ON THE NONLINEAR CIRCLE PLUS OPERATOR RELATED TO THE LAPLACIAN

T. PANYATIP

Department of Mathematics, Rajamangala University of Technology Lanna, Thailand.

Abstract. In this paper, we study the solution of nonlinear equation

\[\oplus^k u(x) = f(x, \triangle^{k-1} \square^k L^k u(x)), \]

where the operator \(\oplus^k \) is defined by

\[\oplus^k = \left[\left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^4 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^4 \right]^k, \]

or the operator \(\oplus^k \) can be express by \(\oplus^k = \triangle^k \square^k L^k \). The operator \(\triangle^k \) is Laplacian operator, \(\square^k \) is ultrahyperbolic operator and \(L^k \) is operator defined by

\[L^k = \left[\left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^2 + \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^2 \right]^k, \]

\(p + q = n \) is the dimension of the \(n \)-dimension Euclidean space \(\mathbb{R}^n \), \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \), \(k \) is a positive integer, \(u(x) \) is an unknown and \(f \) is a given function. It is found that the existence of the solution \(u(x) \) of such equation depending on the condition of \(f \) and \(\triangle^{k-1} \square^k L^k u(x) \) and moreover such solution \(u(x) \) related to the Laplacian depending on the conditions of \(p, q \) and \(k \).

Keywords: Laplacian, Kernel, Schauders’s estimates.

2000 AMS Subject Classification: 46F10

This work was supported by Rajamangala University of Technology Lanna under the National Research Council of Thailand.

Received November 29, 2012
1. Introduction

The operator \oplus^k has been studied first by Kananthai, Suantai and Longani [5] and is defined by

$$\oplus^k = \left[\left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^2 \right]^k \times \left[\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right]^k \times \left[\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} + i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right]^k,$$

where $p + q = n$ is the dimension of \mathbb{R}^n, $i = \sqrt{-1}$ and k is a nonnegative integer. The diamond operator is denoted by

$$\Diamond^k = \left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^2.$$

The operator L_1 and L_2 are defined by

$$L_1 = \sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}$$

and

$$L_2 = \sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} + i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}.$$

Thus equation (1) can be written as

$$\oplus^k = \Diamond^k L_1^k L_2^k.$$

Otherwise, the operator \Diamond can also be expressed in the form $\Diamond = \Box \Delta = \Delta \Box$, where \Box is the ultra-hyperbolic operator defined by

$$\Box = \sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2},$$

where $p + q = n$ and Δ is the Laplacian defined by

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}.$$
The linear equation $\hat{\triangle}^k u(x) = f(x)$, see [6], has been already studied and the convolution $u(x) = (-1)^k K_{2k,2k}(x) * f(x)$ has been obtained as a solution of such an equation where $K_{2k,2k}(x) = R_{2k}^H(x) * R_{2k}^e(x)$. The function $R_{2k}^H(x)$ and $R_{2k}^e(x)$ are defined by (9) and (11), respectively, with $\alpha = \beta = 2k$.

Kananthai, Suantai and Longani, see[4], has been studied the operator \oplus^k. They obtained

$$K(x) = [R_{2k}^H(u) * (-1)^k R_{2k}^e] * (-1)^k (-i)^{q/2} S_{2k}(w) * (-1)^k (i)^{q/2} T_{2k}(z)$$

is the elementary solution of such operator.

In this work, we study the nonlinear equation of the form

$$(7) \quad \oplus^k u(x) = f(x, \Delta^{k-1} \square^k L^k u(x)).$$

with f defined and continuous for all $x \in \Omega \cup \partial \Omega$ where Ω is an open subset of \mathbb{R}^n and $\partial \Omega$ denotes the boundary of Ω. We can find the solution $u(x)$ of (7) which is unique under the condition $|f(x, \Delta^{k-1} \square^k L^k u(x))| \leq N$ where N is a constant for all $x \in \Omega$ and the boundary condition $\Delta^{k-1} \square^k L^k u(x) = 0$ for $x \in \partial \Omega$.

2. Preliminaries

Definition 2.1. Let $x = (x_1, x_2, ..., x_n)$ be a point in the space \mathbb{R}^n of the n-dimensional Euclidean space and write

$$(8) \quad v = x_1^2 + x_2^2 + ... + x_p^2 - x_{p+1}^2 - ... - x_{p+q}^2,$$

where $p + q = n$ is the dimension of \mathbb{R}^n.

