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Abstract. A composite refinement approach for stationary iterative methods is introduced. Two new formulas

(RJGS and RGSJ) are compared with the classical forms. Rates of convergence of the introduced composite formu-

las (RJGS and RGSJ) are well established. The efficient performance of the new forms is established theoretically

and confirmed through numerical examples. The decrease in the required number of iterations for convergence is

established through the calculation of the spectral radius of the iteration matrices. The algorithmic structure of the

new formulas is announced. Three numerical examples with different convergent properties are considered. The

calculations are performed with the help of computer algebra software Mathematica.

Keywords: Jacobi; Gauss-Seidel; RJGS; RGSJ method; refinement techniques.

2010 AMS Subject Classification: 65F10, 15A06, 15A30.

1. INTRODUCTION

The developments and efficiency of computer algebra systems like Mathematica, Maple or

MATLAB have great consequences in computational mathematical subjects. We have used

Mathematica in the developments of iterative techniques for solving large linear systems of
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algebraic equations. As we will see from the spectral radius values below a clear decision about

the rate of convergence can be seen easily from the spectral analysis of the iteration matrices.

The question of solving a large system of algebraic equations is a fundamental question in most

modern modeling issues, [1, 2, 3, 4]. Any linear system of algebraic equations can be written

in matrix form as:

(1) Ax = b,

where, A ∈ Rnxn is a coefficient nonsingular matrix (in this work), b ∈ Rn is a known column of

constants and x is the unknown vector. Theoretically, x = A−1b is known as the exact solution

of the system (1). Efficient direct methods for solving such systems requires about (n3/3)

operations which is not suitable for large sparse systems, [2, 5, 6, 7] so iterative methods seem

to be the appropriate choice especially when the convergence of the method up to the required

accuracy is achieved within n steps. It is known that, the evaluation process in each step of an

iterative technique is equivalent to a matrix vector multiplications. Usually, coefficient matrices

contains many zeros (sparse matrices), in iterative methods unlike direct methods zeros do not

affect the computational work (there is no fill in attitudes). It is well known that any splitting of

the coefficient matrix A, A = M−N, with nonsingular matrix M, defines an iterative technique,

[1, 2, 3, 4, 5, 6, 7]

(2) Mx[k+1] = Nx[k]+b, k = 0,1,2, ...

The spectral radius of the iteration matrix ρ(M−1N) is taken as the measure of the rate of

convergence of the iterative technique, the method with smaller spectral radius of its iteration

matrix is known as asymptotically faster. Also, the splitting, A = D−L−U , where D is the

diagonal part of the matrix A, and −L, −U are the strictly lower and upper triangular parts of

A, respectively [2, 3, 4, 7] is used in the matrix reformulation of the standard stationary iterative

techniques. We are interested in this work with two of the classical iterative methods:

Jacobi method [1, 2, 4, 5, 6, 7, 8]

(3) x[k+1] = D−1(L+U)x[k]+D−1b = TJx[k]+CJ.
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Gauss-Seidel method [1, 2, 4, 5, 6, 7, 8]

(4) x[k+1] = (D−L)−1Ux[k]+(D−L)−1b = TGSx[k]+CGS.

2. JACOBI GAUSS-SEIDEL AND GAUSS-SEIDEL JACOBI COMPOSITE REFINEMENT

Stationary iterative techniques are characterized by the fixed construction of their iteration

matrices during the evaluation process. In general, in stationary iterative methods the iteration

matrix is calculated only in the first step and used in the consecutive iterations, so the compu-

tational overheads are of order at most n2 per iteration for fully dense matrices. Refinement

techniques of the same iterative methods are considered in many publications [8, 9]. For a con-

vergent iterative method, the speed of convergence is doubled with refinement treatment when

the same iterative technique is used. We introduce the composite refinement approach in which

two different iterative techniques are considered consecutively. The achievement in the speed of

convergence of the refinement treatments dominates the increase in computational costs appears

in the first step. The basic idea in the refinement treatment is the use of a virtual step (x[vir])

like the case of double sweep methods or the symmetric and unsymmetric techniques, [2, 7] but

without reversing the ordering of the equations.

The general iterative technique (2) can be written as

(5) x[vir] = M−1Nx[k]+M−1b

and this virtual calculated data is used in a subsequent iteration as

(6) x[k+1] = M−1Nx[vir]+M−1b, k = 0,1,2, ...

Which can be rearranged in the form

(7) x[k+1] = (M−1N)2x[k]+(I +M−1N)M−1b, k = 0,1,2, ...

