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Abstract. The concept of F-contraction generalizes Banach contraction theorem. In this paper, we introduce a

generalized F-contraction and used it to obtain fixed points in S-metric spaces.
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1. INTRODUCTION

The concept of F-contraction was introduced by Wardowski [1]. By introducing F-

contraction, Wardowski [1] generalized the famous Banach Contraction Theorem. His result

was extended or generalized by various researchers. For our study, we will use the notation

R,R+,N as the set of real numbers, set of positive real numbers, set of natural numbers respec-

tively.

Wardowski [1] defined the following:
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2. PRELIMINARIES

Definition 1. [1] A self mapping P in a metric space (X ,d) is said to be an F-contraction if for

all x,y ∈ X and d(Px,Py)> 0 implies

(1) τ +F(d(Px,Py))≤ F(d(x,y))

where τ > 0 and F ∈F .

Here F is the family of all functions F : R+→ R satisfying

(F1): F is strictly increasing;

(F2): lim
n→+∞

αn = 0 if and only if lim
n→∞

F(αn) =−∞ for each sequence {αn} ⊂ R+;

(F3): for 0 < k < 1, lim
α→0+

α
kF(α) = 0.

Wardowski also pointed out that by considering different types of mappings in (1) variety of

contractions can be obtained. He also remarked that from (F1) and (1), it can be concluded that

F-contraction mappings are contractive and hence continuous. Further, if F1,F2 be such that the

properties (F1)-(F3) in Definition 1 are satisfied. If F1(α)≤ F2(α) for all α > 0 and a mapping

G = F2−F1 is decreasing then every F1-contraction P is F2-contraction.

The following theorem was proved by Wardowski :

Theorem 1. [1] In a complete metric space (X ,d), a self mapping P be an F-contraction. Then

for every x ∈ X, the sequence {Pnx}n∈N converges to x∗ ∈ X where x∗ is the unique fixed point

of P.

Secelean [2] replaced (F2) of Definition 1 by either of the property given as under:

(F2′): inf F = −∞ or

(F2′′): a sequence {αn}n∈N of positive real numbers exist such that

lim
n→∞

F(αn) =−∞.

Secelean [2] also proved the following:

Lemma 1. [2] Consider a sequence {αn}n∈N and an increasing mapping F : R+→ R. Then

the following conditions hold true
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(i): lim
n→∞

F(αn) =−∞, implies lim
n→∞

αn = 0;

(ii): infF =−∞, and lim
n→∞

αn = 0, implies lim
n→∞

F(αn) =−∞.

Wardowski also pointed out that Banach contractions are F-contractions but the converse is

not true.

F-contraction is introduced by Cosentino and Verto [3].

Definition 2. [3] In a complete metric space (X ,d), a self mapping P is said to be Hardy-Rogers

type F-contraction if F ∈F and τ > 0 satisfies

(2) τ +F(d(Px,Py))≤ F(a1.d(x,y)+a2.d(x,Px)+a3.d(y,Py)+a4.d(x,Py)+a5.d(y,Px))

with d(Px,Py)> 0 for all x,y ∈ X, where a1,a2,a3,a4 and a5 are non-negative numbers, a3 6= 1

and a1 +a2 +a3 +2a4 = 1.

Theorem 2. [3] In a complete metric space (X ,d), a self mapping P be a Hardy-Rogers-type

contraction and a3 6= 1. Then P has a fixed point. Further, P has a unique fixed point if

a1 +a4 +a5 ≤ 1.

In Definition 1, the condition (F3) was replaced by Piri and Kumam [4] as under:

(F3′): F is continuous on (0,+∞).

They defined a family of functions F satisfying (F1), (F2′) and (F3′) and proved the fol-

lowing :

Theorem 3. [4] In a complete metric space (X ,d), let P be a self mapping. Let F ∈F satisfy

∀x,y ∈ X , [d(Px,Py)> 0 implies τ +F(d(Px,Py))≤ F(d(x,y))].

where τ > 0. Then P has a unique fixed point x∗ ∈ X and the sequence {Pnx}n∈N converges to

x∗ for each x ∈ X.

