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Abstract: Most of the researches done on repairable systems assumed that when the system failed, it is 

repaired by repairman or repairmen. Little literature is found in the use of repair machines to repair the 

failed unit. In this study, stochastic analysis of a repairable 2-out-of-4 system is presented. The system 

comprises of two subsystems A and B arranged in series. Subsystems A and B are two units warm 

standby. The system is attended by two repair machines assigned to each subsystem to repair any failed 

unit. Explicit expressions for mean time to system failure (MTSF), the steady-state availability, busy 

period of repair machines, and profit function of the system are analyzed stochastically using 

Kolmogorov’s forward equation method. Analytical and numerical results giving some particular 

values to the costs and other parameters have been obtained. 
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1. Introduction 

Reliability is vital for proper utilization and maintenance of any system. It involves 

technique for increasing system effectiveness through reducing failure frequency and 

maintenance cost minimization. Studies on redundant system are becoming more and 
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richer day by day due to the fact that numbers of researchers in the field of reliability 

of redundant system are making huge contributions. Models of redundant systems as 

well as methods of evaluating system reliability indices such as mean time to system 

failure (MTSF), system availability, busy period of repairman, profit analysis, etc 

have been studied in order to improve the system effectiveness (see for instant  

[1,2,3,4] and references therein). Example of such systems are 1-out-of-2, 

2-out-of-3,2-out-of-4, or 3-out-of-4 redundant systems. These systems have wide 

application in the real world. The communication system with three transmitters can 

be sited as a good example of 2-out-of-3 redundant system.  

  Authors above have analyzed the system under the assumption that repairman is 

called to repair the failed units/system. However, there are situations where repair 

machines are employed to repair the failed unit. Example of such situations can be 

seen in nuclear reactor, marine equipments, etc, [7]. In this study, two repair machines 

are assigned to each subsystem to repair the failed unit.  

 In this paper, we construct redundant system and derived its corresponding 

mathematical models. Furthermore, we study reliability characteristics of the system 

involving two types of repair machines using Kolmogorov’s forward equation method. 

We derived measures of system effectiveness like MTSF, availability, busy period of 

repair machines and profit function. Graphical studies of effect of failure rate on the 

measures mentioned above are also given. 

 

2. Preliminaries 

2.1 Notations and Assumptions 

Notations 

1 1
,  : Failure and repair rate of unit 

1
A  

2 2
,  : Failure and repair rate of unit 

2
A  

3 3
,  : Failure and repair rate of warm standby unit 

2
B  



STOCHASTIC MODELING                          367 

1 2
,A A : Operational and cold standby units in subsystem A  

1 2
,B B : Operational and warm standby units in subsystem B  

1M : Repair Machine I 

2M : Repair Machine II 

     Assumptions 

1.  The system is 2-out-of-4 system 

2. The system can be in operation or fail state  

3. The system suffer four types of failures 

4. The system is down when number of units failure goes beyond one in each 

subsystem 

5. Failure rates and repairs follow exponential 

6. Failure rates and repair rates are constant 

7. The system is attended by two repair machines 

8. Repair Machine cannot fail either in operation or in idle state 

 

2.2 Model descriptions and Formulation 

 

Fig. 1 Reliability block diagram of the system 

 

 

 

A1 

A2 

B1 

B2 
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Fig. 2 Transition diagram of the System 

 

State of the system: 

S0: Unit 1A is operational, 2A is in standby, 1B  is operational, 2B is in standby. 

1M and 2M  are idle. The system is operational 

S1: Unit 1A is under repair, 2A is operational, 1B  is operational, 2B is in standby. 

1M is busy and 2M is idle. The system is operational 

S2: Unit 1A is under repair, 2A is operational, 1B  is operational, 2B is under repair. 

1M  and 2M are busy. The system is operational 

S3: Unit 1A is operational, 2A is under repair, 1B  is operational, 2B is in standby. 

1M is busy and 2M is idle. The system is operational 

S4: Unit 1A is operational, 2A is under repair, 1B  is operational, 2B is under repair. 

