)}
\]

\[
+ a_5 \frac{S(x, x, f(x, y))S(y, y, v)}{1 + S(x, x, u) + S(y, y, v)}
\]

\[
+ a_6 \frac{S(u, u, g(u, v))S(x, x, u)}{1 + S(x, x, u) + S(y, y, v)}
\]

\[
+ a_7 \frac{S(u, u, g(u, v))S(y, y, v)}{1 + S(x, x, u) + S(y, y, v)}
\]

(1)

for all \(x, y, u, v \in X\) and \(a_i \geq 0\) with \(\sum_{i=1}^{7} a_i < 1\), \(i = 1, 2, \ldots, 7\) and \(s < \frac{1 - a_2 - a_1 - a_6 - a_7}{a_1 + a_4 + a_5}\). Then \(f\) and \(g\) have a unique common coupled fixed point in \(X\).

\textit{Proof.} Let \(x_0, y_0 \in X\) be arbitrary points.

Define

\[
x_{2k+1} = f(x_{2k}, y_{2k}) \quad , \quad y_{2k+1} = f(y_{2k}, x_{2k})
\]

\[
x_{2k+2} = g(x_{2k+1}, y_{2k+1}) \quad , \quad y_{2k+2} = g(y_{2k+1}, x_{2k+1})
\]

for \(k = 0, 1, 2, \ldots\). Then

\[
S(x_{2k+1}, x_{2k+1}, x_{2k+2}) = S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))
\]

\[
\lesssim a_1 \frac{S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}{2}
\]

\[
+ a_2 \frac{S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))S(x_{2k}, x_{2k}, x_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}
\]

\[
+ a_3 \frac{S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))S(y_{2k}, y_{2k}, y_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}
\]

\[
= \frac{S(x_{2k+1}, x_{2k+1}, x_{2k+2})}{2}
\]

\[
+ a_2 \frac{S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))S(x_{2k}, x_{2k}, x_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}
\]

\[
+ a_3 \frac{S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))S(y_{2k}, y_{2k}, y_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}
\]

\[
= \frac{S(x_{2k+1}, x_{2k+1}, x_{2k+2})}{2}
\]

\[
+ a_2 \frac{S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))S(x_{2k}, x_{2k}, x_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}
\]

\[
+ a_3 \frac{S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))S(y_{2k}, y_{2k}, y_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})}
\]
\[
+ a_4 \frac{S(x_{2k}, x_{2k}, f(x_{2k}, y_{2k}))S(x_{2k}, x_{2k}, x_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})} \\
+ a_5 \frac{S(x_{2k}, x_{2k}, f(x_{2k}, y_{2k}))S(y_{2k}, y_{2k}, y_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})} \\
+ a_6 \frac{S(x_{2k+1}, x_{2k+1}, g(x_{2k+1}, y_{2k+1}))S(x_{2k}, x_{2k}, x_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})} \\
+ a_7 \frac{S(x_{2k+1}, x_{2k+1}, g(x_{2k+1}, y_{2k+1}))S(y_{2k}, y_{2k}, y_{2k+1})}{1 + S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})} \\
= \frac{a_1}{2} S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1}) \\
+ (a_2 + a_3)S(x_{2k+1}, x_{2k+1}, x_{2k+2}) + (a_4 + a_5)S(x_{2k}, x_{2k}, x_{2k+1}) \\
+ (a_6 + a_7)S(x_{2k+1}, x_{2k+1}, x_{2k+2})
\]

\[\Rightarrow (1 - a_2 - a_3 - a_6 - a_7)S(x_{2k+1}, x_{2k+1}, x_{2k+2}) \approx \frac{a_1}{2} + a_4 + a_5)S(x_{2k}, x_{2k}, x_{2k+1}) \\
+ \frac{a_1}{2} S(y_{2k}, y_{2k}, y_{2k+1}) \\
\Rightarrow S(x_{2k+1}, x_{2k+1}, x_{2k+2}) \approx \frac{a_1}{2} + a_4 + a_5 \frac{1}{1 - a_2 - a_3 - a_6 - a_7} S(x_{2k}, x_{2k}, x_{2k+1}) \\
+ \frac{a_1}{1 - a_2 - a_3 - a_6 - a_7} S(y_{2k}, y_{2k}, y_{2k+1})
\]

