

ON THE DIVISOR GRAPH OF FINITE COMMUTATIVE RING

P. D. KHANDARE ${ }^{1, *}$, S. M. JOGDAND ${ }^{2}$, R. A. MUNESHWAR ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, GES's S. B. V. College Borivali(W), Mumbai-400091(MH), India
${ }^{2}$ Department of Mathematics, S.S.G.M. College Loha, Nanded- 431708(MH), India
${ }^{3}$ P.G. Department of Mathematics, N.E.S. Science College Nanded-431602(MH), India
Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce a graphical structure of non empty finite commutative ring R called as divisor graph of R , denoted as $\mathbb{D}[R]$, is undirected simple graph with vertex set $\mathrm{V}=R-\{0,1\}$ and for distinct vertices $a, b \in V, a \sim b$ if and only if either $a \mid b$ or $b \mid a$, i.e. $\exists c \in R$ such that $a=b c$ or $b=a c$. We will discuss structure and properties of divisor graph of ring Z_{n}. Moreover, we also determine diameter, girth, eulerian, planar, clique number of the $\mathbb{D}\left[Z_{n}\right], \forall \mathrm{n}$. The main objective of this paper is to study interplay of ring theoretic properties of R with graph theoretic properties of $\mathbb{D}\left[Z_{n}\right]$.

Keywords: graph; Eulerian graph; connected graph; girth; clique number; chromatic number.
2010 AMS Subject Classification: 05C25, 05C45, 05C69, 05C07, 05C12.

1. Introduction

The study of zero divisor graph was initiated by I. Beck[6] in 1988. He introduced graph to commutative ring with vertex set as set of all zero divisors. Then Anderson and Livingston[4] has changed vertex set which was defined by I.Beck[6] and studied the properties of zero divisor

[^0]graph over the commutative ring. Later on many researcher studied properties of graph on various algebraic structures such as group, semi group, commutative ring, non commutative ring, field, vector space in [1, 2, 3, 5, 7, 8, 9]. Recently B. S. Reddy, R. S. Jain, N. Laxmikanth[3], studied Eulerians of zero divisor graph Z_{n} for natural number n. In the current era S. Akabari, M. Habibi[9], studied zero divisor graph on ideals of the ring. Later on Anshuman Das studied Non-Zero Component Union Graph of a Finite Dimensional Vector Space[1], Subspace Inclusion Graph of a Vector Space[2], R. A. Muneshwar and K. L. Bondar[7], introduced an open subset inclusion graph of a topological space and discussed some properties of this graph such as diameter, girth, connectivity, maximal independent sets, different variants of domination number, clique number and chromatic number, degree and connectivity. R. A. Muneshwar and K. L. Bondar[8], introduced an the intersection graph of a topological space and proved that if (X, τ) is the discrete topological space and $|X| \geq 3$ then this graph is a connected and also find its diameter and girth.

In this paper we introduced graph on ring of integer modulo n , denoted by $\mathbb{D}\left[Z_{n}\right]$ called divisor graph of Z_{n} and studied some properties of the graph $\mathbb{D}\left[Z_{n}\right]$. The main objective of this paper is to study interplay of ring theoretic properties of Z_{n} with graph theoretic properties of $\mathbb{D}\left[Z_{n}\right]$.

2. Definition and Preliminaries

In this section we recall some notations and basic definitions of ring theory and graph theory. An ordered pair $G=(V, E)$ is called graph where V is set of vertices and E is set of edges, is the binary relation on V. If there is an edge between any two vertices u, v of V then they are said to be adjacent vertices. $H=(W, F)$ is subgraph of $G=(V, E)$ where $\phi \neq W \subseteq V$ and $F \subseteq E$. If V is finite, the graph G is said to be finite, otherwise graph is infinite. If all the vertices of G are pairwise adjacent, then G is said to be complete graph. A complete subgraph of a graph G is called a clique. A clique with maximum size is called clique number of graph G. It is written as $\omega(G)$.. The chromatic number of G, denoted as $\chi(G)$, is the minimum number of colours needed to label the vertices so that the adjacent vertices receive different colours. A graph is said to be triangulated if for any vertex u in V, there exist v, w in V, such that (u, v, w) is a triangle. A path in graph G is a sequence of adjacent vertices and edges.For vertices x and y of G , let $d(x, y)$ be the lenth of a shortest path from vertex x to y. clearly $d(x, x)=0$
and $d(x, y)=\infty$ if there is no path connecting x and y.The diameter of a graph G is defined as $\operatorname{diam}(G)=\operatorname{Sup}\{d(u, v): u$ and v are vertices of $G\}$, is the largest distance between pairs of vertices of the graph, if it exists. Otherwise, $\operatorname{diam}(G)$ is defined as ∞. The girth of a graph is the length of its shortest cycle, if it exists. Otherwise, it is defined as ∞. If a and b belong to a commutative ring R and a is non zero, we say that a divides b (or that a is a factor of b), write as $a \mid b$, if there exists an element c in R such that $b=a c$. If a does not divide b, we write $a \nmid b$. A zero divisor is a element r in a ring R, such that $r \cdot s=0$ for some non zero s in R. The greatest integer function $[x]$ indicates an integral part of the real number x which is the nearest and smallest integer to x. For $n \geqslant 1$, the Euler's phi function $\phi(n)$ denote the number of positive integers not exceeding n that are relatively prime to n.

3. Divisor Graph of Ring

Definition 3.1 Let R be any commutative ring. We associate a simple undirected graph to ring R denoted by $\mathbb{G}[R]$ with vertex set $V=R$ and for non zero $r_{1}, r_{2} \in V, r_{1} \sim r_{2}$ if and only if either $r_{1} \mid r_{2}$ or $r_{2} \mid r_{1}$, i.e. $\exists r_{3} \in R$ such that $r_{1}=r_{2} r_{3}$ or $r_{2}=r_{1} r_{3}$.