In the composite refinement different iterative techniques in the consecutive sweeps are con-

sidered. We apply this concept on the two of the simple iterative methods Jacobi and Gauss-

Seidel methods.



4 SH. A. MELIGY, I. K. YOUSSEF

2.1. Jacobi Gauss-Seidel (RJGS) Composite Refinement. The iterative formulation of the

RJGS method can be written in the form

x[k+1] = TRJGSx[k]+CRJGS;

x[vir] = (D−L)−1Ux[k]+(D−L)−1b,

where

TRJGS = D−1(L+U)(D−L)−1U,

CRJGS = D−1[I +(L+U)(D−L)−1]b,
(8)

and this can be obtained by direct application of formulas (3) and (4)

Remark 2.1. From (3), (4) and (8), we find:

(9) TRJGS = TJTGS and CRJGS = TJCGS +CJ.

Theorem 2.2. Let A be a strictly diagonally dominant (SDD) matrix, then the RJGS method is

convergent for any initial guess x[0].

Proof.

Let x∗ be the exact solution of linear system (1). Because the matrix A is a strictly diagonally

dominant, The Jacobi and GS methods are convergent [2, 4]. If x[k+1] be the (k+1)th approxi-

mation to the solution of linear system (1) by the RJGS method in (8), then we have

‖x[k+1]− x∗‖= ‖x[vir]+D−1(b−Ax[vir])− x∗‖

≤ ‖x[vir]− x∗‖+‖D−1‖‖b−Ax[vir]‖

Where, x[vir] is assumed to be calculated by the GS method. Thus ||x[k+1]− x∗|| converges to

the zero vector due to the convergence of the GS method. Hence, the RJGS method converges

to the solution of linear system (1).

2.2. Gauss-Seidel Jacobi (RGSJ) Composite Refinement. The iterative formulation of the

RGSJ method can be written in the form

x[k+1] = TRGSJx[k]+CRGSJ;

x[vir] = D−1(L+U)x[k]+D−1b,
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where

TRGSJ = (D−L)−1UD−1(L+U),

CRGSJ = (D−L)−1[I +UD−1]b,
(10)

and this can be obtained by direct application of formulas (3) and (4).

Remark 2.3. From (3), (4) and (10), we find:

(11) TRGSJ = TGSTJ and CRGSJ = TGSCJ +CGS.

Theorem 2.4. Let A be a strictly diagonally dominant (SDD) matrix, then the RGSJ method is

convergent for any initial guess x[0].

Proof.

Let x∗ be the exact solution of linear system (1). Due to the strict diagonal dominance of

the matrix A, The Jacobi and GS methods are convergent [2, 4]. If x[k+1] be the (k + 1)th

approximation to the solution of linear system (1) by the RGSJ method in (10), then we have

‖x[k+1]− x∗‖= ‖x[vir]+(D−L)−1(b−Ax[vir])− x∗‖

≤ ‖x[vir]− x∗‖+‖(D−L)−1‖‖b−Ax[vir]‖

Where, x[vir] is assumed to be calculated by the Jacobi method.

Thus ||x[k+1] − x∗|| converges to the zero vector because of the convergence of the Jacobi

method. Hence, the RGSJ method converges to the solution of linear system (1).

Theorem 2.5. For any two convergent methods M1 and M2

[min(ρ(TM1),ρ(TM2))]
2 ≤ ρ(TRM1M2)

≤ min(ρ(TM1),ρ(TM2))

≤ max(ρ(TM1),ρ(TM2))

Proof.

Let TM1 be the iteration matrix (with eigenvalues λi) of the method M1, Let TM2 be the iteration
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matrix (with eigenvalues µi) of the method M2 and Let TRM1M2 be the iteration matrix of the

composite refinement technique of the two methods (with eigenvalues βi). We have

TRM1M2 = TM1TM2

det(TRM1M2) = det(TM1)det(TM2)

n

∏
i=1

βi =
n

∏
s=1

λs

n

∏
r=1

µr,

but we have |λs|< 1, |µr|< 1 ∀r,s

max|βi|= (max|λs|)(max|µr|)≤ [max(max|λi|,max|µi|)]2

Similarly,

max|βi|= (max|λs|)(max|µr|)≥ [min(max|λi|,max|µi|)]2

Accordingly, We can write

[min(ρ(TM1),ρ(TM2))]
2 ≤ ρ(TRM1M2)

≤ min(ρ(TM1),ρ(TM2))

≤ max(ρ(TM1),ρ(TM2))

Algorithm 2.6. A general refinement algorithm of two iterative methods M1 and M2 for solving

the linear system Ax = b

Step 1: Input the coefficient matrix A and the constant matrix b.