Piri and Kumam [4] showed the independence of (F3) and (F3′).

The next result was proved by Popescu and Gabrial [5] by generalizing the results in [1, 3].
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Theorem 4. [5] In a complete metric space (X ,d), let P be a self mapping. For τ > 0, let

x,y ∈ X , d(Px,Py)> 0 implies

τ +F(d(Px,Py))

≤ F(a1.d(x,y)+a2.d(x,Px)+a3.d(y,Py)+a4.d(x,Py)+a5.d(y,Px)),

where the mapping F : R+→ R is increasing, a1,a2,a3,a4,a5 are non-negative numbers, a4 <

1/2,a3 < 1,a1 + a2 + a3 + 2a4 = 1, 0 < a1 + a4 + a5 ≤ 1. Then P has a unique fixed point

x∗ ∈ X, also the sequence {Pnx}n∈N converges to x∗ for each x ∈ X.

For more results on F-contraction, readers are suggested to see research papers [6, 7, 8]. For

other type of contractions one can see [10, 11, 12, 13, 14, 15, 16]

Definition 3. [9] Let X be a non-empty set. An S-metric on X is a function S : X ×X ×X →

[0,+∞) that satisfies the following conditions.

(1): S(x,y,z)≥ 0 for all x,y,z ∈ X;

(2): S(x,y,z) = 0 if and only if x = y = z for every x,y,z ∈ X;

(3): S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a) for every x,y,z,a ∈ X.

The pair (X ,S) is called an S-metric.

Definition 4. Let (X ,S) be an S-metric space and A⊂ X.

(1): If for every x ∈ A there exists r > 0 such that BS(x,r)⊂ A, then the subset A is called

an open subset of X.

(2): A subset A of X is said to be S-bounded if there exists r > 0 such that S(x,x,y)< r

∀x,y ∈ A.

(3): A sequence {xn} in X converges to x if and only if S(xn,xn,x)→ 0 as n→ ∞. That is

for each ε > 0 there exist n0 ∈ N such that ∀ n≥ n0,S(xn,xn,x)< ε and we denote this

by limn→∞xn = x.

(4): A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 , there exists

n0 ∈ N such that S(xn,xn,xm)< ε for each n,m≥ n0.

(5): The S-metric space (X ,S) is said to be complete if every Cauchy sequence is conver-

gent.
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(6): Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that

BS(x,r)⊂ A. Then τ is a topology on X (induced by the S-metric S).

There are various forms of S-metric space and these are used with the generalized forms of

Banach Contraction Theorems. These can be found in research papers [17, 18, 19, 20, 21, 22,

23, 24]. In this paper, we use the concept of rational F-contraction in S-metric space to obtain

fixed points.

3. MAIN RESULTS

Theorem 5. Let P be a self-mapping of a complete S-metric space X into itself. Suppose that

there exists τ > 0 such that for all x,y ∈ X, S(Px,Px,Py)> 0 implies

τ+F(S(Px,Px,Py))≤F(a1S(x,x,y)+a2S(x,x,Px)+a3S(y,y,Py)+a4S(x,x,Py)+a5S(y,y,Px))

where F : R+→ R is an increasing mapping, a1,a2,a3,a4,a5 are non negative numbers, a1 +

a2+a3+3a4+a5≤ 1. Then P has a unique fixed point x∗ ∈ X and for every x∈X, the sequence

{Pnx}n∈N converges to x∗.