(2)
Proceeding similarly one can prove that

\[S(y_{2k+1}, y_{2k+1}, y_{2k+2}) \lesssim \frac{a_1 + a_4 + a_5}{1 - a_2 - a_3 - a_6 - a_7} \cdot S(y_{2k}, y_{2k}, y_{2k+1}) \]

Adding (2) and (3) we have

\[S(x_{2k+1}, x_{2k+1}, x_{2k+2}) + S(y_{2k+1}, y_{2k+1}, y_{2k+2}) \lesssim \frac{a_1 + a_4 + a_5}{1 - a_2 - a_3 - a_6 - a_7} [S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})] \]

Therefore

\[S(x_{2k+1}, x_{2k+1}, x_{2k+2}) + S(y_{2k+1}, y_{2k+1}, y_{2k+2}) \lesssim h[S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})] \]

where \(h = \frac{a_1 + a_4 + a_5}{1 - a_2 - a_3 - a_6 - a_7} < 1 \).

Also, we can show that

\[S(x_{2k+2}, x_{2k+2}, x_{2k+3}) + S(y_{2k+2}, y_{2k+2}, y_{2k+3}) \lesssim h[S(x_{2k+1}, x_{2k+1}, x_{2k+2}) + S(y_{2k+1}, y_{2k+1}, y_{2k+2})] \]

\[\lesssim h^2[S(x_{2k}, x_{2k}, x_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1})] \]

Continuing this way, we have

\[S(x_{n}, x_{n}, x_{n+1}) + S(y_{n}, y_{n}, y_{n+1}) \lesssim h[S(x_{n-1}, x_{n-1}, x_{n}) + S(y_{n-1}, y_{n-1}, y_{n})] \]

\[\lesssim h^2[S(x_{n-2}, x_{n-2}, x_{n-1}) + S(y_{n-2}, y_{n-2}, y_{n-1})] \]

\[\lesssim \cdots \lesssim h^n[S(x_0, x_0, x_1) + S(y_0, y_0, y_1)] \]

If \(S(x_n, x_n, x_{n+1}) + S(y_n, y_n, y_{n+1}) = S_n \), then

\[S_n \lesssim hS_{n-1} \lesssim h^2S_{n-2} \lesssim \cdots \lesssim h^nS_0 \]
So for $m > n$,

\[
S(x_n, x_m) + S(y_n, y_m) \lesssim s[2S(x_n, x_n, x_{n+1}) + S(x_{n+1}, x_{n+1}, x_m) \\
+ 2S(y_n, y_n, y_{n+1}) + S(y_{n+1}, y_{n+1}, y_m)]
\]

\[
= 2s[2S(x_n, x_n, x_{n+1}) + S(y_n, y_n, y_{n+1}) \\
+ sS(x_{n+1}, x_{n+1}, x_m) + S(y_{n+1}, y_{n+1}, y_m)]
\]

\[
\lesssim 2s[2S(x_n, x_n, x_{n+1}) + S(y_n, y_n, y_{n+1}) \\
+ s^2[2S(x_{n+1}, x_{n+1}, x_{n+2}) + S(x_{n+2}, x_{n+2}, x_m) \\
+ 2S(y_{n+1}, y_{n+1}, y_{n+2}) + S(y_{n+2}, y_{n+2}, y_m)]
\]

\[
\lesssim 2s[2S(x_n, x_n, x_{n+1}) + S(y_n, y_n, y_{n+1}) \\
+ 2s^2[2S(x_{n+1}, x_{n+1}, x_{n+2}) + S(y_{n+1}, y_{n+1}, y_{n+2}) \\
+ \ldots + 2s^{m-n-1}[S(x_{m-2}, x_{m-2}, x_{m-1}) + S(y_{m-2}, y_{m-2}, y_{m-1})] \\
+ s^{m-n}[S(x_{m-1}, x_{m-1}, x_m) + S(y_{m-1}, y_{m-1}, y_m)]
\]