Note that if $r \neq 0 \in R$, then $r \sim 0$ and $r \sim 1$ (if unity is exist). To avoid this triviality we will redefine vertex set.

Let divisor graph of ring with vertex set $V=\{r \in R \mid r \neq 0, r \neq 1\}$ and for distinct $r_{1}, r_{2} \in V, r_{1} \sim$ r_{2} or $\left(r_{1}, r_{2}\right) \in E$ if and only if either $r_{1} \mid r_{2}$ or $r_{2} \mid r_{1}$. We will denote this graph by $\mathbb{D}[R]$ and observe that $\mathbb{D}[R]$ is induced subgraph of $\mathbb{G}[R]$. We feel $\mathbb{D}[R]$ will better illustrate the structure of ring R.
Example 3.2 For $\mathrm{n}=2$, the $\mathbb{D}\left[Z_{n}\right]$ is empty graph. Since vertex set of $\mathbb{D}[R]$ is $R-\{0,1\}$, hence $\mathbb{D}\left[Z_{n}\right]$ is empty graph.
Example 3.3 For $\mathrm{n}=3, \mathbb{D}\left[Z_{n}\right]$ is single vertex graph.
Example 3.4 For $\mathrm{n}=4,5,6, \mathbb{D}\left[Z_{n}\right]$ is as follows,

Figure 1. $\mathbb{D}\left[z_{4}\right]$

Figure 2. $\mathbb{D}\left[Z_{5}\right]$

Figure 3. $\mathbb{D}\left[Z_{6}\right]$

After above discussion we will describe structure of $\mathbb{D}\left[Z_{n}\right]$.

Structure of $\mathbb{D}\left[Z_{n}\right]$

Let R be ring of integer modulo n , where $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$. A vertex set $V\left(\mathbb{D}\left[Z_{n}\right]\right), V=$ $Z_{n}-\{0,1\}=\{2,3, \cdots,(n-1)\}=A \cup B$, where $A=U(R)-\{1\}$ and $B=Z(R)-\{0\}$. Since by definition 3.1, units are adjacent to each other, then we divide set of zero divisor into subsets V_{i},
$B=\cup V_{i}$, where $V_{i}=\left\langle p_{i}\right\rangle, i=1,2,3, \cdots, m$. Since not all vertices of V_{i} are adjacent to vertices of V_{j}. Define subsets of V_{i} by such that for $i|n, j| n, W_{i}=\{k(i) \mid k \in R, k \notin\langle j\rangle, i \nmid j, j \nmid i, i \neq j\}$ and $W_{i} \cap W_{j}=\phi$. Let W_{i} and W_{j} are subset of vertex set V, then $W_{i} \leftrightarrow W_{j}$ denote that each vertex of W_{i} is adjacent to every vertex of W_{j} and $W_{i} \leftrightarrow W_{j}$ denote that no vertex of W_{i} is adjacent to any vertex of W_{j}. A loop at subset A of V denote vertices of A are mutually adjacent.

Figure 4. $\mathbb{D}\left[Z_{P^{k}}\right]$

Figure 5. $\mathbb{D}\left[Z_{p_{1} p_{2} . . p_{m}}\right]$

Theorem 3.5 If R is ring and I is subring of R then $\mathbb{D}[I]$ is subgraph of $\mathbb{D}[R]$.
Proof: The proof is follows from definition 3.1

Theorem 3.6 If $u \in U(R)$, where $U(R)$ is set of units of R then $u \sim y, \forall y \in R$.
Proof: Let u is unit element and y any other element in ring R then by definition of unit, we get $u^{-1} \in R, u \cdot u^{-1}=1$. Multiplying this expression by y, we obtain $y \cdot u \cdot u^{-1}=y \cdot 1$, As R is commutative, finally we get expression $u \cdot k=y$, where $k=y \cdot u^{-1}$. Thus by divisibility relation $u \sim y, \forall y \in R$. Hence theorem is proved.

Corollary 3.7 If vertices u and v are associates in ring R, then $u \sim v$.
Proof: Let u and v are associate in R then there exists unit $w \in R$ such that $u=w v$. Thus $u \sim v$. Since w is unit in R therefore $\exists w^{-1}$ such that $w^{-1} u=w^{-1} w v$ i.e. $w^{-1} u=v$. Hence $v \sim u$.

Corollary 3.8 If $U(R)$ is set of unit element of R then $\mathbb{D}[U(R)]$ is complete subgraph of $\mathbb{D}[R]$
Proof: Let R be finite ring and $U(R)$ be its set of unit elements. Let $u, v \in U(R)$ are any two distinct elements then from theorem 3.6, $u \sim v, \forall u, v \in U(R)$. Thus $\mathbb{D}[U(R)]$ is complete subgraph of $\mathbb{D}[R]$.

Theorem 3.9 $\mathbb{D}\left[Z_{n}\right]$ is connected graph.
Proof: Let R is ring of integer modulo n and $r_{1}, r_{2} \in V\left(\mathbb{D}\left[Z_{n}\right]\right)$.
Claim: There exits a path connecting r_{1} and r_{2}.
Since elements of Z_{n} are either unit or a zero divisor. If either $r_{1} \in U(R)$ or $r_{2} \in U(R)$ then theorem 3.6, shows that $r_{1} \sim r_{2}$. If $r_{1}, r_{2} \in Z^{*}(R)$ and $r_{1} \nsim r_{2}$, then $\exists r_{3} \in U(R)$ such that $r_{1} \sim r_{3} \sim r_{2}$. Hence we obtain path connecting r_{1} and r_{2}. This show that $\mathbb{D}\left[Z_{n}\right]$ is connected graph.