1M  and 2M are busy. The system is operational 

S5: Unit 1A is under repair, 2A is waiting for repair, 1B  is good, 2B is in standby. 

1M is busy and 2M is idle. The system failed 

S6: Unit 1A is under repair, 2A is waiting for repair, 1B  is good, 2B is under repair. 

1M i and 2M is busy. The system failed 

S0 

S1 S3 

S2 S4 

S5 

S6 

2  

2  

1  

1  

1  

1  

2  

2  

3  

3  
3  

3  

2  
1  

3  

1  2  

3  
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3. Main results 

3.1 Mean time to system failure analysis 

From Fig. 1 above, define ( )iP t to be the probability that the system at time  , 0t t   

is in state iS . Let ( )P t  be the probability row vector at time t , the initial condition for 

this paper are  

 

             0 1 2 3 4 5 6(0) [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ]P P P P P P P P  = 1,0,0,0,0,0,0  

we obtain the following differential equations: 

 

0

1 2 0 1 1 2 3

( )
( ) ( ) ( ) ( )

dP t
P t P t P t

dt
         

1

1 2 3 1 1 0 3 2 2 5

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

2

3 2 2 3 1 2 6

( )
( ) ( ) ( ) ( )

dP t
P t P t P t

dt
         

3

2 1 3 3 2 0 3 4 1 5

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

4

3 1 4 3 3 1 6

( )
( ) ( ) ( ) ( )

dP t
P t P t P t

dt
         

5

1 2 3 5 2 1 1 3 3 6

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
           

6

1 2 6 2 2 1 4 53 3

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
                                (1)                                                       

the system of ordinary differential equations can be written in matrix as form as         

 

 

P AP


                                                         (2)                                                                                                                                            
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 where 

 

1 2 1 2

1 1 2 3 3 2

3 3 2 2

2 2 1 3 3 1

3 3 1 1

2 1 1 2 3 3

2 1 3 1 2 3

( )

( )

( )

( )

( )

( )

( )

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

A















  

    

  

    

  

    

    















 
 

 
 
 
 

   
 
 

  
   

 

 

It is difficult to evaluate the transient solutions hence following [1,4,5,6] we delete the 

rows and columns of absorbing state of matrix A and take the transpose to produce a 

new matrix, say Q .  

The expected time to reach an absorbing state is obtained from 

(0) ( )

0

(0) Q

P P absorbing

tE T P e dt



                                    (3) 

  and 

1

0

Qt
Qe dt



 , since 1 0Q                      (4)  

For system explicit expression for the MTSF  is given by  

1

(0) ( )
(0)( )

1

1

1

1

1

P P absorbing
E T MTSF P Q




  

 
 
 
   
 
 
  

                 (5) 

Where 

1 2

1 2 3

3 2

2 1 3

3 1

1 2

1 3

3

2 3

3

( ) 0 0

( ) 0 0

0 ( ) 0 0

0 0 ( )

0 0 0 ( )

Q
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N
MTSF

D
  

  

2 2 2
1 2 3 1 2 3 1 1 2 3 1 1 2 1 2 1 3 1 1 3 1 3 1 3 1 1 3 1 2 1 1 2 3

N                                          

2 2 2 2 2 2 2

1 1 2 2 3 2 2 3 2 3 2 3 1 2 2 3 2 2 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2                                         

2 2 2 2 2 2 2

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 3 2 1 2 3 2 2 1 2 3 1 3 1 32 (                                         

2 2 2 2

3 1 3 1 2 1 2 3 1 2 1 3 1 2 1 2 3 1 3 1 2 1 3 1 3 1 1 3 2) ( ) (                                       

2 2 2 2

1 1 2 3 2 3 2 3 3 1 2 3 2 1 2 3 1 2 2 3 1 3 1 2 3 2 2 2 3) ( )                                      

 

