

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 1, 332-351

ISSN: 1927-5307

USING NEWTON-KANTOROVICH METHOD TO COMPUTE $Q R$ AND $(L+I) U$ - FACTORIZATIONS

MARIO PAUL AHUES ${ }^{1, *}$, MUZAFAR FATTAH HAMA ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Jean Monnet, 42023 SAINT-ETIENNE, France
${ }^{2}$ School of Science - Department of Mathematics, University of Sulaimani, Sulaimani, Iraq

Abstract

In this paper, we apply Newton-Kantorovich method to compute iteratively a QR or an $(\mathrm{L}+\mathrm{I}) \mathrm{U}$ factorization of a quasi-upper-triangular nonsingular matrix with no zero diagonal entries.

Keywords: $(\mathrm{L}+\mathrm{I}) \mathrm{U}$ factorization; Newton method; QR factorization.
2000 AMS Subject Classification: 65F15; 65F30; 15A23

1. Introduction

The purpose of this paper is to use Newton like methods to approximate factors of a given matrix. The factorizations presented in this work are $Q R$ and $(L+I) U$ ones, where Q is a unitary matrix, R and U upper triangular matrices, L a strictly lower triangular matrix and I denotes the identity matrix. Among Newton like methods, we consider here the exact classical version extended to a more general context in [4] and [2]. The above mentioned factorizations are important tools in numerical algorithms covering a wide spectrum of problems in applied mathematics. In particular, in the domain of eigenvalue approximations performed through the iterative computation of an upper triangular

[^0]similar matrix, we find QR Francis and LR Rutishauser methods. The algorithms of the present paper are used in this particular context in [1].

2. The General Framework

Let $\mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) be the complex (resp. real) algebra of square matrices of order n with complex (resp. real) entries. The identity matrix will be denoted by I and the null matrix by O .

Theorem 2.1.QR factorization

For every nonsingular matrix $Z \in \mathbb{F}^{n \times n}$ there exists a unitary matrix Q and an upper triangular matrix R such that

$$
Z=Q R
$$

Proof. See [3].
Theorem 2.2. $(\mathrm{L}+\mathrm{I}) \mathrm{U}$ factorization
For every nonsingular matrix $\mathrm{Z} \in \mathbb{F}^{n \times n}$ there exists a permutation matrix P , a strictly lower triangular matrix L and nonsingular upper triangular matrix U such that

$$
Z=(L+I) U P .
$$

Proof. See [3].
The purpose of this article is to show that these forms can be approximated using Newton-Kantorovich method.

We recall the basic aspects of Newton-Kantorovich method for nonlinear equations: Let \mathbb{B}_{1} and \mathbb{B}_{2} be real isomorphic finite-dimensional normed linear spaces, \mathcal{O} an open set of \mathbb{B}_{1}. For $i, j \in\{1,2\}, \operatorname{BL}\left(\mathbb{B}_{i}, \mathbb{B}_{j}\right)$ denotes the algebra of all bounded linear operators with domain \mathbb{B}_{i} and values in \mathbb{B}_{j}, and the open subset of $\operatorname{BL}\left(\mathbb{B}_{i}, \mathbb{B}_{j}\right)$ of isomorphisms from \mathbb{B}_{i} onto \mathbb{B}_{j} is denoted by $\operatorname{IS}\left(\mathbb{B}_{i}, \mathbb{B}_{j}\right)$. All the norms involved in these structures are denoted
by the single symbol $\|$.$\| . Let \mathcal{F}: \mathcal{O} \rightarrow \mathbb{B}_{2}$ be a Fréchet differentiable operator. The problem to be solved by iterations is

$$
\begin{equation*}
\text { Find } \varphi_{\infty} \in \mathcal{O} \text { such that } \mathcal{F}\left(\varphi_{\infty}\right)=0 \tag{1}
\end{equation*}
$$

Let $\left(B_{k}\right)_{k \geq 0}$ be a sequence in $\operatorname{IS}\left(\mathbb{B}_{1}, \mathbb{B}_{2}\right)$. The so-called Newton type iterations read as

$$
\begin{equation*}
\varphi_{0} \in \mathcal{O}, \quad \varphi_{k+1}:=\varphi_{k}-B_{k}^{-1} \mathcal{F}\left(\varphi_{k}\right) \tag{2}
\end{equation*}
$$