Denote by $\Gamma_+ = \{ x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0 \}$ the set of an interior of the forward cone and $\overline{\Gamma}_+$ denotes it closure and \mathbb{R}^n is the n-dimensional Euclidean space.

For any complex number α, define

$$(9) \quad R_{\alpha}^H(v) = \begin{cases} \frac{\alpha - n}{\bar{K}_n(\alpha)}, & \text{for } x \in \Gamma_+ \\ 0, & \text{for } x \notin \Gamma_+ \end{cases}$$
where the constant $K_n(\alpha)$ is given by the formula

$$K_n(\alpha) = \frac{\pi^{\frac{n-1}{2}}\Gamma\left(\frac{2+\alpha-n}{2}\right)\Gamma\left(\frac{1-\alpha}{2}\right)\Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right)\Gamma\left(\frac{p-\alpha}{2}\right)}.$$

The function $R^H_\alpha(v)$ is called the hyperbolic kernel of Marcel Riesz and was introduced by Y. Nozaki [4, p72]. It is well known that $R^H_\alpha(v)$ is an ordinary function if $\text{Re}(\alpha) \geq n$ and is a distribution of α if $\text{Re}(\alpha) < n$. Let $\text{supp } R^H_\alpha(v)$ denote the support of $R^H_\alpha(v)$ and suppose $\text{supp } R^H_\alpha(v) \subset \bar{\Gamma}_+$, that is $\text{supp } R^H_\alpha(v)$ is compact.

Definition 2.2. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and write

$$|x| = x_1^2 + x_2^2 + ... + x_n^2.$$

For any complex number β, define

$$R^e_\beta(x) = 2^{-\beta} \pi^{-\frac{n}{2}} \Gamma\left(\frac{n-\beta}{2}\right) \frac{|x|^{\frac{\beta-n}{2}}}{\Gamma\left(\frac{\beta}{2}\right)}.$$

The function $R^e_\beta(x)$ is called the elliptic kernel of Marcel Riesz and is ordinary function for $\text{Re}(\beta) \geq n$ and is a distribution of β for $\text{Re}(\beta) < n$.

Definition 2.3. Let $x = (x_1, x_2, ..., x_n)$ be a point of \mathbb{R}^n and write

$$z = x_1^2 + x_2^2 + ... + x_p^2 + i\left(x_{p+1}^2 + x_{p+2}^2 + ... + x_{p+q}^2\right)$$

and

$$w = x_1^2 + x_2^2 + ... + x_p^2 - i\left(x_{p+1}^2 + x_{p+2}^2 + ... + x_{p+q}^2\right),$$

For any complex number γ and ν, we define

$$T_\nu(z) = 2^{-\nu} \pi^{-\frac{n}{2}} \Gamma\left(\frac{n-\nu}{2}\right) z^{\frac{\nu-n}{2}} \frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}$$

and

$$S_\gamma(w) = 2^{-\gamma} \pi^{-\frac{n}{2}} \Gamma\left(\frac{n-\gamma}{2}\right) w^{\frac{\gamma-n}{2}} \frac{\Gamma\left(\frac{\gamma}{2}\right)}{\Gamma\left(\frac{\gamma}{2}\right)}.$$

The function $S_\gamma(w)$ and $T_\nu(z)$ is an ordinary function if $\text{Re}(\gamma) \geq n$ and $\text{Re}(\nu) \geq n$, is a distribution of γ for $\text{Re}(\gamma) < n$ and ν for $\text{Re}(\nu) < n$.

Lemma 2.1. Given the equation

$$\Delta^k u(x) = 0,$$

where the constant $K_n(\alpha)$ is given by the formula
where \(\triangle^k \) is the Laplacian operator iterated \(k \)-times defined by equation (6) we obtain
\[u(x) = ((-1)^{k-1} R^e_{2(k-1)}(x))^{(m)} \]
as a solutions of (16) where \(m = (n - 4)/2, n \geq 4 \) is non-negative integer and \(n \) is even and \(R^e_{2(k-1)}(x) \) defined by equation (11) with \(m \) derivatives and \(\beta = 2(k - 1) \).

Proof. see [6, Lemma 2.2].

Lemma 2.2. Given the equation

\[(17) \]
\[\Box^k u(x) = 0, \]

where \(\Box^k \) is the Ultra-hyperbolic operator iterated \(k \)-times defined by equation (5) we obtain
\[u(x) = (R^H_{2(k-1)}(v))^{(m)} \]
as a solutions of (17) where \(m = (n - 4)/2, n \geq 4 \) is non-negative integer and \(n \) is even and \(R^H_{2(k-1)}(v) \) defined by equation (9) with \(m \) derivatives and \(\alpha = 2(k - 1) \).