Theorem 3.10 $\mathbb{D}\left[Z_{n}\right]$ is triangulated for $n \geq 5$ and not triangulated for $n=1,2,3,4,6$.
Proof: At first we show that $\mathbb{D}\left[Z_{n}\right]$ is not triangulated for $n=6$.
case I: For $\mathrm{n}=6$, a vertex set V is $\{2,3,4,5\}$ where $A=\{5\}, B=\{2,3,4\}$, then from figure 3, vertex $3 \sim 5$ only. i.e. 3 is not vertex of triangle. Hence $\mathbb{D}\left[Z_{n}\right]$ is not triangulated for $n=6$
case II: For $n=1,2,3,4$ A vertex set is $\phi,\{2\}$ and $\{2,3\}$ respectively. Therefore $\mathbb{D}\left[Z_{n}\right]$ is not triangulated.
case III: For $n \geq 5$, number of units are $\phi(5)=5-1=4$. Since all units adjacent to every elements of ring. i.e. every vertex is vertex of triangle and hence theorem is proved.

4. Divisor Graph of Z_{n}

Theorem 4.1 $\mathbb{D}[R]$ is empty graph if and only if $R=Z_{1}, R=Z_{2}$.
Proof: The proof follows from definition 3.1.
Theorem 4.2 For ring of integer modulo $\mathrm{n}, \mathbb{D}\left[Z_{n}\right]$ is complete graph iff $n=p^{k}, k \geq 1$.
Proof: Since $V\left(\mathbb{D}\left[Z_{n}\right]\right), V=\{2,3, \ldots,(n-1)\}=A \cup B$ where $A=U(R)-\{1\}$ and $B=$ $Z(R)-\{0\}$. Let $u, v \in V$ be arbitrary vertices and we claim that $u \sim v$. If either u or v in A then from theorem 3.6, vertex $u \sim v$. If both $u, v \in B$, then for some $r_{1}, r_{2} \in R$ such that $u<v, u=r_{1} p$ and $v=r_{2} p$. If v is not multiple of u and $\operatorname{gcd}(u, v)=p$ then $\operatorname{gcd}\left(r_{1}, r_{2}\right)=1$. If possible both r_{1} and r_{2} are in $Z(R)$ then $\operatorname{gcd}\left(r_{1}, r_{2}\right)=p$ or $\operatorname{gcd}\left(r_{1}, r_{2}\right)=q$. Which is contradiction to our supposition. Hence either r_{1} or r_{2} will be unit, if r_{1} is unit, we obtain vertex $r_{3} \in R$ such that $r_{2}=r_{3} r_{1}$, Multiply last expression by p. Finally we obtain $u=r_{3} v$. Thus $\mathbb{D}\left[Z_{p^{k}}\right]$ is complete graph.

Conversely consider $\mathbb{D}\left[Z_{n}\right]$ is complete graph and assume that, $n \neq p^{k}$ i.e. n can be expressed as product of power of distinct primes. For simplicity let $n=p q, p \neq q$. Since $p, q \in V$ and $p \nmid q$, hence graph is disconnected. Which is contradiction. Thus $\mathbb{D}\left[Z_{n}\right]$ is complete graph if and only if $n=p^{k}$.

Corollary 4.3 If R is finite field then $\mathbb{D}[R]$ is complete graph. Converse need not be true.
Proof: The proof follows from theorem 4.2. For converse see figure 1.
Theorem 4.4 For $n=p^{k}$, zero divisor graph $\Gamma\left(Z_{n}\right)$ is complete subgraph of divisor graph $\mathbb{D}\left[Z_{n}\right]$.
Proof: Since $V=Z_{n}-\{0,1\}=A \cup B$ where $A=U(R)-\{1\}$ and $B=Z(R)-\{0\}$ i.e. $V\left(\Gamma\left[Z_{n}\right]\right) \subseteq V\left(\mathbb{D}\left[Z_{n}\right]\right)$ and by theorem $4.2, \mathbb{D}\left[Z_{p^{k}}\right]$ is complete graph. Thus theorem is proved.

Theorem 4.5 The divisor graph $\mathbb{D}\left[Z_{p^{k}}\right]$ is Eulerian graph if p is odd prime.
Proof: Since by theorem 4.2, divisor graph $\mathbb{D}\left[Z_{p^{k}}\right]$ is complete graph $K_{p^{k}-2}$, then of every vertex has degree $p^{k}-3$. If p is odd[even] then $p^{k}-3$ is even[odd]. Hence by theorem 2.4[3], $\mathbb{D}\left[Z_{p^{k}}\right]$ is Eulerian if p is odd prime.
Theorem 4.6 If R is ring of integer modulo n and $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$, then for $d_{i} \mid n$,

$$
\begin{cases}u_{i} \sim v_{i} & \text { if } u_{i}, v_{i} \in W_{d_{i}} \\ u_{i} \nsim v_{j} & \text { if } u_{i} \in W_{p_{i}^{k_{i}}} \text { and } v_{j} \in W_{p_{j}}, i \neq j .\end{cases}
$$