The Newton-Kantorovich method corresponds to the choice

$$
\begin{equation*}
B_{k}:=\mathcal{F}^{\prime}\left(\varphi_{k}\right) \text { for all } k \geq 0 \tag{3}
\end{equation*}
$$

Let $\mathcal{O}_{r}(\varphi)$ denote the open ball of \mathbb{B}_{1} centered at φ with radius $r>0$.
Theorem 2.3.A posteriori convergence of (2) with (3)
Suppose that $\mathcal{O}, \mathcal{F}, \varphi_{0} \in \mathcal{O}, c_{0}>0, \ell>0$ and $m_{0}>0$ satisfy

$$
\begin{equation*}
\mathcal{F}^{\prime}\left(\varphi_{0}\right) \in \operatorname{IS}\left(\mathbb{B}_{1}, \mathbb{B}_{2}\right),\left\|\mathcal{F}^{\prime}\left(\varphi_{0}\right)^{-1}\right\| \leq m_{0}, \text { and }\left\|\mathcal{F}^{\prime}\left(\varphi_{0}\right)^{-1} \mathcal{F}\left(\varphi_{0}\right)\right\| \leq c_{0} \tag{2.3.1}
\end{equation*}
$$

(2.3.2) $\mathcal{D}_{0}:=\left\{\varphi \in \mathbb{B}_{1}:\left\|\varphi-\varphi_{0}\right\| \leq 2 c_{0}\right\}$ is included in \mathcal{O},
(2.3.3) ℓ is a Lipschitz constant for \mathcal{F}^{\prime} on \mathcal{D}_{0},
(2.3.4) $h_{0}:=m_{0} \ell c_{0}<1 / 2$.

Then, \mathcal{F} has a unique zero $\varphi_{\infty} \in \mathcal{D}_{0}$, and for all $k \geq 0$,

$$
\left\|\varphi_{k+1}-\varphi_{\infty}\right\| \leq \frac{m_{0} \ell}{1-2 h_{0}}\left\|\varphi_{k}-\varphi_{\infty}\right\|^{2}
$$

Proof. See [4]. Some improvements on classical error bounds for Newton's method in a more general abstract framework are given in [2].

Ker will denote the kernel (or null space) of a linear operator, and Ran its range (or image space). Let \mathbb{F} denote either \mathbb{R} or \mathbb{C}. We introduce the following linear operators:

$$
\begin{aligned}
& \mathcal{U}_{\mathbb{F}}: \mathbb{F}^{n \times n} \rightarrow \mathbb{F}^{n \times n}, \quad \mathcal{U}_{\mathbb{F}}(\mathrm{M})(i, j):= \begin{cases}\mathrm{M}(i, j) & \text { if } i \leq j, \\
0 & \text { otherwise },\end{cases} \\
& \mathcal{L}_{\mathbb{F}}: \mathbb{F}^{n \times n} \rightarrow \mathbb{F}^{n \times n}, \quad \mathcal{L}_{\mathbb{F}}(\mathrm{M})(i, j):= \begin{cases}\mathrm{M}(i, j) & \text { if } j \leq i, \\
0 & \text { otherwise },\end{cases} \\
& \mathcal{D}_{\mathbb{F}}: \mathbb{F}^{n \times n} \rightarrow \mathbb{F}^{n \times n}, \quad \mathcal{D}_{\mathbb{F}}(\mathrm{M})(i, j):= \begin{cases}\mathrm{M}(i, j) & \text { if } i=j, \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

for all $\mathrm{M} \in \mathbb{F}^{n \times n}$, where \mathcal{U} stands for upper, \mathcal{L} for lower and \mathcal{D} for diagonal. With these notations, for instance, $\operatorname{Ran}\left(\mathcal{U}_{\mathbb{F}}\right)$ is the space of all upper triangular matrices with coefficients in \mathbb{F} and $\operatorname{Ker}\left(\mathcal{U}_{\mathbb{F}}\right)$ is the space of all strictly lower triangular matrices with entries in \mathbb{F}.

