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Abstract. In this paper, we propose a model of transmission of a novel coronavirus (COVID’19) given by a

system of non-linear differential equations. We apply optimal control theory to obtain optimal control strategies

by minimizing the number of susceptible, exposed, and infected individuals. The existence and characterization

of optimal controls are given using Pontryagin’s Maximum Principle. Numerical simulations are carried out to

illustrate the different effects and to show the efficiency of the proposed approach.

Keywords: COVID’19; optimal control; mathematical model.

2010 AMS Subject Classification: 93A30, 49J15.

1. INTRODUCTION

A mathematical model is a type of scientific model which aims to describe as precisely as

possible an object, a phenomenon, a mechanism using equations to verify, understand, predict

certain properties or behaviors. These models are used in many fields including economics [10],
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agriculture [5] , social sciences [20], medicine [17], etc. In epidemiology, mathematical models

play a very important role in understanding the temporal dynamics of an epidemic and then

in applying therapeutic strategy or the fight against infectious diseases, the latter has caused

many epidemics such as Ebola and others, which lead to human losses and injury to millions

of individuals around the world, as well as negatively affect economic and social development.

From this point of view, the researchers were interested in mathematical modeling, which they

contributed to developing in order to study the dynamics of the spread of epidemics and their

progress and to evaluate the strategies used to combat them. For example, the following articles

and books can be considered [9, 11, 12, 19, 14, 8, 3, 1].

For the COVID’19 pandemic, a disease caused by the novel coronavirus called SARS-CoV-2.

This novel virus was first detected by the World Health Organization on December 31, 2019,

after a cluster of cases of viral pneumonia were reported in Wuhan, People’s Republic of China.

Symptoms of COVID’19 are fever, tiredness, and dry cough. Some patients may suffer from

aches and pains, nasal congestion, cold, or sore throat. These symptoms are usually mild and

then gradually worsen so that the patient may lose his or her senses of taste and smell, feel

pressure in the chest and, have shortness of breath. Also, some people become infected without

showing any symptoms and without feeling sick. When the Covid’19 pandemic first appeared,

researchers quickly used, formulated, and developed mathematical models to understand the

dynamics of its spread and propose optimal control strategies to tackle the sources of pollution

and significantly reduce the number of deaths and injured.

Before the vaccine’s emergence and its approval by the World Health Organization, some re-

searchers focused on non-pharmacological measures to control the outbreak such as quarantine,

isolation, and public health education, they studied the effect of these different control strategies

as time-dependent interventions using the optimal control approach to determine their contri-

butions in the dynamic transmission of COVID’19 [15]. While B. Seidu [18] suggested the

optimal control problem with four controls, namely, the use of face masks and social distanc-

ing, avoiding touching contact surfaces, preventing surface contamination, and disinfecting the

environment. Through it, he proved that the best strategy to control the spread of COVID’19

is social distancing and the use of nose masks as the most important strategy to help curb
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COVID’19. From another perspective, Moore and Okyere [16] saw that delayed diagnosis, lim-

ited hospital resources, and other treatment resources are causing COVID’19 to spread rapidly.

From where, they considered an optimal control COVID’19 transmission model and assessed

the impact of certain control measures that may lead to the reduction of exposed, and infected

individuals in the population. They studied three control strategies for this deadly infectious

disease using personal protection, treatment with early diagnosis, treatment with late diagnosis

and spraying of viruses into the environment as time-dependent control functions in the model

dynamic to curb the spread of disease. Many other results related to optimal strategies for con-

trolling the COVID’19 pandemic have been established and can be found in numerous articles

(see, for example, [4, 13, 6] ).

The main objective of this article is to apply optimal control theory to a novel model of

coronavirus (COVID’19) transmission provided by a system of non-linear ordinary differen-

tial equations to minimize susceptible, exposed and infected individuals. We are studying four

strategies for controlling this deadly infectious disease using public health education, vaccina-

tion, preventive measures such as quarantine and isolation, and intensive medical care for all

confirmed cases to increase the number of recovered individuals.

The model inspired by the COVID’19 pandemic associated with control measures is pre-

sented in the following section. In section 3, we provide the necessary condition for the exis-

tence of optimal control and its characterization using Pontryagin’s Maximum Principle. We

present in section 4 the numerical results of the optimal control model.

2. COVID’19 MODEL WITH CONTROLS

In this paper, we divide the total human population into six compartments: susceptible (S)

exposed (E), quarantined (Q), asymptomatic infected (IA), symptomatic infected (IS), and re-

covered (R). We introduce four control variables u1, u2, u3, and u4. The first control u1 repre-

sents vaccination to minimize the infection of susceptible individuals. The control u2 represents

public health education effort to educate people about the importance and necessity of social

distancing, mask-wearing, and sanitizing hands and surfaces to curb the spread of COVID’19.