Proof. see [6, Lemma 2.3].

Lemma 2.3. The function \(T_{2k}(z) * S_{2k}(w) \) is an elementary solutions of the operator
\[L^k = L^k_1 L^k_2 = L^k_2 L^k_1, \]
denoted by

\[(18) \]
\[L^k = \left[\left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^2 \right]^k, \]

where \(T_{2k}(z) \) and \(S_{2k}(w) \) are defined by equation (14) and (15), respectively, with \(\gamma = \nu = 2k \). The operator \(L^k_1 \) and \(L^k_2 \) are defined by equation (3) and (4), respectively.

Proof. We need to show that
\[L^k_1[(-1)^k(i)^{\frac{3}{2}} T_{2k}(z)] = \delta \]
and
\[L^k_2[(-1)^k(-i)^{\frac{3}{2}} S_{2k}(w)] = \delta. \]
At first we have to show that

\[(19) \]
\[L^k_1 T_{\nu}(z) = (-1)^k T_{\nu-2k}(z), \quad L^k_2 S_{\gamma}(w) = (-1)^k S_{\gamma-2k}(w) \]

and also

\[(20) \]
\[T_{-2k}(z) = (-1)^k(-i)^{\frac{3}{2}} L^k_1 \delta, \quad S_{-2k}(w) = (-1)^k(i)^{\frac{3}{2}} L^k_2 \delta. \]
Now for $k = 1$,

$$L_1 T_\nu(z) = \left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right) T_\nu(z)$$

$$= 2^{-\nu} \pi^{-n} \frac{\Gamma\left(\frac{n-\nu}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} (\nu - n)(\nu - 2) z^{\nu - n - 2}$$

$$= (-1)^{\nu - 2} \pi^{-n} \frac{\Gamma\left(\frac{n-\nu-2}{2}\right)}{\Gamma\left(\frac{\nu-2}{2}\right)} z^{\nu - n - 2}$$

$$= -T_{\nu-2}(z).$$

By repeating k-times in operating L_1 to $T_\nu(z)$, we obtain $L_1^k T_\nu(z) = (-1)^k T_{\nu-2k}(z)$.

Similarly, $L_2^k S_\gamma(w) = (-1)^k S_{\gamma-2k}(w)$.

Now consider

$$z = x_1^2 + x_2^2 + ... + x_p^2 + i \left(x_{p+1}^2 + x_{p+2}^2 + ... + x_{p+q}^2 \right), p + q = n$$

by changing the variable

$$x_1 = y_1, x_2 = y_2, ..., x_p = y_p,$$

$$x_{p+1} = \frac{y_{p+1}}{\sqrt{1}}, x_{p+2} = \frac{y_{p+2}}{\sqrt{1}}, ..., x_{p+q} = \frac{y_{p+q}}{\sqrt{1}}.$$

Thus we have $z = y_1^2 + y_2^2 + ... + y_p^2 + y_{p+1}^2 + y_{p+2}^2 + ... + y_{p+q}^2$.

Denote $z = r^2 = y_1^2 + y_2^2 + ... + y_n^2$ and consider the generalized function $z^\lambda = r^{2\lambda}$ where λ is any complex number. Now $\langle z^\lambda, \varphi \rangle = \int_{R^n} z^\lambda \varphi(x) dx$, where $\varphi \in \mathcal{D}$ the space of infinitely differentiable functions with compact supports. Thus

$$\langle z^\lambda, \varphi \rangle = \int_{R^n} r^{2\lambda} \varphi \frac{\partial(x_1, x_2, ..., x_n)}{\partial(y_1, y_2, ..., y_n)} dy_1 dy_2 \cdots dy_n$$

$$= \frac{1}{(i)^{q/2}} \int_{R^n} r^{2\lambda} \varphi dy$$

$$= \frac{1}{(i)^{q/2}} \langle r^{2\lambda}, \varphi \rangle.$$

By Gelfand and Shilov [3, p.271], the function $r^{2\lambda}$ have simple poles at $\lambda = (-n/2) - k, k$ is nonnegative and for $k = 0$ we can find the residue of $r^{2\lambda}$ at $\lambda = -n/2$ and by [3, p.73], we obtain

$$\text{res}_{\lambda=-\frac{n}{2}} (r^{2\lambda}) = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \delta(x).$$
Thus