For topological purposes, we shall consider the following inner product:

$$
\begin{equation*}
\left\langle\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{m}\right),\left(\widehat{\mathrm{A}}_{1}, \widehat{\mathrm{~A}}_{2}, \ldots, \widehat{\mathrm{~A}}_{m}\right)\right\rangle:=\sum_{i=1}^{m} \operatorname{tr}\left(\widehat{\mathrm{~A}}_{i}^{*} \mathrm{~A}_{i}\right) \tag{4}
\end{equation*}
$$

for any matrices $\mathrm{A}_{i}, \widehat{\mathrm{~A}}_{i}$ in $\mathbb{F}^{p \times q}$ and any integers $m \geq 1, p \geq 1$ and $q \geq 1$. The corresponding induced norm will denoted by

$$
\left\|\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{m}\right)\right\|:=\left[\sum_{i=1}^{m} \operatorname{tr}\left(\mathrm{~A}_{i}^{*} \mathrm{~A}_{i}\right)\right]^{1 / 2}
$$

We suppose that the matrix Z is invertible, with no zero diagonal entry, and such that $\mathrm{P}=\mathrm{I}$ in Theorem 2.2.

3. The $Q R$ factorization

3.1. Defining the nonlinear operator \mathcal{F}

Let A, B in $\mathbb{R}^{n \times n}$ be the real part and the imaginary part of Z respectively:

$$
\mathrm{A}:=\Re Z, \quad \mathrm{~B}:=\Im Z .
$$

We use indifferently the notations

$$
\mathrm{Z}=\mathrm{A}+\mathrm{i} \mathrm{~B} \in \mathbb{C}^{n \times n} \quad \text { or } \quad \mathrm{Z}=(\mathrm{A}, \mathrm{~B}) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}
$$

Following Theorem 2.1, there exist $\mathrm{U}_{\infty}, \mathrm{V}_{\infty}$ in $\mathbb{R}^{n \times n}$ and $\mathrm{X}_{\infty}, \mathrm{Y}_{\infty}$ in $\operatorname{Ran}\left(\mathcal{U}_{\mathbb{R}}\right)$, such that

$$
\mathrm{Q}_{\infty}:=\mathrm{U}_{\infty}+\mathrm{i} \mathrm{~V}_{\infty}, \quad \mathrm{R}_{\infty}:=\mathrm{X}_{\infty}+\mathrm{i} \mathrm{Y}_{\infty}
$$

satisfy

$$
\begin{equation*}
\mathrm{Q}_{\infty} \mathrm{Q}_{\infty}^{*}-\mathrm{I}=\mathrm{O} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{Q}_{\infty} \mathrm{R}_{\infty}-\mathrm{Z}=\mathrm{O} \tag{6}
\end{equation*}
$$

Note that if Q is such that $Q R=Z$, and $Q^{*}=I$, and if the diagonal entries of Q are not real then there exists a unitary diagonal matrix D such that $Q_{\infty}:=Q D$ has a real diagonal entries and $\mathrm{R}_{\infty}:=\mathrm{D}^{*} \mathrm{R}$ is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

Role	Symbol
Unitary matrix	$\mathrm{Q}=\mathrm{U}+\mathrm{iV}$
Increment of a unitary matrix	$\mathrm{E}=\mathrm{H}+\mathrm{iK}$
Upper triangular matrix	$\mathrm{R}=\mathrm{X}+\mathrm{iY}$
Increment of an upper triangular matrix	$\mathrm{F}=\mathrm{R}+\mathrm{iS}$

Some of these symbols may carry subscripts or upperscripts like in $\mathrm{R}_{\infty}, \mathrm{X}_{0}, \mathrm{Q}_{k}, \widehat{\mathrm{~V}}$ or $\widetilde{\mathrm{H}}$.
We consider the spaces

$$
\mathbb{B}_{1}:=\mathbb{R}^{n \times n} \times \operatorname{Ker}\left(\mathcal{D}_{\mathbb{R}}\right) \times \operatorname{Ran}\left(\mathcal{U}_{\mathbb{R}}\right) \times \operatorname{Ran}\left(\mathcal{U}_{\mathbb{R}}\right), \quad \mathbb{B}_{2}:=\mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}
$$