\[
\lesssim 2s[2S(x_n, x_n, x_{n+1}) + S(y_n, y_n, y_{n+1}) \\
+ 2s^2[2S(x_{n+1}, x_{n+1}, x_{n+2}) + S(y_{n+1}, y_{n+1}, y_{n+2}) \\
+ 2s^3[2S(x_{n+2}, x_{n+2}, x_{n+3}) + S(y_{n+2}, y_{n+2}, y_{n+3})] \\
+ \ldots + 2s^{m-n-1}[S(x_{m-2}, x_{m-2}, x_{m-1}) + S(y_{m-2}, y_{m-2}, y_{m-1})] \\
+ 2s^{m-n}[S(x_{m-1}, x_{m-1}, x_m) + S(y_{m-1}, y_{m-1}, y_m)]
\]

\[
\lesssim 2\left\{sh^n + s^2h^{n+1} + s^3h^{n+2} + \ldots + s^{m-n}h^{m-1}\right\}S_0
\]

\[
< 2sh^n[1 + sh + (sh)^2 + \ldots]S_0
\]

\[
= \frac{2sh^n}{1 - sh}S_0 \to 0 \text{ as } n \to \infty
\]
Hence, which is a contradiction, so since

\[
S(x, x, f(x, y)) = l_1 > 0 \quad \text{and} \quad S(y, y, f(y, x)) = l_2 > 0.
\]

Using inequality (1)

\[
l_1 = S(x, x, f(x, y)) \leq s[2S(x, x, x_{n+1}) + S(x_{n+1}, x_{n+1}, f(x, y))] = s[2S(x, x, x_{n+1}) + S(f(x_n, y_n), f(x_n, y_n), f(x, y))]
\]

\[
\leq 2sS(x, x, x_{n+1}) + s \left[a_1 \frac{S(x_n, x_n, x) + S(y_n, y_n, y)}{2} + a_2 \frac{S(f(x_n, y_n), f(x_n, y_n), f(x, y))S(x_n, x_n, x)}{1 + S(x_n, x_n) + S(y_n, y_n)} + a_3 \frac{S(f(x_n, y_n), f(x_n, y_n), f(x, y))S(y_n, y_n, y)}{1 + S(x_n, x_n) + S(y_n, y_n)} + a_4 \frac{S(x_n, x_n, f(x_n, y_n))S(x_n, x_n, x)}{1 + S(x_n, x_n) + S(y_n, y_n)} + a_5 \frac{S(x_n, x_n, f(x_n, y_n))S(y_n, y_n, y)}{1 + S(x_n, x_n) + S(y_n, y_n)} + a_6 \frac{S(x, x, f(x, y))S(x_n, x_n, x)}{1 + S(x_n, x_n) + S(y_n, y_n)} + a_7 \frac{S(x, x, f(x, y))S(y_n, y_n, y)}{1 + S(x_n, x_n) + S(y_n, y_n)} \right].
\]

Since \(\{x_n\} \) and \(\{y_n\} \) are convergent to \(x \) and \(y \), therefore by taking limit as \(n \to \infty \) we get \(l_1 \leq 0 \), which is a contradiction, so \(|S(x, x, f(x, y))| = 0 \) which gives \(x = f(x, y) \).

Similarly, we can prove that \(y = f(y, x) \). Also, we can prove that \(x = g(x, y) \) and \(y = g(y, x) \).

Hence \((x, y) \) is a common coupled fixed point of \(f \) and \(g \).

In order to prove the uniqueness of the coupled fixed point, if possible let \((p, q) \) be the second common coupled fixed point of \(f \) and \(g \).