(21) \[\text{res}_{\lambda=-n/2} (z^\lambda) = (-i)^{\frac{n}{2}} \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \delta(x). \]

We next find the residues of \(z^\lambda \) at \(\lambda = (-n/2) - k \). Now, by computing directly we have

\[
L_1 z^{\lambda+1} = 2(\lambda + 1)(2\lambda + n) z^\lambda.
\]

By \(k \)-fold iteration, we obtain

\[
L_k z^{\lambda+k} = 4^k (\lambda + 1)(\lambda + 2) \cdots (\lambda + k) (\lambda + \frac{n}{2}) \times
\]

\[
(\lambda + \frac{n}{2} + 1) \cdots (\lambda + \frac{n}{2} + k - 1) z^\lambda
\]

or

\[
z^\lambda = \frac{1}{4^k(\lambda + 1)(\lambda + 2) \cdots (\lambda + k)} \times
\]

\[
\frac{1}{(\lambda + \frac{n}{2})(\lambda + \frac{n}{2} + 1) \cdots (\lambda + \frac{n}{2} + k - 1)} L_k z^{\lambda+k}.
\]

Thus

\[
\text{res}_{\lambda=-n/2-k} (z^\lambda) = \frac{1}{4^k k (\frac{n}{2} + k - 1) (\frac{n}{2} + k - 2) \cdots (\frac{n}{2})} \text{res}_{\lambda=-n/2} L_k z^{\lambda+k}.
\]

By (21) and the properties of Gamma functions, we obtain

(22) \[\text{res}_{\lambda=-n/2-k} (z^\lambda) = (-i)^{\frac{n}{2}} \frac{2\pi^{\frac{n}{2}}}{4^k \Gamma(\frac{n}{2} + k)} L_k \delta(x). \]

Now we consider \(T_{-2k}(z) \) we have

\[
T_{-2k}(z) = \lim_{\nu \to -2k} T(z)
\]

\[
= \pi^{-\frac{n}{2}} \lim_{\nu \to -2k} \frac{\Gamma(\nu + n/2)}{\Gamma(\nu/2)} \lim_{\nu \to -2k} 2^{-\nu} \Gamma \left(\frac{n - \nu}{2} \right)
\]

\[
= \pi^{-\frac{n}{2}} \lim_{\nu \to -2k} \frac{\Gamma(\nu + 2k)(\nu/2)}{\Gamma(\nu + 2k)(\nu/2)} \lim_{\nu \to -2k} 2^{2k} \Gamma \left(\frac{n + 2k}{2} \right)
\]

\[
= 4^k \pi^{-\frac{n}{2}} \lim_{\nu \to -2k} \text{res}_{\nu=-n/2} z^{(\nu-n)/2} \Gamma \left(\frac{n + 2k}{2} \right),
\]
Since \(\text{res}_{\lambda=-\frac{k}{2}} z^\lambda = \text{res}_{\nu=-2k} z^{(\nu-n)/2} \) and \(\text{res}_{\nu=-2k} \Gamma\left(\frac{\nu}{2}\right) = \frac{2(-1)^k}{k!} \), by (22) and the properties of Gamma function we obtain

\[
T_{-2k}(z) = (-1)^k (-i)^{\frac{\nu}{2}} L_1^k \delta(x).
\]

Similarly

\[
S_{-2k}(w) = (-1)^k (i)^{\frac{\nu}{2}} L_2^k \delta(x).
\]

Thus we have

\[
T_0(z) = (-i)^{\frac{\nu}{2}} \delta(x), \quad S_0(w) = (i)^{\frac{\nu}{2}} \delta(x).
\]

Now, from (19) \(L_1^k T_{2k}(z) = (-1)^k T_0(z) \) for \(\nu = 2k \). Thus by (23) we obtain \(L_1^k (-1)^k (i)^{\frac{\nu}{2}} T_{2k}(z) = \delta(x) \). It follows that \((-1)^k (i)^{\frac{\nu}{2}} T_{2k}(z) \) is an elementary solution of the operator \(L_1^k \). Similarly \((-1)^k (-i)^{\frac{\nu}{2}} S_{2k}(w) \) is also an elementary solution of the operator \(L_2^k \). Thus we have

\[
L^k (T_{2k}(z) * S_{2k}(w)) = L_2^k (-1)^k (i)^{\frac{\nu}{2}} T_{2k}(z) * L_1^k (-1)^k (-i)^{\frac{\nu}{2}} S_{2k}(w) = \delta.
\]

Lemma 2.4. Given the equation

\[
\Delta u(x) = f(x, u(x)),
\]

where \(f \) is defined and has continuous first derivatives for all \(x \in \Omega \cup \partial \Omega \), \(\Omega \) is an open subset of \(\mathbb{R}^n \) and \(\partial \Omega \) denotes the boundary of \(\Omega \). Assume \(f \) is a bounded, that is \(|f(x, u)| \leq N \) and the boundary condition \(u(x) = 0 \) for \(x \in \partial \Omega \). Then we obtain \(u(x) \) as a unique solution of (24).