Equations (5) and (6) are equivalent to the following system:

$$
\begin{align*}
\mathrm{U}_{\infty} \mathrm{X}_{\infty}-\mathrm{V}_{\infty} \mathrm{Y}_{\infty}-\mathrm{A} & =\mathrm{O} \tag{8}\\
\mathrm{U}_{\infty} \mathrm{Y}_{\infty}+\mathrm{V}_{\infty} \mathrm{X}_{\infty}-\mathrm{B} & =\mathrm{O} \tag{9}\\
\mathcal{U}_{\mathbb{R}}\left(\mathrm{U}_{\infty} \mathrm{U}_{\infty}^{\top}+\mathrm{V}_{\infty} \mathrm{V}_{\infty}^{\top}-\mathrm{I}\right) & =0 \tag{10}\\
\mathcal{U}_{\mathbb{R}}\left(\mathrm{V}_{\infty} \mathrm{U}_{\infty}^{\top}-\mathrm{U}_{\infty} \mathrm{V}_{\infty}^{\top}\right) & =0, \tag{11}\\
\mathcal{D}_{\mathbb{R}}\left(\mathrm{V}_{\infty}\right) & =0 \tag{12}
\end{align*}
$$

Equations (8) and (9) hold in $\mathbb{R}^{n \times n}$ and equations (10) and (11) hold in $\operatorname{Ran}\left(\mathcal{U}_{\mathbb{R}}\right)$. We remark that, for all M, N in $\mathbb{R}^{n \times n}$,

$$
\mathcal{U}_{\mathbb{R}}\left(\mathrm{MN}^{\top}-\mathrm{NM}^{\top}\right) \in \operatorname{Ker}\left(\mathcal{D}_{\mathbb{R}}\right)
$$

since $\mathcal{D}_{\mathbb{R}}\left(M N^{\top}-N M^{\top}\right)=0$.

Let $\mathcal{F}: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}$ be the nonlinear operator defined by

$$
\begin{equation*}
\mathcal{F}[U, V, X, Y]:=\left[U X-V Y-A, U Y+V X-B, \mathcal{U}_{\mathbb{R}}\left(U U^{\top}+V V^{\top}-I\right)+\mathcal{L}_{\mathbb{R}}\left(V U^{\top}-U V^{\top}\right)\right] \tag{13}
\end{equation*}
$$

The problem of finding a $Q R$ factorization of \mathbf{Z} reduces to

Find $\left[U_{\infty}, V_{\infty}, X_{\infty}, Y_{\infty}\right] \in \mathbb{B}_{1}$ such that $\mathcal{F}\left(\mathrm{U}_{\infty}, \mathrm{V}_{\infty}, \mathrm{X}_{\infty}, \mathrm{Y}_{\infty}\right)=[\mathrm{O}, \mathrm{O}, \mathrm{O}]$.

3.2. A Lipschitz Constant and the Invertibility of the Fréchet Derivative

The Fréchet derivative of \mathcal{F} at $[Q, R]$ is given by
$\mathcal{F}^{\prime}(\mathrm{Q}, \mathrm{R})(\mathrm{E}, \mathrm{F})=\left[\mathrm{E}(\mathrm{R}+\mathrm{QF}), \mathcal{U}_{\mathbb{R}}\left(\mathrm{HU}^{\top}+\mathrm{UH}^{\top}+\mathrm{KV}^{\top}+\mathrm{VK}^{\top}\right)+\mathcal{L}_{\mathbb{R}}\left(\mathrm{KU}^{\top}+\mathrm{VH}^{\top}-\mathrm{HV}^{\top}-\mathrm{UK}^{\top}\right)\right]$
Hence, for $[\mathrm{Q}, \mathrm{R}],[\widehat{Q}, \widehat{R}],[\mathrm{E}, \mathrm{F}] \in \mathbb{B}_{1}$,