Proof: Let $R=Z_{n}$ and d_{i} be divisors of $\mathrm{n} \forall i$
Case I: Let $W_{d_{i}}=\left\{s_{i}\left(d_{i}\right) \mid s_{i} \in R, s_{i} \notin<d_{j}>, d_{i} \nmid d_{j}, d_{j} \nmid d_{i}, i \neq j\right\}$ and $u_{i}, v_{i} \in W_{d_{i}}$ be any two vertices, then for some choice of $r_{1}, r_{2} \in R, u_{i}=r_{1} d_{i}, v_{i}=r_{2} d_{i}$. If $u_{i} \mid v_{i}$ then from definition 3.1, $u_{i} \sim v_{i}$. If v_{i} is not multiple of u_{i} then $\operatorname{gcd}\left(u_{i}, v_{i}\right)=d, \operatorname{gcd}\left(r_{1}, r_{2}\right)=d^{\prime}$ such that $d_{i}\left|d^{\prime}\right| d$, Note that s_{i} is either multiple of d_{i} or a unit element. Choose $r_{1}^{\prime}, r_{2}^{\prime} \in R$, such that $r_{1}=r_{1}^{\prime} d^{\prime}, r_{2}=r_{2}^{\prime} d^{\prime}, \operatorname{gcd}\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=d^{\prime \prime}$ and $d_{i}\left|d^{\prime \prime}\right| d^{\prime} \mid d$. Continue this fassion, after k steps we obtain $\operatorname{gcd}\left(r_{1}^{(k)}, r_{2}^{(k)}\right)=1$ and $1\left|d_{i}\right| \cdots d^{\prime \prime}\left|d^{\prime}\right| d$, where either $r_{1}^{(k)}$ or $r_{2}^{(k)}$ is unit element. If $r_{1}^{(k)}$ is unit then by theorem 3.6, $r_{2}^{(k)}=k \dot{r}_{1}^{(k)}$ for some $k \in R$. Hence by substituting this values we get $v_{i} \mid u_{i}$. Thus $v_{i} \sim u_{i}$.
Case III: Let $u_{i} \in W_{p_{i}}{ }_{k_{i}}, v_{j} \in W_{p_{j}}, i \neq j$, where $W_{p_{i}^{k_{i}}}=\left\{s_{i}\left(p_{i}^{k_{i}}\right) \mid s_{i} \in R, s_{i} \notin<p_{j}>, i \neq j\right\}$, $W_{p_{j}^{k_{j}}}=\left\{s_{j}\left(p_{j}^{k_{j}}\right) \mid s_{j} \in R, s_{j} \notin<p_{i}>, i \neq j\right\}$. Assume that, $u_{i} \sim v_{j}$ then either $u_{i} \mid v_{j}$ or $v_{j} \mid u_{i}$. i.e. $v_{j} \in W_{p_{i}^{k_{i}}}$ or $u_{i} \in W_{p_{j}{ }_{j}}$. Which is contradiction to assumption. Hence $u_{i} \nsim v_{j}$.

Theorem 4.7 If $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}, k_{i} \geq 2$, then $\Gamma\left(Z_{n}\right)$ is not subgraph of $\mathbb{D}\left[Z_{n}\right]$.
Proof: Let $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$ and $V=A \cup B$, where $A=U(R)-\{1\}$ and $B=Z(R)-\{0\}$. It is observed that B is vertex set of zero divisor graph. Then we obtain $u=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m-1}^{k_{m-1}}$ and $v=p_{m}$ in set B , such that $u \cdot v=0$. i.e. $u \sim v$ in $\Gamma\left(Z_{n}\right)$, but $u \nsim v$ in $\mathbb{D}[R]$, Since $u \nmid v$. Thus result is valid.

Theorem 4.8 If $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}, m>1$ then $\mathbb{D}\left[Z_{n}\right]$ is not Eulerian graph if p_{i} is even prime for some i.
Proof: Let $R=Z_{n}$ and $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$ and vertex set of $\mathbb{D}\left[Z_{n}\right], V=A \cup B$ where $A=U(R)-\{1\}, B=Z(R)-\{0\}$ and $|A|=\phi(n)-1,|B|=n-\phi(n)+1$. Suppose that p_{1} is even prime number then then all multiples of p_{1} and all units are adjacent to p_{1}. Therefore

$$
\begin{aligned}
\operatorname{deg}\left(p_{1}\right) & =|A|+\left[\frac{n}{p_{1}}\right]-2 .(\because V=R-\{0,1\}) \\
& =\text { even }-1+\text { even }-2 \\
& =\text { odd }
\end{aligned}
$$

Hence by theorem 2.4[3], It shows that, $\mathbb{D}[R]$ is not Eulerian if p_{i} is even prime for some i.

5. Diameter and Girth of $\mathbb{D}\left[Z_{n}\right]$:

Theorem 5.1 If R is ring of integer modulo n then

$$
\operatorname{diam}(\mathbb{D}[R])=\left\{\begin{aligned}
\infty & \text { if } n \leq 3 \\
1 & \text { if } n>3, n \doteq p^{k} \\
2 & \text { if } n>3, n \neq p^{k}
\end{aligned}\right.
$$

Proof: In ring Z_{n}, The co-totient function $\phi(n)$ and $n-\phi(n)$ counts no. of units and no.of zero divisors respectively. Since $\operatorname{Diam}(G)=\operatorname{Sup}\{d(u, v): u, v$ are vertices of graph $\}$. Let $n \leq 3$, a vertex V is either empty or a singleton set, $\operatorname{Diam}\left(\mathbb{D}\left[Z_{n}\right]\right)=\infty$. If $n=p^{k}$ then by theorem 4.2, divisor graph $\mathbb{D}\left[Z_{n}\right]$ is complete graph then $\operatorname{Diam}\left(\mathbb{D}\left[Z_{n}\right]\right)=1$. Now for $n>3, n \neq p^{k}$ divisor graph $\mathbb{D}\left[Z_{n}\right]$ is not a complete graph. i.e. we will get non adjacent vertices (say) r_{1}, r_{2}. Then by theorem 3.6, $\exists r_{3} \in R$ such that $r_{1} \sim r_{3} \sim r_{2}$. This shows that $\operatorname{Diam}\left(\mathbb{D}\left[Z_{n}\right]\right)=2$.