Proof. We can prove this lemma by the method of iterations and the Schauder’s estimates, see [1, pp. 369-372].

3. Main results

Theorem 3.1. *Given the nonlinear equation*

\[
\oplus^k u(x) = f(x, \Delta^{k-1} \square^k L^k u(x)),
\]
where \oplus^k is the operator iterated k times, defined by (1), Δ^{k-1} is the Laplacian iterated $k-1$ times defined by (6) and \Box^k is the ultrahyperbolic operator iterated k times defined by (5). Let f be defined and have continuous first derivatives for all $x \in \Omega \cup \partial \Omega$, Ω is an open subset of \mathbb{R}^n and $\partial \Omega$ denotes the boundary of Ω and n is even with $n \geq 4$. Let f be a bounded function, that is

$$|f(x, \Delta^{k-1} \Box^k L^k u(x))| \leq N$$

and the boundary condition

$$\Delta^{k-1} \Box^k L^k u(x) = 0, \text{ for } x \in \partial \Omega,$$

then we obtain

$$u(x) = (-1)^{k-1} R_{2(k-1)}^e(x) * R_{2k}^H(v) * S_{2k}(w) * T_{2k}(z) * W(x)$$

as a solution of (25) with the boundary condition

$$u(x) = S_{2k}(w) * T_{2k}(z) * R_{2k}^H(v) * (-1)^{k-2} (R_{2(k-2)}^e(x))^{(m)}$$

for $x \in \partial \Omega, m = (n-4)/2$, $k = 2, 3, 4, \ldots$ and v is given by (8), $W(x)$ is a continuous function for $x \in \Omega \cup \partial \Omega$, $R_{2(k-2)}^e(x)$ and $R_{2k}^H(v)$ are given by (11) and (9), respectively, with $\beta = 2(k-2)$ and $\alpha = 2k$. Moreover, for $q = 0$ then (25) becomes

$$\Delta_p^{4k} u(x) = f(x, \Delta^{4k-1} u(x)),$$

with boundary condition

$$\Delta^{4k-1} u(x) = 0, \text{ for } x \in \partial \Omega,$$

where Δ_p^{4k} is the Laplacian of p-dimension iterated $4k$-times. we have

$$u(x) = (-1)^{k-1} R_{2(k-1)}^e(x) * R_{6k}^e(x) * W(x)$$

as a solution of (29) where $|x| = x_1^2 + x_2^2 + \ldots + x_p^2$.

Proof. From equation (25), we have

$$\oplus^k u(x) = \Delta(\Delta^{k-1} \Box^k L^k u(x)) = f(x, \Delta^{k-1} \Box^k L^k u(x)).$$
Since \(u(x) \) has continuous derivatives up to order \(4k \) for \(k = 1,2,3,\ldots \) we can assume

\[
\triangle^{k-1} \Box^k L^k u(x) = W(x), \text{ for } x \in \partial \Omega.
\]

Thus, (32) can be written in the form

\[
\oplus^k u(x) = \Delta W(x) = f(x,W(x)),
\]

by (26)

\[
|f(x,W(x))| \leq N,
\]

and by (27), \(W(x) = 0 \) or

\[
\triangle^{k-1} \Box^k L^k u(x) = 0, \text{ for } x \in \partial \Omega.
\]