Then by using inequality (1), we have

\[
S(x, x, p) = S(f(x, y), f(x, y), g(p, q)) \leq \frac{a_1}{2} \{S(x, x, p) + S(y, y, q)\}
\]

\[
+ a_2 \frac{S(f(x, y), f(x, y), g(p, q))S(x, x, p)}{1 + S(x, x, p) + S(y, y, q)} + a_3 \frac{S(f(x, y), f(x, y), g(p, q))S(y, y, q)}{1 + S(x, x, p) + S(y, y, q)}
\]

\[
+ a_4 \frac{S(x, x, f(x, y))S(x, x, p)}{1 + S(x, x, p) + S(y, y, q)} + a_5 \frac{S(x, x, f(x, y))S(y, y, q)}{1 + S(x, x, p) + S(y, y, q)}
\]

\[
+ a_6 \frac{S(x, x, f(x, y))S(x, x, p)}{1 + S(x, x, p) + S(y, y, q)} + a_7 \frac{S(x, x, f(x, y))S(y, y, q)}{1 + S(x, x, p) + S(y, y, q)}.\]
Similarly, \((4) \) and \((5) \) we have

\[
S(x, x, p) + S(y, y, q) \lesssim \frac{a_1}{2 - a_1 - 2a_2 - 2a_3} [S(x, x, p) + S(y, y, q)]
\]

\[
\Rightarrow [1 - \frac{a_1}{2 - a_1 - 2a_2 - 2a_3}] [S(x, x, p) + S(y, y, q)] \lesssim 0
\]

\[
\Rightarrow \frac{2(1 - a_1 - a_2 - a_3)}{2 - a_1 - 2a_2 - a_3} [S(x, x, p) + S(y, y, q)] \lesssim 0
\]

Since \(a_1 + a_2 + a_3 < 1 \), \(\frac{2(1 - a_1 - a_2 - a_3)}{2 - a_1 - 2a_2 - 2a_3} > 0 \).

Hence \(|S(x, x, p) + S(y, y, q)| = 0 \),

which implies that \(x = p \) and \(y = q \) \(\Rightarrow (x, y) = (p, q) \).

Thus \(f \) and \(g \) have unique coupled common fixed point. This completes the proof.
Corollary 2.1. Let \((X, S)\) be a complete complex valued symmetric \(S_b\)-metric space with parameter \(s \geq 1\) and let the mapping \(f : X^2 \rightarrow X\) satisfy

\[
S(f(x, y), f(x, y), f(u, v)) \preceq a_1 \frac{S(x, x, u) + S(y, y, v)}{2} + a_2 \frac{S(f(x, y), f(x, y), f(u, v))S(x, x, u)}{1 + S(x, x, u) + S(y, y, v)} + a_3 \frac{S(f(x, y), f(x, y), f(u, v))S(y, y, v)}{1 + S(x, x, u) + S(y, y, v)} + a_4 \frac{S(x, x, f(x, y))S(x, x, u)}{1 + S(x, x, u) + S(y, y, v)} + a_5 \frac{S(x, x, f(x, y))S(y, y, v)}{1 + S(x, x, u) + S(y, y, v)} + a_6 \frac{S(u, u, f(u, v))S(x, x, u)}{1 + S(x, x, u) + S(y, y, v)} + a_7 \frac{S(u, u, f(u, v))S(y, y, v)}{1 + S(x, x, u) + S(y, y, v)}
\]

for all \(x, y, u, v \in X\) and \(a_i \geq 0\) with \(\sum_{i=1}^{7} a_i < 1\), \(i = 1, 2, \ldots, 7\). Then \(f\) has a unique coupled fixed point in \(X\).

Theorem 2.2. Let \((X, S)\) be a complete complex valued symmetric \(S_b\)-metric space with parameter \(s \geq 1\) and let the mappings \(f, g : X^2 \rightarrow X\) satisfy

\[
S(f(x, y), f(x, y), g(u, v)) \preceq \beta_1 \frac{S(x, x, u) + S(y, y, v)}{2} + \beta_2 \frac{S(x, x, f(x, y))S(u, u, g(u, v))}{1 + s[S(x, x, g(x, y) + S(u, u, f(u, v)) + S(x, x, u) + S(y, y, v))]
\]

(6)

for all \(x, y, u, v \in X\) and \(\beta_1, \beta_2\) are non-negative real numbers with \(\beta_1 + \beta_2 < 1\) and \(s < \frac{1-\beta_2}{\beta_1}\). Then \(f\) and \(g\) have unique common coupled fixed point.