2 2 2

1 2 3 2 3 1 2 1 2 1 3 1 1 3 3 1 3 2 3 3 1 2 3 2 3 3 1 3 2 32 2 2 2D                                        

2 2 2 2 2 2 2 2

2 3 2 3 2 3 2 1 2 3 1 1 2 1 3 3 1 1 1 2 1 3 2 1 3 2 1 3 2 3 3                                          

2

2 3 1 2 3      

3.2 Availability analysis  

For the analysis of availability case of Fig. 1 using the same initial conditions in 

subsection 3.1 for this problem as: 

             0 1 2 3 4 5 6(0) [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ]P P P P P P P P  

          = 1,0,0,0,0,0,0                                                                                                                 

The differential equations can be expressed as    

 

0

1 2 1 2
1

1 1 2 3 3 2

2
3 3 2 2

2 2 1 3 3 1
3

3 3 1 1

4
2 1 1 2 3 3

5 2 1 3 1 2 3

6

( ) 0 0 0 0

( ) 0 0 0

0 ( ) 0 0 0

0 0 ( ) 0

0 0 0 ( ) 0

0 0 0 ( )

0 0 0 ( )

P

P

P

P

P

P

P

   

     

   

     

   

     

     















 
 
    
   

     
    
   

      
    
   

    
       
 
 

0

1

2

3

4

5

6

P

P

P

P

P

P

P
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Following [1,5,6,7] the steady-state availability is given by 

 5 6( ) 1 ( ) ( )A P P                                                (6) 

In the steady state, the derivatives of the state probabilities become zero so that 

0AP                                                            (7)                                                                                                       

which in matrix form 

1 2 1 2 0

1 1 2 3 3 2 1

3 3 2 2 2

2 2 1 3 3 1 3

3 3 1 1 4

2 1 1 2 3 3 5

2 1 3 1 2 3 6

( ) 0 0 0 0 0

( ) 0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0

0 0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0 ( ) 0

P

P

P

P

P

P

P

   

     

   

     

   

     

     

     
      
    
     
    

      
    
   

     
         







 
 
 
 
 


 

 

 

Using  the following normalizing condition 

         0 1 2 3 4 5 6( ) ( ) 1P P P P P P P                              (8) 

We substitute (8)  in any of the redundant rows in (7)   to give  

01 2 1 2

11 1 2 3 3 2

23 3 2 2

32 2 1 3 3 1

43 3 1 1

52 1 1 2 3 3

6

( )( ) 0 0 0 0 0

( )( ) 0 0 0 0

( )0 ( ) 0 0 0 0

( )0 0 ( ) 0 0

( )0 0 0 ( ) 0 0

( )0 0 0 ( )

( )1 1 1 1 1 1 1

P

P

P

P

P

P

P

   

     

   

     

   

     

    
     
  
    
  

      
    
  

     
      

0

1

 
 
 
 
 
 
 
 
 
 
 

 

We solve for the system of linear equations in the matrix above to obtain the 

steady-state probabilities  

 

The steady-state availability is given by    
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1 2 3 1 3 2 1 2 3 2 3 1 2 1 3

1 2 3 1 3 2 1 2 3 3 1 2 2 3 1 1 2 3 2 1 3

( )A
              

                    

   
 

     
 

3.3 Busy period analysis 

Using the same initial condition in subsection 3.1, the differential equations can be 

expressed as   

AP P


                                                            (9)                                                                                                   

which in matrix form 

 

0

1 2 1 2
1

1 1 2 3 3 2

2
3 3 2 2

2 2 1 3 3 1
3

3 3 1 1

4
2 1 1 2 3 3

5 2 1 3 1 2 3

6

( ) 0 0 0 0

( ) 0 0 0

0 ( ) 0 0 0

0 0 ( ) 0

0 0 0 ( ) 0

0 0 0 ( )

0 0 0 ( )

P

P

P

P

P

P

P

   

     

   

     

   

     

     















 
 
    
   

     
    
   

      
    
   

    
       
 
 

0

1

2

3

4

5

6

P

P

P

P

P

P

P

 
 
 
 
 
 
 
 

  
  
 

 

The steady-state busy period is given by 

0( ) 1 ( )B P                                      (10) 

                                                

In the steady state, the derivatives of the state probabilities become zero so that 