Thus by Lemma 2.4 there exist a unique solution \(W(x) \) of (34) which satisfies (35). Now consider (33), we have \(\triangle^{k-1}(-1)^{k-1} R^e_{2(k-1)}(x) = \delta \) and \(\Box^k R^H_{2k}(v) = \delta \) where \(\delta \) is the Dirac-delta distribution, that is \(R^H_{2k}(v) \) and \((-1)^{k-1} R^e_{2(k-1)}(x) \) are the elementary solutions of the operators \(\Box^k \) and \(\triangle^{k-1} \), respectively, see\[8, \text{p.11}\] and see\[2, \text{p.118}\]. The functions \(R^H_{2k}(v) \) and \(R^e_{2(k-1)}(x) \) are defined by (9) and (11), respectively, with \(\beta = 2(k-1), \alpha = 2k \). And by Lemma 2.3, the function \(T_{2k}(z) * S_{2k}(w) \) is an elementary solutions of the operator \(L^k \), are defined by equation (14) and (15), respectively, with \(\gamma = \nu = 2k \). Thus, convolving both sides of (33) by

\[
(-1)^{k-1} R^e_{2(k-1)}(x) * R^H_{2k}(v) * T_{2k}(z) * S_{2k}(w),
\]

we obtain

\[
[(-1)^{k-1} R^e_{2(k-1)}(x) * R^H_{2k}(v) * T_{2k}(z) * S_{2k}(w)] * \triangle^{k-1} \Box^k L^k u(x)
\]

\[
= [(-1)^{k-1} R^e_{2(k-1)}(x) * R^H_{2k}(v) * T_{2k}(z) * S_{2k}(w)] * W(x).
\]
By properties of convolution, we obtain

$$\Delta^{k-1} (1)^{k-1} R_{2(k-1)}^e (x) \ast [\square^k R_{2k}^H (v)] \ast [L^k T_{2k} (z) \ast S_{2k} (w)] \ast u(x) =$$

$$\delta \ast \delta \ast u(x) =$$

$$[(1)^{k-1} R_{2(k-1)}^e (x) \ast R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w)] \ast W(x).$$

Thus

$$u(x) = (1)^{k-1} R_{2(k-1)}^e (x) \ast R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w) \ast W(x)$$

as required. Consider $\Delta^{k-1} \square^k L^k u(x) = 0$, for $x \in \partial \Omega$. By Lemma 2.1, we have

$$\square^k L^k u(x) = (1)^{k-2} (R_{2(k-2)}^e (x))^{(m)}.$$

Convolving both sides of the above equation by $R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w)$, we obtain

$$R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w) \ast \square^k L^k u(x)$$

$$= R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w) \ast (1)^{k-2} (R_{2(k-2)}^e (x))^{(m)},$$

$$\square^k R_{2k}^H (v) \ast [L^k \ast T_{2k} (z) \ast S_{2k} (w)] \ast u(x)$$

$$= R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w) \ast (1)^{k-2} (R_{2(k-2)}^e (x))^{(m)},$$

$$\delta \ast \delta \ast u(x)$$

$$= R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w) \ast (1)^{k-2} (R_{2(k-2)}^e (x))^{(m)},$$

$$u(x) = R_{2k}^H (v) \ast T_{2k} (z) \ast S_{2k} (w) \ast (1)^{k-2} (R_{2(k-2)}^e (x))^{(m)},$$

for $x \in \partial \Omega$ and $k = 2, 3, 4, \ldots$

Moreover, for $q = 0$ then (25) becomes

$$\Delta^4 u(x) = f(x, \Delta^4 u(x)),$$

with boundary condition

$$\Delta^{4k-1} u(x) = 0, \ for \ x \in \partial \Omega.$$
where \(\Delta^4_k \) is the Laplacian of \(p \)-dimension iterated \(4k \)-times. we have

\[
(39) \\
\quad u(x) = (-1)^{k-1} R_{2(k-1)}^e(x) * R_{6k}^e(x) * W(x)
\]

as a solution of (38) where \(|x| = x_1^2 + x_2^2 + \ldots + x_p^2 \).

On the other hand, we can also find (39) from (37), since \(q = 0 \), we have \(R^H_{2k}(v) \) reduces to \(R_{2(k)}^e(x) \), \(S_{2k}(w) \) reduces to \(R_{2(k)}^e(x) \) and \(T_{2k}(z) \) reduces to \(R_{2(k)}^e(x) \), where \(|x| = x_1^2 + x_2^2 + \ldots + x_p^2 \).

Thus, by (37) for \(q = 0 \), we obtain

\[
(37) \\
\quad u(x) = (-1)^{k-1} R_{2(k-1)}^e(x) * R_{2k}^e(x) * R_{2k}^e(x) * R_{6k}^e(x) * W(x) \\
\quad = (-1)^{k-1} R_{2(k-1)}^e(x) * R_{6k+2k+2k}^e(x) * W(x) \\
\quad = (-1)^{k-1} R_{2(k-1)}^e(x) * R_{6k}^e(x) * W(x).
\]

This completes the proof. \(\square \)

REFERENCES