Theorem 5.2 If R is ring of integer modulo n then

$$
\operatorname{girth}\left(\mathbb{D}\left[Z_{n}\right]\right)=\left\{\begin{aligned}
\infty & \text { if } n<5 \\
3 & \text { if } n \geq 5
\end{aligned}\right.
$$

Proof: Let $n<5,\left|V\left(\mathbb{D}\left[Z_{n}\right]\right)\right|<3$ which is not enough to form cycle and hence $\operatorname{girth}(\mathbb{D}[R])=\infty$. Let $n \geq 5$ consider following cases.

Case I: If $n \geq 5, n=p^{k}$ then by theorem $4, \mathbb{D}\left[Z_{p^{k}}\right]$ is complete graph of order $K_{p^{k}-2}$. Thus $\operatorname{girth}\left(\mathbb{D}\left[Z_{n}\right]\right)=3$.

Case II: If $n \geq 5, n \neq p^{k}, n \neq 6$. Vertex set V contains more than two unit elements. These unit elements will form 3-cycle with any other elements of ring. For $n=6$ see FIG. 3, Thus $\operatorname{girth}\left(\mathbb{D}\left[Z_{n}\right]\right)=3$.

6. Clique Number of Z_{n} :

In this section, we calculate clique number of divisor graph. A clique number is largest complete subgraph of graph.
Theorem 6.1 If $n=p^{k}, \omega\left(\mathbb{D}\left[Z_{n}\right]\right)=p^{k}-2$, for some integer $k \geqslant 1$.
Proof: Since $\mathbb{D}\left[Z_{p^{k}}\right]$ is complete graph of order $p^{k}-2$. This shows that $\omega\left(\mathbb{D}\left[Z_{p^{k}}\right]\right)=p^{k}-2$.
Theorem 6.2 If $n=p_{1} p_{2}, p_{1}<p_{2}$ then $\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\phi(n)-1+p_{2}-1$.

Proof: Let R is ring of integer modulo n and $n=p_{1} p_{2}$. Let vertex set $V=A \cup B$, where $A=U(R)-\{1\}$ and $B=Z(R)-\{0\}$. Let the subset B be divided as $B=W_{p_{1}} \cup W_{p_{2}}$, where $W_{p_{1}}=\left\{k_{1} p_{1} \mid k_{1} \neq 0 \in R, k_{1} \notin\left\langle p_{2}\right\rangle\right\}$ and $W_{p_{2}}=\left\{k_{2} p_{2} \mid k_{2} \neq 0 \in R, k_{2} \notin\left\langle p_{1}\right\rangle\right\}$. From figure 5, for $u, v \in W_{p_{i}}, i=1,2$ then $u \sim v$. As $p_{1}<p_{2}$, then multiples of p_{1} are more than multiples of p_{2}. Hence by theorem 3.6, maximum clique is of order $|A|+\left|W_{p_{1}}\right|=\phi(n)-1+p_{2}-1$. Thus $\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\phi(n)-1+p_{2}-1$.

Theorem 6.3 For $n=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{m}$, where $p_{1}<p_{j}, j=2,3 \cdots, m$ then

$$
\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\phi(n)-1+\left(p_{m}-1\right)\left[\left(p_{m-1}-1\right)\left[\ldots\left[\left(p_{2}-1\right)+1\right] \ldots\right]+1\right]
$$

Proof: Let R is ring of integer modulo n and $n=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{m}$ Then let $A=U(R)-\{1\}$ and $Z(R)=\cup_{i} V_{i}$ such that $V_{i}=\left\langle p_{i}\right\rangle, i=1,2, \ldots, m$, Since $p_{1} p_{j} \nmid p_{1} p_{s}, j \neq s, s=j=2,3, \ldots, m$ and $p_{1}\left|p_{1} p_{2}\right| p_{1} p_{2} p_{3}\left|\cdots p_{1} p_{2} \cdots p_{(m-2)}\right| p_{1} p_{2} \cdots p_{(m-1)}$. We delete some vertices which makes problem to form complete subgraph. From figure 5 and theorem 4.6, $W_{p_{1}} \leftrightarrow W_{p_{1} p_{2}} \leftrightarrow$ $W_{p_{1} p_{2} p_{3}} \cdots \leftrightarrow W_{p_{1} p_{2} p_{3} \cdots p_{p_{(m-1)}}}$. Therefore subset $W_{p_{1}} \cup W_{p_{1} p_{2}} \cup W_{p_{1} p_{2} p_{3}} \cup \cdots \cup W_{p_{1} p_{2} \ldots p_{(m-1)}} \cup A$ forms maximum clique in $\mathbb{D}\left[Z_{n}\right]$.

Thus $\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=|A|+\left|W_{p_{1}}\right|+\left|W_{p_{1} p_{2}}\right|+\cdots+\left|W_{p_{1} p_{2} p_{3} \cdots p_{(m-1)}}\right|$.
To determine formula consider following values of n.
Case I: Let $n=p_{1} \cdot p_{2} \cdot p_{3}$ then $W_{p_{1}}=\left\{k \cdot\left(p_{1}\right) \mid k \in R, k \notin\left\langle p_{j}\right\rangle, j \neq 2,3\right\}$
and $W_{p_{1} p_{2}}=\left\{k \cdot\left(p_{1} p_{2}\right) \mid k \notin\left\langle p_{z}\right\rangle z \neq 1,2\right\}$ Since $p_{1} p_{2} \nmid p_{1} p_{3}$. Therefore set $W_{p_{1}} \cup W_{p_{1} p_{2}}$, forms largest complete subgraph and

$$
\begin{aligned}
\left|W_{p_{1}}\right| & =\left[\frac{n}{p_{1}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2} p_{3}}\right] \\
& =p_{2} p_{3}-p_{3}-p_{2}+1 \\
& =p_{3}\left(p_{2}-1\right)-\left(p_{2}-1\right) \\
& =\left(p_{2}-1\right)\left(p_{3}-1\right) \\
\left|W_{p_{1} p_{2}}\right| & =\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{2} p_{3}}\right] \\
& =\left(p_{3}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =|A|+\left|W_{p_{1}} \cup W_{p_{1} p_{2}}\right| \\
& =|A|+\left|W_{p_{1}}\right|+\left|W_{p_{1} p_{2}}\right| \\
& =\phi(n)-1+\left[\frac{n}{p_{1}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{2} p_{3}}\right] \\
& =\phi(n)-1+\left(p_{2}-1\right)\left(p_{3}-1\right)+\left(p_{3}-1\right) \\
& =\phi(n)-1+\left(p_{3}-1\right)\left[\left(p_{2}-1\right)+1\right]
\end{aligned}
$$