Step 2: Use the splitting form of the matrix A as A = D−L−U.

Step 3: Calculate the iteration matrix TRM1M2 = TM1 TM2 .

Step 4: Calculate the matrix CRM1M2 = TM1 CM2 +CM1 .

Step 5: Input the initial guess x[0] = 0.

Step 6: Loop x[i] = TRM1M2 x[i−1]+CRM1M2 until the specified number of iterations.

3. NUMERICAL EXAMPLES

To illustrate the theoretical results, we consider three distinguished numerical examples. The

first example is an important example given in [1] to illustrate the superiority of Gauss-Seidel

over the Jacobi method in case of convergence, [10]. The second example appears in [4] to illus-

trate that the convergence of Jacobi method does not guarantee the convergence of Gauss-Seidel
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method. While the third example is to illustrate the theoretical results obtained in theorems 2.2

and 2.4 of the introduced composite refinement of two convergent iterative techniques.

Example 3.1. We consider the linear system of equations, [1]

2x1− x2 + x3 =−1,

2x1 +2x2 +2x3 = 4,

− x1− x2 +2x3 =−5.

(12)

with exact solution is x1 = 1,x2 = 2,x3 =−1.

The spectral radius of the Jacobi iteration matrix is greater than one (ρ(TJ) = 1.11803 > 1) so

Jacobi method (3) is divergent (table 1). The spectral radius of the Gauss-Seidel iteration matrix

is (ρ(TGS) = 0.5 < 1) so Gauss-Seidel method (4) is convergent (table 2). It is a surprising

result that when solving this system by the RJGS and RGSJ methods the solution convergent

(tables 3, 4). The spectral radius of the iteration matrix of RJGS method for the system (12) is

(ρ(TRJGS) = 0.5 < 1). Also, The spectral radius of the iteration matrix of RGSJ method for the

system (12) is (ρ(TRGSJ) = 0.5 < 1).

TABLE 1. The results of the Jacobi method to the linear system (12).

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 -0.5 2 -2.5

2 1.75 5 -1.75

24 -7.73115 -32.9246 7.73115

25 -20.8279 2 -22.8279
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TABLE 2. The solution of the linear system (12) by the GS method.

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 -0.5 2.5 -1.5

2 1.5 2 -0.75

24 0.999999 2 -1

25 1 2 -1

TABLE 3. The solution of the linear system (12) by the RJGS method.

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 1.5 4 -1.5

2 0.5 0.5 -0.75

3 1.375 3 -1.125

24 0.999999 2 -1

25 1 2 -1

TABLE 4. The solution of the linear system (12) by the RGSJ method.

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 1.75 2.75 -0.25

2 -0.125 2.375 -1.375

3 1.9375 1.4375 -0.8125

24 0.999996 2 -1

25 1 2 -1

Example 3.2. We consider the linear system of equations, [4]

x1 +2x2 +4x3 = 1,

0.125x1 + x2 + x3 = 3,

− x1 +4x2 + x3 = 7.

(13)
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Without rearrangements, the spectral radius of the iteration matrix of Gauss-Seidel method

is ρ(TGS) = 2.53802 so the method is divergent, (table 6) and the iteration matrix of Jacobi

method is ρ(TJ) = 0.5, (table 5). Also, the solution of this system is divergent with the RJGS

and RGSJ methods (tables 7, 8). The spectral radius of the iteration matrix of RJGS method is

ρ(TRJGS) = 1. Also, The spectral radius of the iteration matrix of RGSJ method is ρ(TRGSJ) = 1.

TABLE 5. The solution of the linear system (13) by the Jacobi method.

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 1 3 7

2 -33 -4.125 -4

20 33.3331 13.8333 -15

21 33.3333 13.8333 -15

TABLE 6. The results of the GS method to the linear system (13).

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 1 2.875 -3.5

2 9.25 5.34375 -5.125

20 2.03384×107 2.1239×106 1.18428×107

21 −5.1619×107 −5.390×106 −3.0057×107
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TABLE 7. The results of the RJGS method to the linear system (13).

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 9.25 6.375 -3.5

2 51.0625 18.3438 -15.625

20 -1.01904 4.40777 -8.30024

21 -14.7628 -0.0503403 -0.122835

TABLE 8. The results of the RGSJ method to the linear system (13).

k x[k]1 x[k]2 x[k]3

0 0 0 0

1 -33 0.125 -26.5

2 39.75 24.5313 -51.375

20 -8.79131 -6.47066 24.0913

21 -55.3805 -14.1688 8.2946

Example 3.3. We consider the linear system of equations,

4x1− x2− x3 = 2,

− x1 +4x2− x4 = 1,

− x1 +4x3− x4 = 1,

− x2− x3 +4x4 = 6.