0AP                                                           (11)                                                                                                     

which in matrix form 

1 2 1 2 0

1 1 2 3 3 2 1

3 3 2 2 2

2 2 1 3 3 1 3

3 3 1 1 4

2 1 1 2 3 3 5

2 1 3 1 2 3 6

( ) 0 0 0 0 0

( ) 0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0

0 0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0 ( ) 0

P

P

P

P

P

P

P
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Using  the following normalizing condition 

         0 1 2 3 4 5 6( ) ( ) 1P P P P P P P                              (12) 

We substitute (12)  in any of the redundant rows in (11)    to give 

 

01 2 1 2

11 1 2 3 3 2

23 3 2 2

32 2 1 3 3 1

43 3 1 1

52 1 1 2 3 3

6

( ) 0( ) 0 0 0 0

( ) 0( ) 0 0 0

( ) 00 ( ) 0 0 0

( ) 00 0 ( ) 0

( ) 00 0 0 ( ) 0

( )0 0 0 ( )

( )1 1 1 1 1 1 1

P

P

P

P

P

P

P

   

     

   

     

   

     

  
  
  
  
  
  
  
  
  
  

   

 

  

 

   

 

  



0

1

 
 
 
 
 
 
 
 
 
 
 

 

 

We solve for the system of equations in the matrix above to obtain the steady-state 

probabilities  

0 ( )P    

The steady-state busy period is given by    

0( ) 1 ( )B P     

1 3 2 1 2 3 3 1 2 2 3 1 1 2 3 2 1 3

1 2 3 1 3 2 1 2 3 3 1 2 2 3 1 1 2 3 2 1 3

                 

                    

    


     
 

3.4 Profit analysis 

Following [1,4,5,6]the expected profit per unit time incurred to the system in the 

steady-state is given by:  

Profit =total revenue from system using - total cost due to repair 

        0 1( ) ( )PF C A C B                                    (13)                                                                                                                                     

  Where PF: is the profit incurred to the system 

              0C : is the revenue per unit up time of the system 

              1C : is the cost per unit time which the system is under repair 



STOCHASTIC MODELING                          375 

 

 

3.5 Numerical Simulations 

 In this section, we numerically obtain the results for MTSF, availability and profit 

function for the developed models using the following set of parameter values: 

(i) 1 2 3 2 30.99, 0.94, 0.83, 0.5, 0.99          for Fig. 3 

(ii) 1 2 3 2 30.2, 0.04, 0.03, 0.3, 0.6           for Fig. 4 

(iii) 1 2 3 2 3 0 10.2, 0.04, 0.03, 0.3, 0.6, 1000, 100C C            for Fig. 5 

  and vary 1  for all the figures. 

 Fig. 3: shows relation between 
1

  and MTSF of the system   

 Fig. 4: shows relation between 
1

  and availability of the system  

 Fig. 5: shows the relation between 
1

 and profit function of the system  

 

 

3.6 Discussion 

 

Using numerical solution with Matlab, we obtained the results depicted in Fig. 3 to 5. 

Fig. 3 to 5 provides description of MTSF, system availability and profit with respect 

to 1 (failure rate of unit 1A ). These figures provide description on the effect of 1 on 

various measures of system effectiveness such as MTSF, system availability and profit. 

Fig. 3-5 show that MTSF, system availability, and profit decrease as 1 increases. 
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Fig. 3 effect of 
1

  on MTSF 
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Fig. 4 effect of 
1

 on system availability 
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Fig. 5 effect of 
1

 on profit 

 

3.7 Conclusion 

 In this paper we constructed a series system with two subsystems each having two 

warm standby units. The system is attended by two repair machines each assigned to 

one subsystem to repair the failed unit. Explicit expressions for various measures such 

as MTSF, system availability and profit have been developed in the paper. Numerical 

simulations obtained provide description on the effect of failure rate 1 (of unit 1A ) on 

mean time to system failure (MTSF), system availability and profit. From the 

simulations, MTSF, system availability and profit decreases as 1  increase.  
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