Case II: Let $n=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}$ then observe that $W_{p_{1}} \cup W_{p_{1} p_{2}} \cup W_{p_{1} p_{2} p_{3}}$ form largest complete subgraph.

$$
\begin{aligned}
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =|A|+\left|W_{p_{1}} \cup W_{p_{1} p_{2}} \cup W_{p_{1} p_{2} p_{3}}\right| \\
& =|A|+\left|W_{p_{1}}\right|+\left|W_{p_{1} p_{2}}\right|+\left|W_{p_{1} p_{2} p_{3}}\right| \\
& =\phi(n)-1+\left[\frac{n}{p_{1}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{3}}\right]-\left[\frac{n}{p_{1} p_{4}}\right]+\left[\frac{n}{p_{1} p_{2} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2} p_{4}}\right] \\
& +\left[\frac{n}{p_{1} p_{3} p_{4}}\right]-\left[\frac{n}{p_{1} p_{2} p_{3} p_{4}}\right]+\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{2} p_{3}}\right]-\left[\frac{n}{p_{1} p_{2} p_{4}}\right]+\left[\frac{n}{p_{1} p_{2} p_{3} p_{4}}\right] \\
& +\left[\frac{n}{p_{1} p_{2} p_{3}}\right]-\left[\frac{n}{p_{1} p_{2} p_{3} p_{4}}\right] \\
& =\phi(n)-1+\left(p_{2}-1\right)\left(p_{3}-1\right)\left(p_{4}-1\right)+\left(p_{3}-1\right)\left(p_{4}-1\right)+\left(p_{4}-1\right) \\
& =\phi(n)-1+\left(p_{4}-1\right)\left[\left(p_{2}-1\right)\left(p_{3}-1\right)+\left(p_{3}-1\right)+1\right] \\
& =\phi(n)-1+\left(p_{4}-1\right)\left[\left(p_{3}-1\right)\left[\left(p_{2}-1\right)+1\right]+1\right]
\end{aligned}
$$

Therefore we may conclude that, if $n=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{m}$ then

$$
\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\phi(n)-1+\left(p_{m}-1\right)\left[\left(p_{m-1}-1\right)\left[\ldots\left[\left(p_{2}-1\right)+1\right] \ldots\right]+1\right]
$$

Theorem 6.4 For $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}, k_{1} \geq 1, p$,

$$
\begin{aligned}
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =\phi(n)-1+p_{1}^{k_{1}-1} p_{2}^{k_{2}-1} p_{3}^{k_{3}-1} \cdot . p_{m}^{k_{m}-1}\left(p_{2}-1\right)\left(p_{3}-1\right) \cdots\left(p_{m}-1\right) \\
& +p_{2}^{k_{2}-1} p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}-1
\end{aligned}
$$

Proof: Let $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$. Let d_{i} be divisors of n and consider the partition of vertex set $V=A \cup_{i} T_{d_{i}}$, where, $T_{d_{i}}=\left\{s\left(d_{i}\right) \mid s \in R, s \notin<d_{j}>, i \neq j, d_{i} \nmid d_{j}, d_{j} \nmid d_{i}\right\}$. It is clear that if $k_{i}=1 \forall i$ then $T_{d_{i}}=W_{d_{i}}$. Since $p_{i}^{k_{i}} \nmid p_{i} p_{j}, k_{i}>1, i, j=2,3, \cdots, m, i \neq j$ but $p_{1}^{k_{1}} p_{2} \mid p_{1}^{k_{1}} p_{2} p_{3} \cdots p_{m}$.

Hence from theorem 4.6, $T_{p_{1}} \cup T_{p_{1}^{k_{1}} p_{2}} \cup T_{p_{1}^{k_{1} p_{2} p_{3}}} \cup \cdots \cup T_{p_{1}^{k_{1} p_{2} p_{3} \cdots p_{m}}}$ forms maximum clique in $\mathbb{D}\left[Z_{n}\right]$. To determine generalised formula consider the following cases.
Case I : if $n=p_{1}^{k_{1}} p_{2}, k_{1}>1$

$$
\begin{aligned}
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =|A|+\left|T_{p_{1}}\right|+\left|T_{p_{1}^{k_{1}} p_{2}}\right| \\
& =\phi(n)-1+\left[\frac{n}{p_{1}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]+0 \\
& =\phi(n)-1+p_{1}^{k_{1}-1} p_{2}-p_{1}^{k_{1}-1} \\
& =\phi(n)-1+p_{1}^{k_{1}-1}\left(p_{2}-1\right)
\end{aligned}
$$