The control u3 represents preventive measures efforts such as quarantine, and isolation that help

to reduce contact rate, and the control effort u4 represents intensive care for confirmed cases,
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whether asymptomatic or symptomatic to increase the number of people cured of the disease.

Natural rates of human birth and death are denoted by Ξ and µ , respectively. Susceptible in-

dividuals (S) become infected following sufficient contact with exposed (E), asymptomatic

infected (IA) and, symptomatic infected (IS) individuals at the rates of α , ξ and ψ , respectively.

Individuals u3S and u3E are removed from the susceptible and exposed classes and added to

the quarantined class (Q). People exit the exposed compartment and move either to the com-

partment of infected individuals with symptoms (symptomatic) (IS) or to the compartment of

infected individuals without symptoms (asymptomatic) (IA) at the rates of, γ and β , respec-

tively. By performing the test on individuals of the (Q) compartment, symptomatic individuals

are transferred to the (IS) compartment at the rate of δ , while asymptomatic individuals are

transferred to the (IA) compartment at the rate of σ . It should be noted that there are people in

quarantine who can leave compartment (Q) and move to the compartment (R) at the rate of r1

if they are found to be in good health after a negative test result. r2 and r3 represent respectively

the rates of recovery from infection for the individuals of compartments (IA) and (IS). Whereas,

η represents the disease mortality rate of individuals infected with symptoms.

The total population is given by N(t) = S(t)+E(t)+Q(t)+ IA(t)+ IS(t)+R(t).

Through the schematic diagram in figure (1), the system of non-linear differential equations

is expressed as follows:

dS(t)
dt

= Ξ− (1−u2(t)) [αE(t)+ξ IA(t)+ψIS(t)]S(t)− (µ +u3(t)+u1(t))S(t),

dE(t)
dt

= (1−u2(t)) [αE(t)+ξ IA(t)+ψIS(t)]S(t)− (µ +β + γ +u3(t))E(t),

dQ(t)
dt

= u3(t)(S(t)+E(t))− (µ +σ +δ + r1)Q(t),

dIA(t)
dt

= βE(t)+σQ(t)− (µ + r2 +u4(t)) IA(t),

dIS(t)
dt

= γE(t)+δQ(t)− (µ +η + r3 +u4(t)) IS(t),

dR(t)
dt

= r1Q(t)+(r2 +u4(t)) IA(t)+(r3 +u4(t)) IS(t)−µR(t),

(1)
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with S(0)≥ 0, E(0)≥ 0, Q(0)≥ 0, IA(0)≥ 0, IS(0)≥ 0 and R(0)≥ 0 as the initial conditions.

Invariant region.

Consider the state variables (S,E,Q, IA, IS,R)∈R6
+. Differentiating N(t) with respect to time

t, we get

dN(t)
dt

=
dS(t)

dt
+

dE(t)
dt

+
dQ(t)

dt
+

dIA(t)
dt

+
dIS(t)

dt
+

dR(t)
dt

,

that is

dN(t)
dt

= Ξ−µN(t)−u1S(t)−ηIS < Ξ−µN(t).

Using the theory of differential inequality ( Birkhoff and Rota, 1982 ) [2] , we obtain the fol-

lowing result:

0≤ N(t)< N(0)e−µt +
Ξ

µ
[1− e−µt ].

This means N(t)<
Ξ

µ
as t→+∞. We conclude that all feasible solutions of the system (1) are

bounded in a positive invariant region

Φ = {(S,E,Q, IA, IS,R) ∈ R6
+ : 0≤ N <

Ξ

µ
}.

FIGURE 1. Compartmental diagram for the transmission dynamics of COVID’19
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3. OPTIMAL CONTROL PROBLEM

We define the objective functional J as follows:

J(u1,u2,u3,u4) =
∫ t f

0

[
C1S(t)+C2E(t)+C3IA(t)+C4IS(t)+

1
2

i=4

∑
i=1

ρiu2
i (t)

]
dt,(2)

where Ci ≥ 0, for i = 1,2,3,4 denote weights that balance the size of the S(t),E(t), IA(t) and

IS(t), respectively. The parameters ρi, for i = 1,2,3,4 represent the balancing factors associated

with vaccination, public health education, preventive measures and intensive care, respectively.

Furthermore, let X = (S,E,Q, IA, IS,R) and u = (u1,u2,u3,u4) ∈Ω, the integrand of the objec-

tive functional is given by

L (X ,u) =C1S(t)+C2E(t)+C3IA(t)+C4IS(t)+
1
2

i=4

∑
i=1

ρiu2
i (t).