Proof. Let x0 ∈ X be an arbitrary point and we construct a sequence {xn}n∈N ∈ X by

x1 = Px0,

x2 = Px1 = P2x0,

. . .

xn = Pxn−1 = Pnx0, ∀n ∈ N(3)

If there exists n ∈ N ∪{0} such that S(xn, xn,Pxn)=0, then xn is a fixed point of P and the proof

is complete. Hence, we assume that

(4) 0 < S(xn,xn,Pxn) = S(Pxn−1,Pxn−1,Pxn) ∀n ∈ N
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Now, Let Sn= S(xn,xn,xn+1). By the hypothesis and the monotony of F , we have for all n ∈ N

τ +F(Sn) = τ +F(S(xn,xn,xn+1))

= τ +F(S(Pxn−1,Pxn−1,Pxn))

≤ F(a1S(xn−1,xn−1,xn)+a2S(xn−1,xn−1,Pxn−1)+a3S(xn,xn,Pxn)

+a4S(xn−1,xn−1,Pxn)+a5S(xn,xn,Pxn−1))

= F(a1S(xn−1,xn−1,xn)+a2S(xn−1,xn−1,xn)+a3S(xn,xn,xn+1)

+a4S(xn−1,xn−1,xn+1)+a5S(xn,xn,xn))

≤ F(a1Sn−1 +a2Sn−1 +a3Sn +a42S(xn−1,xn−1,xn)+a4S(xn,xn,xn+1)+a5.0))

= F((a1 +a2 +2a4)Sn−1 +(a3 +a4)Sn)

It follows that

F(Sn) ≤ F((a1 +a2 +2a4)Sn−1 +(a3 +a4)Sn)− τ

< F((a1 +a2 +2a4)Sn−1 +(a3 +a4)Sn)(5)

So from the monotony of F , we get

Sn ≤ (a1 +a2 +2a4)Sn−1 +(a3 +a4)Sn

and hence

(1−a3−a4)Sn ≤ (a1 +a2 +2a4)Sn−1 ∀n ∈ N

Since a1 +a2 +a3 +3a4 +a5 ≤ 1

Sn ≤
a1 +a2 +2a4

1−a3−a4
Sn−1

< Sn−1 ∀n ∈ N.

Thus, we conclude that the sequence {Sn}n∈N is strictly decreasing , so there exists limn→∞Sn =

S.

Suppose that S > 0. Since F is an increasing mapping, there exists limx→S+F(x) = F(S+0),

so taking the limit as n→ ∞ in inequality (5), we get F(S+ 0) ≤ F(S+ 0)− τ , which is a
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contradiction.

Therefore,

(6) limn→∞Sn = 0.

Now, we claim that {xn}n∈N is a Cauchy sequence.

Arguing by contradiction , we assume that there exists ε > 0 and sequences {p(n)}n∈N and

{q(n)}n∈N of natural numbers such that p(n)> q(n)> n ,

(7) S(xp(n),xp(n),xq(n))> ε,S(xp(n)−1,xp(n)−1,xq(n))≤ ε, ∀n ∈ N

Then, we have

ε < S(x(p(n),xp(n),xq(n))

≤ 2S(xp(n),xp(n),xp(n)−1)+S(S(xp(n)−1,xp(n)−1,xq(n))

≤ 2S(xp(n),xp(n),xp(n)−1)+ ε

It follows from relation (6) and above inequality that

(8) limn→∞S(xp(n),xp(n),xq(n)) = ε

Since S(xp(n),xp(n),xq(n))> ε > 0 , by the hypothesis and monotony of F , we have

τ +F(S(xp(n),xp(n),xq(n))) = τ +F(S(Pxp(n)−1,Pxp(n)−1,Pxq(n)−1))

≤ F(a1S(xp(n)−1,xp(n)−1,xq(n)−1)+a2S(xp(n)−1,xp(n)−1,Pxp(n)−1)

+a3S(xq(n)−1,xq(n)−1,Pxq(n)−1)+a4S(xp(n)−1,xp(n)−1,Pxq(n)−1)

+a5S(xq(n)−1,xq(n)−1,Pxp(n)−1))

= F(a1S(xp(n)−1,xp(n)−1,xq(n)−1)+a2S(xp(n)−1,xp(n)−1,xp(n))

+a3S(xq(n)−1,xq(n)−1,xq(n))+a4S(xp(n)−1,xp(n)−1,xq(n))

+a5S(xq(n)−1,xq(n)−1,xp(n)))
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≤ F(a1(2S(xp(n)−1,xp(n)−1,xp(n))+S(xp(n),xp(n),xq(n)−1))+a2Sp(n)−1