Case II: if $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}}, k_{1}>1$, Since $p_{1}^{k_{1}} p_{2} \mid p_{1}^{k_{1}} \cdot p_{2}^{k_{2}}$ and $p^{k} \nmid p_{1} p_{2}$ then

$$
\begin{aligned}
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =|A|+\left|T_{p_{1}}\right|+\left|T_{p_{1}^{k_{1}} p_{2}}\right| \\
& =\phi(n)-1+\left[\frac{n}{p_{1}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]+\left[\frac{n}{p_{1}^{k_{1}} p_{2}}\right]-\left[\frac{n}{p_{1}^{k_{1}} p_{2}^{k_{2}}}\right] \\
& =\phi(n)-1+p_{1}^{k_{1}-1} p_{2}^{k_{2}}-p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}+p_{2}^{k_{2}-1}-1 \\
& =\phi(n)-1+\left[p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}\left(p_{2}-1\right)\right]+p_{2}^{k_{2}-1}-1
\end{aligned}
$$

case III: if $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}}$ then

$$
\begin{aligned}
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =|A|+\left|T_{p_{1}}\right|+\left|T_{p_{1}^{k_{1}} p_{2}}\right|+\left|T_{p_{1}^{k_{1}} p_{2} p_{3}}\right| \\
& =\phi(n)-1+p_{1}^{k_{1}-1} p_{2}^{k_{2}-1} p_{3}^{k_{3}-1}\left(p_{2}-1\right)\left(p_{3}-1\right)+p_{2}^{k_{2}-1} p_{3}^{k_{3}}-1 .
\end{aligned}
$$

By observing above value of clique number we conclude the following
if $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$ then

$$
\begin{aligned}
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =\phi(n)-1+p_{1}^{k_{1}-1} p_{2}^{k_{2}-1} p_{3}^{k_{3}-1} \cdots p_{m}^{k_{m}-1}\left(p_{2}-1\right)\left(p_{3}-1\right) \cdots\left(p_{m}-1\right) \\
& +p^{k_{2}-1} p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}-1
\end{aligned}
$$

7. Planarity and Chromatic Number of Z_{n} :

Theorem 7.1 $\mathbb{D}\left[Z_{n}\right]$ is planar graph if $n \leq 6$ and not planar graph if $n>6$.
Proof: Let $n>6$. Since vertex set is disjoint union of A and B where $A=U(R)-\{1\}$. For $n>6,|A| \geq 4$. These unit vertices forms complete subgraph K_{5} either with unit vertices or with zero divisors. Hence $\mathbb{D}\left[Z_{n}\right]$ is not planar graph if $n>6$. For $n \leq 6$ see figure 1,2,3.

Theorem 7.2 For positive integer $\mathrm{n}, \omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\chi\left(\mathbb{D}\left[Z_{n}\right]\right)$.
Proof: Let R be ring of integer modulo n. Since for any graph G, $\chi([G]) \geq \omega([G])$. We just need to prove $\chi([G]) \leq \omega([G])$. For this consider the following cases.
Case I: If $n=p^{k}$, then $\mathbb{D}[R]$ is complete graph. i.e. result is true.
Case II: If $n=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{m}$. Then vertex set can be rewrite as $V=A \cup B$ where $A=U(R)-$ $\{1\}$ and $B=Z(R)=\cup_{i} V_{i}$ such that $V_{i}=\left\langle p_{i}\right\rangle, i=1,2, \ldots, m$. We have, if $n=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{m}$ then

$$
\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=|A|+\left|W_{p_{1}}\right|+\left|W_{p_{1} p_{2}}\right|+\left|W_{p_{1} p_{2} p_{3}}\right|+\left|W_{p_{1} p_{2} \ldots p_{(m-1)}}\right|
$$

Where $W_{d_{i}}=\left\{s\left(d_{i}\right) \mid s \in R, s \notin<d_{j}>, i \neq j, d_{i} \nmid d_{j}, d_{j} \nmid d_{i}\right\}$ and $W_{i} \leftrightarrow W_{j}, i \nmid j, i \neq j$ and $W_{i} \leftrightarrow$ $W_{j}, i \mid j$. To generalised result start with $n=p_{1} p_{2}$,

Let $n=p_{1} p_{2}$ then vertex set $V=A \cup V_{1} \cup V_{2}$, where $V_{1}=W_{p_{1}}, V_{2}=W_{p_{2}},\left|W_{p_{1}}\right|=\left(p_{2}-1\right)$ and $\left|W_{p_{2}}\right|=\left(p_{1}-1\right)$. We have $A \longleftrightarrow W_{p_{1}}, A \longleftrightarrow W_{p_{2}}, W_{p_{1}} \longleftrightarrow W_{p_{2}}$ Hence total no. distinct color will be $|A|+\left|W_{p_{1}}\right|$. Thus we conclude that, $\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\chi\left(\mathbb{D}\left[Z_{n}\right]\right)$.

For $n=p_{1} p_{2} p_{3}$, We have,

$$
\begin{aligned}
& V=A \cup V_{1} \cup V_{2} \cup V_{3} \\
& V_{1}=W_{p_{1}} \cup S_{p_{1,2}} \cup S_{p_{1,3}} \cup S_{p_{1,2,3}}, \\
& V_{2}=W_{p_{2}} \cup S_{p_{1,2}} \cup S_{p_{1,3}} \cup S_{p_{1,2,3}} \\
& V_{3}=W_{p_{3}} \cup S_{p_{1,3}} \cup S_{p_{2,3}} \cup S_{p_{1,2,3}} \\
& \text { and } W_{p_{1}} \leftrightarrow W_{p_{2}}, W_{p_{1}} \leftrightarrow W_{p_{3}}, W_{p_{2}} \leftrightarrow W_{p_{3}}, W_{p_{1} p_{2}} \nrightarrow W_{p_{1} p_{3}}, W_{p_{1} p_{2}} \nrightarrow W_{p_{2} p_{3}}, W_{p_{2} p_{3}} \leftrightarrow W_{p_{1} p_{3}} \\
&\left|W_{p_{1}}\right|=\left[\frac{n}{p_{1}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{1} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2} p_{3}}\right] \\
&\left|W_{p_{2}}\right|=\left[\frac{n}{p_{2}}\right]-\left[\frac{n}{p_{1} p_{2}}\right]-\left[\frac{n}{p_{2} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2} p_{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\left|W_{p_{1}}\right|-\left|W_{p_{2}}\right| & =p_{2} p_{3}-p_{1} p_{3}-p_{2}+p_{1} \\
& =p_{2}\left(p_{3}-1\right)-p_{1}\left(p_{3}-1\right)=\left(p_{3}-1\right)\left(p_{2}-p_{1}\right)>0
\end{aligned}
$$