More precisely, the optimal control problem can be defined as follows:

J(u∗1,u
∗
2,u
∗
3,u
∗
4) = min

Ω
J(u1,u2,u3,u4),(3)

where

Ω =
{

u1,u2,u3,u4 : ui(t) is lebesgue measurable, 0≤ ui(t)< 1, t ∈ [0, t f ], for i = 1,2,3,4
}

is the set of admissible controls.

3.1. Existence of optimal controls.

In order to solve the optimal control problem, it is first necessary to show the existence of the

solution of the system (1). Consider the state variables S(t), E(t), Q(t), IA(t), IS(t), R(t) and the

control variables u1(t), u2(t), u3(t), u4(t) with non-negative initial conditions, then the system

(1) can be written as

Xt = A X +B(X ),(4)

where
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X =



S(t)

E(t)

Q(t)

IA(t)

IS(t)

R(t)


, B(X ) =



Ξ− (1−u2(t)) [αE(t)+ξ IA(t)+ψIS(t)]S(t)

(1−u2(t)) [αE(t)+ξ IA(t)+ψIS(t)]S(t)

0

0

0

0



,

A =



−µ−u3(t)−u1(t) 0 0 0 0 0

0 −µ−β − γ−u3(t) 0 0 0 0

u3(t) u3(t) −µ−σ −δ − r1 0 0 0

0 β σ −µ− r2−u4(t) 0 0

0 γ δ 0 −µ−η− r3−u4(t) 0

0 0 r1 r2 +u4(t) r3 +u4(t) −µ


.

Xt is the derivative of X with respect to time t. System (4) is a non-linear system with a

bounded coefficient.

We pose

H (X ) = A X +B(X ).(5)

Then,

B(X1)−B(X2)

=



(1−u2(t)) [α[−E1(t)S1(t)+E2(t)S2(t)]+ξ [−IA1(t)S1(t)+ IA2(t)S2(t)]+ψ[−IS1(t)S1(t)+ IS2(t)S2(t)]]

(1−u2(t)) [α[E1(t)S1(t)−E2(t)S2(t)]+ξ [IA1(t)S1(t)− IA2(t)S2(t)]+ψ[IS1(t)S1(t)− IS2(t)S2(t)]]

0

0

0

0


.

The second right-hand term in equation (5) satisfies
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||B(X1)−B(X2)|| = 2(1−u2(t)) |α [S1(t)E1(t)−S2(t)E2(t)]+ξ [S1(t)IA1(t)−S2(t)IA2(t)]

+ψ [S1(t)IS1(t)−S2(t)IS2(t)]|

≤ 2(1−u2(t))Ξ

µ
[(α +ξ +ψ) |S1(t)−S2(t)|+α|E1(t)−E2(t)|

+ξ |IA1(t)− IA2(t)|+ψ|IS1(t)− IS2(t)|]

≤ M [|S1(t)−S2(t)|+ |E1(t)−E2(t)|+ |IA1(t)− IA2(t)|+ |IS1(t)− IS2(t)|]

,

where M > 0 is independent of the variables S(t), E(t), IA(t) and IS(t). Therefore,

||H (X1)−H (X2)|| ≤ K||X1−X2||, with K = ||A ||+M <+∞.

Thus, it follows that the function H satisfies the Lipschitz condition uniformly with respect to

non-negative state variables. Therefore, there exists a solution of the system (1).

Now, we present a result that will demonstrate the existence of optimal controls that minimize

the objective functional J in a finite interval, subject to the system (1).

Theorem 1. Consider the optimal control problem (3) associated with the system (1), then there

exists an optimal control quadruple u∗ =
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

in Ω such that

J(u∗1,u
∗
2,u
∗
3,u
∗
4) = min

Ω
J(u1,u2,u3,u4).

Proof. To prove the existence of an optimal control, we use Fleming’s results [theorem (III.4.1)

and its corresponding corollary][7].

The set of solutions for the system (1) with control variables in Ω is non-empty. We consider

Ω =
{

u ∈ R4 : ||u||< 1
}

,

let u, v ∈Ω such that 0≤ ||u|| < 1 and 0≤ ||v||< 1. Then, for any ε ∈ [0,1], one has

0≤ ||εu+(1− ε)v|| ≤ ε||u||+(1− ε)||v||< 1,

which implies that Ω is convex and close. Also, the state system can be written as linear function

of control variables with coefficients depending on time and state variables.