+a3Sq(n)−1 +a4(2S(xp(n)−1,xp(n)−1,xp(n))+S(xp(n),xp(n),xq(n)))

+a5(2S(xq(n)−1,xq(n)−1,xq(n))+S(xq(n),xq(n),xp(n))))

≤ F(2a1Sp(n)−1 +a1(2S(xp(n),xp(n),xq(n))+S(xq(n),xq(n),xq(n)−1))

+a2Sp(n)−1 +a3Sq(n)−1 +2a4Sp(n)−1

+a4S(xp(n),xp(n),xq(n))+2a5Sq(n)−1 +a5S(xp(n),xp(n),xq(n)))

= F((2a1 +a4 +a5)S(xp(n),xp(n),xq(n))+(2a1 +a2 +2a4)Sp(n)−1

+(a1 +a3 +2a5)Sq(n)−1)

Taking the limit as n→ ∞ in the above inequality, we get

τ +F(ε +0)≤ F(ε +0),

which is a contradiction and hence, the sequence {xn}n∈N is a Cauchy sequence. Since (X ,S)

is a complete S-metric space, we have that {xn}n∈N converges to some point x∗ in X.

If there exists a sequence {p(n)}n∈N of natural numbers such that xp(n)+1 = Pxp(n) = Px∗,

then limn→∞xp(n)+1 = x∗ , so Px∗= x∗. Otherwise, there exists n∈N such that xn+1 =Pxn 6=Px∗

,∀n≥ N.

Assume that Px∗ 6= x∗. By the hypothesis, we have

τ +F(S(Pxn,Pxn,Px∗)) ≤ F(a1S(xn,xn,x∗)+a2S(xn,xn,Pxn)+a3S(x∗,x∗,Px∗)

+a4S(xn,xn,Px∗)+a5S(x∗,x∗,Pxn))

so

τ +F(S(xn+1,xn+1,Px∗)) ≤ F(a1S(xn,xn,x∗)+a2S(xn,xn,xn+1)+a3S(x∗,x∗,Px∗)

+a4S(xn,xn,Px∗)+a5S(x∗,x∗,xn+1))

Since F is increasing , we deduce that

S(xn+1,xn+1,Px∗) ≤ a1S(xn,xn,x∗)+a2S(xn,xn,xn+1)+a3S(x∗,x∗,Px∗)

≤+a4S(xn,xn,Px∗)+a5S(x∗,x∗,xn+1)
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so letting n→ ∞ , we get

S(x∗,x∗,Px∗) ≤ a3S(x∗,x∗,Px∗)+a4S(x∗,x∗,Px∗)

= (a3 +a4)S(x∗,x∗,Px∗)

< S(x∗,x∗,Px∗)

This is a contradiction . Therefore, Px∗= x∗. Now, we will show that P has a unique fixed point.

Let x,y ∈ X be two distinct fixed points of P. Thus, Px = x 6= y = Py. Hence, S(Px,Px,Py) =

S(x,x,y)> 0. By the hypothesis, since a1 +a2 +a3 +3a4 +a5 ≤ 1, we have

τ +F(S(x,x,y)) = τ +F(S(Px,Px,Py))

≤ F(a1S(x,x,y)+a2S(x,x,Px)+a3S(y,y,Py)

+a4S(x,x,Py)+a5S(y,y,Px))

= F(a1S(x,x,y)+a4S(x,x,y)+a5S(y,y,x))

= F((a1 +a4 +a5)S(x,x,y))

≤ F(S(x,x,y))

This is a contradiction. Therefore, P has a unique fixed point. �

Corollary 1. Let (X ,S) be a complete S-metric space and let P be a self mapping on X. Assume

that there exists an increasing mapping F : R+→ R and τ > 0 such that

τ +F(S(Px,Px,Py))≤ F(a1S(x,x,y)+a2S(x,x,Px)+a3S(y,y,Py)) ∀x,y ∈ X ,Px 6= Py,

where a1 +a2 +a3 ≤ 1. Then, P has a unique fixed point in X.
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