i.e. $\left|W_{p_{1}}\right|>\left|W_{p_{2}}\right|>\left|W_{p_{3}}\right|$ simillarly it is easy to show that $\left|W_{p_{1} p_{2}}\right|>\left|W_{p_{2} p_{3}}\right|>\left|W_{p_{1} p_{3}}\right|$. Hence same colour can be used for above non adjacent vertices. Therefore, for $n=p_{1} p_{2} p_{3}, \chi\left(\mathbb{D}\left[Z_{n}\right]\right)=$ $|A|+\left|W_{p_{1}}\right|+\left|W_{p_{1} p_{2}}\right|=\omega\left(\mathbb{D}\left[Z_{n}\right]\right)$. Thus we conclude that, result is true for $n=p_{1} p_{2} \cdots p_{m}$.
case III: Let $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$, then $p_{i}^{k_{i}} \nmid p_{i} p_{j}, i \neq j=1,2,3, \ldots, m$ but $p_{1}^{k_{1}} \cdot p_{2} \mid p_{1}^{k_{1}}$. $p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{m}^{k_{m}}$. Let the partition of vertex set $V=A \cup_{i} T_{d_{i}}$, where $T_{d_{i}}=\left\{s\left(d_{i}\right) \mid s \in R, s \notin<d_{j}>\right.$ $\left., i \neq j, d_{i} \nmid d_{j}, d_{j} \nmid d_{i}\right\}$. We have $p_{1}\left|p_{p}^{k_{1}} p_{2}\right| p_{1}^{k_{1}} p_{2} p_{3}|\cdots| \cdots \mid p_{1}^{k_{1}} p_{2} \cdots p_{m}$ and hence $T_{p_{1}} \cup T_{p_{1}^{k_{1}} p_{2}} \cup$ $T_{p_{1}^{k_{1}} p_{2} p_{3}} \cdots \cup T_{p_{1}^{k_{1}} p_{2} \cdots p_{m}}$.
Consider $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$, We have $V=T_{p_{1}} \cup T_{p_{1} p_{2}} \cup T_{p_{2}}$ such that $T_{p_{1} \leftrightarrow} \leftrightarrow T_{p_{2}}, T_{p_{1}} \leftrightarrow T_{p_{1}^{k_{1}} p_{2}}, T_{p_{2}} \leftrightarrow$ $T_{p_{1}^{k_{1}} p_{2}}$, and $T_{p_{1} p_{2}} \leftrightarrow T_{p_{1}^{k_{1}} p_{2}}$,

$$
\begin{aligned}
\left|T_{p_{1}}\right|-\left|T_{p_{2}}\right| & =p_{1}^{k_{1}-1} p_{2}^{k_{2}}-p_{1}^{k_{1}} p_{2}^{k_{2}-1} \\
& =p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}\left(p_{2}-p_{1}\right) \\
\left|T_{p_{1} p_{2}}\right| & =p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}-1 \\
\left|T_{p_{1}^{k_{1} p_{2}}}\right| & =p_{2}^{k_{2}-1}-1 \\
\omega\left(\mathbb{D}\left[Z_{n}\right]\right) & =|A|+\left|T_{p_{1}}\right|+\left|T_{p_{1}^{k_{1}} p_{2}}\right|
\end{aligned}
$$

Thus for $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}}$, we have shown that $\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\chi\left(\mathbb{D}\left[Z_{n}\right]\right)$. In this manner we may show that $\omega\left(\mathbb{D}\left[Z_{n}\right]\right)=\chi\left(\mathbb{D}\left[Z_{n}\right]\right), \forall n \in N$.

8. CONCLUSION

In this paper we introduced a divisor graph $\mathbb{D}[R]$ of a commutative ring and studied relationship of $\mathbb{D}[R]$ and ring R, Also learn the basic properties such as subgraph, connectedness, completeness, Eulerian graph, girth, diameter, clique number, chromatic number, planarity of graph etc.

CONFLICT OF Interests

The author(s) declare that there is no conflict of interests.

References

[1] A. Das, Non-zero component graph of a finite dimensional vector space, Commun. Algebra, 44 (2016), 3918-3926.
[2] A. Das, Subspace inclusion graph of a vector space, Commun. Algebra, 44 (2016), 4724-4731.
[3] B. S. Reddy, R. S. Jain, N. Laxmikanth, Eulerian of zero divisor graph $\Gamma\left(Z_{n}\right)$, arXiv preprint arXiv:2001.01219 (2020).
[4] D. F. Anderson. and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[5] D. B. West, Introduction to graph theory, Prentice Hall, (2001).
[6] I. Beck, Colouring of a commutative ring, J. Algebra, 116 (1988), 208-226.
[7] R. A. Muneshwar, K. L. Bondar, Open subset inclusion graph of a topological space, J. Discr. Math. Sci. Cryptography, 22 (2019), 1007-1018.
[8] R. A. Muneshwar, K. L. Bondar, Some significant properties of the intersection graph derived from topological space using intersection of open sets, Far East J. Math. Sci. 11 (2019), 29-48.
[9] S. Akbari, M. Habibi, A. Majidinya, R. Manaviyat, On the inclusion ideal graph of a ring, Electron. Notes Discr. Math. 45 (2014), 73-78.
[10] S. Vivek, B. Vikas, Linear algebra, Narosa Publishing House, (2001).

[^0]: *Corresponding author
 E-mail address: khandareprakash789@gmail.com
 Received January 27, 2022