Proof. Let \(x_0, y_0\) be arbitrary points. Define

\[
x_{2k+1} = f(x_{2k}, x_{2k}) \quad y_{2k+1} = f(y_{2k}, x_{2k})
\]

\[
x_{2k+2} = g(x_{2k+1}, y_{2k+1}) \quad y_{2k+2} = g(y_{2k+1}, x_{2k+1})
\]

for \(k = 0, 1, 2, \ldots\). Then

\[
S(x_{2k+1}, x_{2k+1}, x_{2k+2}) = S(f(x_{2k}, y_{2k}), f(x_{2k}, y_{2k}), g(x_{2k+1}, y_{2k+1}))
\]
\[\beta_1 \frac{S(x_{2k}, y_{2k}, y_{2k+1})}{2} + \beta_2 \frac{S(x_{2k}, y_{2k}, y_{2k+1}) S(x_{2k+1}, y_{2k+1})}{1 + S(x_{2k}, y_{2k+1}) + S(x_{2k+1}, y_{2k+1})} \]

\[= \beta_1 S(x_{2k}, y_{2k}, y_{2k+1}) + S(x_{2k+1}, y_{2k+1}) \]

\[+ \beta_2 \frac{S(x_{2k}, y_{2k}, y_{2k+1}) S(x_{2k+1}, y_{2k+1})}{1 + S(x_{2k}, y_{2k+1}) + S(x_{2k+1}, y_{2k+1})} \]

\[\geq \frac{\beta_1}{2} \{ S(x_{2k}, y_{2k}, y_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1}) \} + \beta_2 S(x_{2k+1}, y_{2k+1}, y_{2k+2}) \]

\[\Rightarrow (1 - \beta_2) S(x_{2k+1}, y_{2k+1}, y_{2k+2}) \geq \frac{\beta_1}{2} \{ S(x_{2k}, y_{2k}, y_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1}) \} \]

\[\Rightarrow S(x_{2k+1}, y_{2k+1}, y_{2k+2}) \geq \frac{\beta_1}{2(1 - \beta_2)} \{ S(x_{2k}, y_{2k}, y_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1}) \} \]

Similarly we can show that

\[S(y_{2k+1}, y_{2k+1}, y_{2k+2}) \geq \frac{\beta_1}{2(1 - \beta_2)} \{ S(x_{2k}, y_{2k}, y_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1}) \} \]

Adding (7) and (8) we have

\[S(x_{2k+1}, y_{2k+1}, y_{2k+3}) \geq \frac{\beta_1}{2(1 - \beta_2)} \{ S(x_{2k}, y_{2k}, y_{2k+1}) + S(y_{2k}, y_{2k}, y_{2k+1}) \} \]

where \(k = \frac{\beta_1}{1 - \beta_2} \).

Similarly, we can show that

\[S(x_{2k+2}, y_{2k+2}, y_{2k+3}) \geq k \{ S(x_{2k+1}, y_{2k+1}, y_{2k+3}) + S(y_{2k+1}, y_{2k+1}, y_{2k+3}) \} \]

Now, if \(S(x_n, x_{n+1}) + S(y_n, y_{n+1}) = S_n \) then

\[S_n \geq k S_{n-1} \geq k^2 S_{n-2} \geq \cdots \geq k^n S_0 \]

So, for \(m > n \) we have
Therefore \(\{x_n\} \) and \(\{y_n\} \) are Cauchy sequences in \(X \). Since \(X \) is complete \(S_b \)-metric space, there exist \(x, y \in X \) such that \(x_n \to x \) and \(y_n \to y \) as \(n \to \infty \).
Now, we will show that \(x = f(x, y) \) and \(y = f(y, x) \). Suppose on contrary that \(x \neq f(x, y) \) and \(y \neq f(y, x) \), so that \(S(x, x, f(x, y)) = l_1 > 0 \) and \(S(y, y, f(y, x)) = l_2 > 0 \). Consider the following and using inequality \((6)\), we get