Since the integrand of the objective function is written as the sum of the convex functions with

respect to control variables, then it is also convex on Ω.
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Let X = (S,E,Q, IA, IS,R), u = {u1,u2,u3,u4} and L (X ,u)≥ 1
2

i=4

∑
i=1

ρiu2
i (t). We pose

ϕ = min
(

ρ1

2
,
ρ2

2
,
ρ3

2
,
ρ4

2

)
and g is a continuous function defined by g(ϕ) = ϕ||u||2.

Then,

L (X ,u)≥ g(ϕ) and ||u||−1g(u)→+∞ as ||u|| →+∞, u ∈Ω.

Thus, all conditions are achieved. Therefore, we deduce the existence of an optimal control

u∗ =
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

which minimizes the objective functional J. �

3.2. Characterization of optimal controls.

After establishing the existence of the optimal control that minimizes the objective functional

J given by (2), we will characterize this optimal control by applying the Pontryagin’s Maximum

principle to the Hamiltonian.

Let X = (S,E,Q, IA, IS,R), u = (u1,u2,u3,u4) ∈ Ω and Λ = (λ1,λ2,λ3,λ4,λ5,λ6) the adjoint

variable. The Hamiltonian function is defined as

H(X ,u,Λ, t) = C1S(t)+C2E(t)+C3IA(t)+C4IS(t)+
1
2

i=4

∑
i=1

ρiu2
i (t)+λ1(t)

dS(t)
dt

+λ2(t)
dE(t)

dt

+λ3(t)
dQ(t)

dt
+λ4(t)

dIA(t)
dt

+λ5(t)
dIS(t)

dt
+λ6(t)

dR(t)
dt

.

(6)

If (X ∗(t),u∗(t)) is an optimal solution for the optimal control problem, then there exists a

non-trivial vector function Λ(t) = (λ1(t),λ2(t),λ3(t),λ4(t),λ5(t),λ6(t)) such that

dX

dt
=

∂H(X ∗(t),u∗(t),Λ(t), t)
∂Λ

0 =
∂H(X ∗(t),u∗(t),Λ(t), t)

∂u

dΛ(t)
dt

= −∂H(X ∗(t),u∗(t),Λ(t), t)
∂X

.

(7)

Theorem 2. Given an optimal control u∗=
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

and a corresponding solutions X ∗=(
S∗,E∗,Q∗, I∗A, I

∗
S ,R
∗) that minimize J(u) over Ω. Then, there exist adjoint variables λi, i =
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1,2, · · · ,6 satisfying

dλ1(t)
dt

= −C1 +(1−u2(t)) [λ1(t)−λ2(t)] [αE(t)+ξ IA(t)+ψIS(t)]+

(µ +u3(t)+u1(t))λ1(t)−u3(t)λ3(t),

dλ2(t)
dt

= −C2 +α (1−u2(t)) [λ1(t)−λ2(t)]S(t)+(µ +β + γ +u3(t))λ2(t)−u3(t)λ3(t)

−βλ4(t)− γλ5(t),

dλ3(t)
dt

= (µ +σ +δ + r1)λ3(t)−σλ4(t)−δλ5(t)− r1λ6(t),

dλ4(t)
dt

= −C3 +ξ (1−u2(t)) [λ1(t)−λ2(t)]S(t)+(r2 +u4) [λ4(t)−λ6(t]+µλ4(t),

dλ5(t)
dt

= −C4 +ψ (1−u2(t)) [λ1(t)−λ2(t)]S(t)+(r3 +u4) [λ5(t)−λ6(t]+ (µ +η)λ5(t),

dλ6(t)
dt

= µλ6(t),

(8)

where the transversality conditions λi(t f ) = 0, i = 1,2, · · · ,6. Moreover, the following charac-

terization holds:

u∗1(t) = max{ min{ 1,
λ1(t)S∗(t)

ρ1
}, 0 },

u∗2(t) = max{ min{ 1,
[−λ1(t)+λ2(t)][αE∗(t)+ξ I∗A(t)+ψI∗S (t)]S

∗(t)
ρ2

}, 0 },

u∗3(t) = max{ min{ 1,
[λ1(t)−λ3(t)]S∗(t)+ [λ2(t)−λ3(t)]E∗(t)

ρ3
}, 0 },

u∗4(t) = max{ min{ 1,
[λ4(t)−λ6(t)]I∗A(t)+ [λ5(t)−λ6(t)]I∗S (t)

ρ4
}, 0 },

(9)

Proof. The form of the adjoint system (8) endowed with terminal conditions results from Pon-

tryagin’s Maximum Principle by differentiating the Hamiltonian function (6), at the respective

solutions of the state system (1). Also, to get the characterization of the optimal control given

by (9) we use the optimality conditions. After solving the equation

∂H(X ∗(t),u∗(t),Λ(t), t)
∂ui

= 0, for i = 1,2,3,4,
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we obtain directly (9) by taking into consideration the boundedness condition. �

4. SIMULATION

In this section, we give numerical results of the optimal control of the COVID’19 pandemic

model. The simulations are carried out using MATLAB R2021b. The results are simulated for

one year divided into 1.5-month sections. The data are collected based heavily on the model

parameters and coefficients values in [21].