(14)

with exact solution x1 = x2 = x3 = 1 and x4 = 2.

The spectral radius of the iteration matrix of Gauss-Seidel method is ρ(TGS) = 0.25, so the

method is convergent, (table 10) and the iteration matrix of Jacobi method is ρ(TJ) = 0.5, (table

9). Accordingly theorems 2.2 and 2.4, the solution of this system is convergent by the RJGS

and RGSJ methods (tables 11, 12). The spectral radius of the iteration matrix of RJGS method

for the above system is ρ(TRJGS) = 0.177692. Also, The spectral radius of the iteration matrix

of RGSJ method for the above system is ρ(TRGSJ) = 0.177692.
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TABLE 9. The solution of the linear system (14) by the Jacobi method.

k x[k]1 x[k]2 x[k]3 x[k]4

0 0 0 0 0

1 0.5 0.25 0.25 1.5

2 0.625 0.75 0.75 1.625

21 1 0.999999 0.999999 2

22 1 1 1 2

TABLE 10. The solution of the linear system (14) by the GS method.

k x[k]1 x[k]2 x[k]3 x[k]4

0 0 0 0 0

1 0.5 0.375 0.375 1.6875

2 0.6875 0.84375 0.84375 1.92188

11 0.999999 0.999999 0.999999 2

12 1 1 1 2

TABLE 11. The solution of the linear system (14) by the RJGS method.

k x[k]1 x[k]2 x[k]3 x[k]4

0 0 0 0 0

1 0.6875 0.796875 0.796875 1.6875

2 0.948242 0.96167 0.96167 1.94824

8 0.999998 0.999999 0.999999 2

9 1 1 1 2

4. DISSCUSION AND RESULTS

The problem of solving large linear system is one of fundamental problems in science in

general,[11, 12, 13]. Because of its importance there are many books specialized in iterative

solutions of large linear systems [1, 2, 4, 7]. It is generally accepted that iterative techniques are

preferable to direct methods for solving large sparse systems. One of the main disadvantage of

iterative methods is the slow rate of convergence. There are different techniques introduced to
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TABLE 12. The solution of the linear system (14) by the RGSJ method.

k x[k]1 x[k]2 x[k]3 x[k]4

0 0 0 0 0

1 0.625 0.78125 0.78125 1.89063

2 0.939453 0.95752 0.95752 1.97876

8 0.999998 0.999999 0.999999 2

9 1 1 1 2

increase the convergence rate of the stationary iterative technique. Relaxation techniques, which

contains a relaxation parameter, the choice of the optimum value restricts the efficient use of

the relaxation methods. Double sweep method is a technique used to increase the convergence

rate of any iterative technique. In double sweep methods, the main computational costs occur

in the first step (calculation of the iteration matrix). In classical refinement methods, a virtual

iteration is assumed with the same method (iteration matrix).

In this work, the concept of composite refinement technique is introduced. In the introduced

composite refinement techniques to different iterative methods are used successively. As proved

in the theorems above the refinement approach increases the rate of convergence moreover the

composite refinement can change the behavior of the method from divergence to convergence

(example 3.1). Tables (3, 4) illustrate that RJGS and RGSJ methods can be convergent when

the Gauss-Seidel method is convergent. Tables (7, 8) illustrate that RJGS and RGSJ methods

may be divergent when the Gauss-Seidel method is divergent. It is well known that when

both Jacobi and Gauss Seidel methods are convergent, Gauss-Seidel method is faster (Stein-

Rosenberg theorem [1]). The RJGS and RGSJ methods are convergent even if the coefficient

matrix of the linear system is not a SDD matrix. Moreover, the RJGS and RGSJ methods may

be divergent even if the Jacobi method is convergent (example 3.2).

5. CONCLUSION

The main objective is to introduce a composite form of the refinement techniques. It is

proved that the composite refinement technique of two iterative methods M1 and M2 converges

with rate of convergence between the rates of convergence of the classical refinement of M1 and
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the classical refinement of M2 (theorem 2.5 and example 3.3) and this will be much interesting

when one of the iterative techniques is divergent (examples 3.1 and 3.2). It is illustrated that the

convergence of the Gauss-Seidel (GS) method dominates the divergence of the Jacobi method

in the introduced composite refinement technique. Finally, we mention the following main

concluding remarks:

1. The composite refinement treatment is introduced.

2. An inequality for the convergence rate in case of composite refinement is well established

(theorem 2.5).
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