\[
I_1 = S(x, x, f(x, y))
\]

\[
\preceq s[2S(x, x, x_{n+1}) + S(x_{n+1}, x_{n+1}, f(x, y))]
\]

\[
= sS(x, x, x_{n+1}) + sS(f(x, y), f(x, y), f(x, y))
\]

\[
\preceq sS(x, x, x_{n+1}) + s\left[\frac{\beta_1}{2} S(x_n, x_n, x) + S(y_n, y_n, y) \right]
\]

\[
+ \frac{\beta_2}{1 + s[S(x_n, x_n, f(x, y)) + S(x, x, x_{n+1}) + S(x_n, x_n, x) + S(y_n, y_n, y)]}
\]

Taking the limit as \(n \to \infty \) we get

\[
S(x, x, f(x, y)) \preceq 0
\]

Therefore

\[
S(x, x, f(x, y)) = 0
\]

which implies that \(x = f(x, y) \). Similarly, we can prove that \(y = f(y, x) \). Also, we can prove that \(x = g(x, y) \) and \(y = g(y, x) \). Hence, \((x, y)\) is a common coupled fixed point of \(f \) and \(g \).

In order to prove the uniqueness of the common coupled fixed point of \(f \) and \(g \), if possible let \((p, q)\) be the second common coupled fixed point of \(f \) and \(g \).

Then by using inequality \((6)\), we have

\[
S(x, x, p) = S(f(x, y), f(x, y), g(p, q))
\]

\[
\preceq \frac{\beta_1}{2} \left[S(x, x, p) + S(y, y, q) \right]
\]

\[
+ \frac{\beta_2}{1 + s[S(x, x, g(p, q)) + S(p, p, f(x, y)) + S(x, x, p) + S(y, y, q)]}
\]
\[\Rightarrow S(x, x, p) \preceq \frac{\beta_1}{2} \{S(x, x, p) + S(y, y, q)\} \]

\[\Rightarrow (1 - \frac{\beta_1}{2})S(x, x, p) \preceq \frac{\beta_1}{2}S(y, y, q) \]

(9)

\[\Rightarrow S(x, x, p) \preceq \frac{\beta_1}{2 - \beta_1}S(y, y, q) \]

Similarly

(10)

\[S(y, y, q) \preceq \frac{\beta_1}{2 - \beta_1}S(x, x, p) \]

Adding (9) and (10) we have

\[S(x, x, p) + S(y, y, q) \preceq \frac{\beta_1}{2 - \beta_1}[S(x, x, p) + S(y, y, q)] \]

\[\Rightarrow (1 - \frac{\beta_1}{2 - \beta_1})|S(x, x, p) + S(y, y, q)| \leq 0 \]

\[\Rightarrow 2(1 - \frac{\beta_1}{2 - \beta_1})|S(x, x, p) + S(y, y, q)| \leq 0. \]

But \(\frac{2(1 - \beta_1)}{2 - \beta_1} > 0\). Therefore \(|S(x, x, p) + S(y, y, q)| = 0\). Which implies that \(x = p\) and \(y = q\) \(\Rightarrow (x, y) = (p, q)\). Thus \(f\) and \(g\) have a unique common coupled fixed point.

\[\square \]

Corollary 2.2. Let \((X, S)\) be a complete complex valued symmetric \(S_b\)-metric space with parameter \(s \geq 1\) and let the mapping \(f : X^2 \rightarrow X\) satisfying

\[S(f(x, y), f(x, y), f(u, v)) \preceq \beta_1 \frac{S(x, x, u) + S(y, y, v)}{2} + \beta_2 \frac{S(x, x, f(x, y))S(u, u, f(u, v))}{1 + s[S(x, x, f(u, v) + S(u, u, f(x, y)) + S(x, x, u) + S(y, y, v)]} \]

for all \(x, y, u, v \in X\) and \(\beta_1, \beta_2\) are non-negative real numbers with \(\beta_1 + \beta_2 < 1\). Then \(f\) has a unique coupled fixed point.

Conflict of Interests

The author(s) declare that there is no conflict of interests.
REFERENCES