The evolution of the six states without and with controls are represented in figures (2a) and

(2b), respectively. These figures show that the number of susceptible individuals (S) decreases

more rapidly in the case of the system without control, that because this number is transformed

to exposed, or infected individuals due to an efficient contact. However, it is reasonable that

this number decreases less rapidly in the case of the system with control, that because the

transformation of this number to not for quarantined (Q) but for recovered individuals (R) takes

more time. The controls bring the number of exposed (E) and infected individuals (Ia) and (Is)

to a small level and the number of recovered (R) to a high level.

To find out the best control strategy, we employ and simulate combinations of one, two,

and three controls in the optimization system and examine the evolution of each state with the

combination of controls applied. Our goal is to determine precisely the optimal controls for

each state.

(a) States without controls (b) States with controls

FIGURE 2. Comparison of states with and without controls
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Scenario 1

We first apply the four controls separately, in the optimal system and then simulate results in

order to represent dynamics for each state when one control is applied. We apply u1, u2 and,

u3, separately, to minimize the number of susceptible and exposed individuals. Note that the

intensive care control effect is not important for the number of (S), and (E). All three controls

are efficient to reach the goal, as shown in figures (3a) and (3b). Furthermore, the vaccination

and public health education controls decrease the number of (S) more rapidly. In another hand,

the preventive measures efforts and public health education controls are more important for

(E), considering vaccination control has an indirect effect on the number of (E). The results in

figures (3c) and (3d) show that even if the public health education effort control is not applied

directly to infected individuals, it has a more efficient effect on the decrease of the number of

(Ia) and (Is). Besides, intensive care control has also an efficient role for these states.

(a) Susceptible individuals (S) (b) Exposed individuals (E)

(c) Symptomatic infected individuals (Is) (d) Asymptomatic infected individuals (Ia)

FIGURE 3. One control strategies
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Scenario 2

The second scenario is achieved by applying the combination of two controls each time. Ap-

plying combination of vaccination and public education health has efficient result on the number

of (S) more than applying controls separately, comparing figures (3a) and (4a). However, two

control strategy has no real impact on the numbers of exposed individuals regarded to one con-

trol strategy, as long as, combinations that have an efficient role contains consistently the public

education effort control as shown in figure (4b). Moreover, the control u2 is efficient also for

the number of Infected. The reason is that decreasing exposed individuals means implicitly ing

the number of infected ones. Although adding intensive care or preventive measures efforts

controls besides control u2 provides much more powerful control strategies as presented in (4c)

and (4d).

(a) Susceptible individuals S (b) Exposed individuals E

(c) Symptomatic infected individuals Is (d) Asymptomatic infected individuals Ia

FIGURE 4. Two controls strategies

Scenario 3

In this scenario, we examine the results of combinations of three controls each time. Either
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vaccination, public education health and, intensive care or preventive measures, public educa-

tion health, and intensive care are strongly sufficient to minimize the infected individuals in a

short time as presented in (5c) and (5d). However, this strategy has no real effect on the number

of (S) and (E) in comparison with one and two strategies, figures (5a) and (5b).

(a) Susceptible individuals (S) (b) Exposed individuals (E)

(c) Symptomatic infected individuals (Is) (d) Asymptomatic infected individuals (Ia)

FIGURE 5. Three controls strategies

5. CONCLUSION

In this article, a mathematical model is proposed to study the dynamics of COVID’19 in an

entire population. We linked our model to four control measures: vaccination, public health

education, preventive measures, and, intensive care. The optimal control problem is formulated

and analysed, and thus optimal control strategies are found by minimizing the number of sus-

ceptible individuals, exposed individuals, asymptomatic infected individuals, and symptomatic

individuals, using the Pontryagin’s Maximum Principle. A comparison between optimal con-

trols and without controls is presented. Also, we tried to study all the possible combinations

between the controls and analyse all the scenarios. All strategies are effective in minimizing
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susceptible individuals, exposed individuals, asymptomatic infected individuals, and sympto-

matic individuals and each of these strategies is an option depending on the desired purpose of

the model control.
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