$$
\begin{aligned}
\left(\mathcal{F}^{\prime}(Q, R)-\mathcal{F}^{\prime}(\widehat{Q}, \widehat{R})\right)(E, F)= & {[E(R-\widehat{R})+(Q-\widehat{Q}) F} \\
& \mathcal{U}_{\mathbb{R}}\left(H(U-\widehat{U})^{\top}+(U-\widehat{U}) H^{\top}+K(V-\widehat{V})^{\top}+(V-\widehat{V}) K^{\top}\right)+ \\
& \left.\mathcal{L}_{\mathbb{R}}\left(K(U-\widehat{U})^{\top}+(V-\widehat{V}) H^{\top}-H(V-\widehat{V})^{\top}-(U-\widehat{U}) K^{\top}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\left(\mathcal{F}^{\prime}(\mathrm{Q}, \mathrm{R})-\mathcal{F}^{\prime}(\widehat{\mathrm{Q}}, \widehat{\mathrm{R}})\right)(\mathrm{E}, \mathrm{~F})\right\| & \leq \sqrt{(\|\mathrm{E}\|\|\mathrm{R}-\widehat{\mathrm{R}}\|+\|\mathrm{F}\|\|\mathrm{Q}-\widehat{\mathrm{Q}}\|)^{2}+4((\|\mathrm{H}\|,\|\mathrm{K}\|) \cdot(\|\mathrm{U}-\widehat{\mathrm{U}}\|,\|\mathrm{V}-\widehat{\mathrm{V}}\|))^{2}} \\
& \leq \sqrt{\|(\mathrm{E}, \mathrm{~F})\|^{2}\|(\mathrm{Q}-\widehat{\mathrm{Q}}, \mathrm{R}-\widehat{\mathrm{R}})\|^{2}+4\|(\mathrm{H}, \mathrm{~K})\|^{2}\|\mathrm{Q}-\widehat{\mathrm{Q}}\|^{2}} \\
& \leq \sqrt{5}\|(\mathrm{E}, \mathrm{~F})\|^{2}\|(\mathrm{Q}-\widehat{\mathrm{Q}}, \mathrm{R}-\widehat{\mathrm{R}})\|
\end{aligned}
$$

Thus we may set

$$
\begin{equation*}
\ell:=\sqrt{5} \tag{15}
\end{equation*}
$$

To determine a sufficient condition for the Fréchet derivative $\mathcal{F}^{\prime}(\mathrm{U}, \mathrm{V}, \mathrm{X}, \mathrm{Y})$ to be nonsingular, we study the kernel of $\mathcal{F}^{\prime}(\mathrm{U}, \mathrm{V}, \mathrm{X}, \mathrm{Y})$, where $[\mathrm{U}, \mathrm{V}, \mathrm{X}, \mathrm{Y}]$ may be either φ_{0} or φ_{∞}. The equation

$$
\begin{equation*}
\mathcal{F}^{\prime}(\mathrm{U}, \mathrm{~V}, \mathrm{X}, \mathrm{Y})[\mathrm{H}, \mathrm{~K}, \mathrm{~S}, \mathrm{~T}]=[\mathrm{O}, \mathrm{O}, \mathrm{O}] \tag{16}
\end{equation*}
$$

translates into the following system:

$$
\begin{align*}
\mathrm{HX}+\mathrm{US}-\mathrm{KY}-\mathrm{VR} & =\mathrm{O} \tag{17}\\
\mathrm{HY}+\mathrm{UR}+\mathrm{KX}+\mathrm{VS} & =\mathrm{O} \tag{18}\\
\mathrm{HU}^{\top}+\mathrm{UH}^{\top}+\mathrm{KV}^{\top}+\mathrm{VK}^{\top} & =0, \tag{19}\\
\mathrm{KU}^{\top}+\mathrm{VH}^{\top}-\mathrm{HV}^{\top}-\mathrm{UK}^{\top} & =\mathrm{O}, \tag{20}\\
\mathcal{D}_{\mathbb{R}}(\mathrm{K}) & =0 . \tag{21}
\end{align*}
$$

Theorem 3.1.If Z and $\mathcal{D}_{\mathbb{R}}\left(\mathrm{U}_{\infty}\right)$ are invertible, then $\mathcal{F}^{\prime}\left(\varphi_{\infty}\right)$ is invertible.
Proof. Multiplying (18) by i and adding the result to (17) we get with the notations of table (7),

$$
\begin{equation*}
\mathrm{F}+\mathrm{GR}_{\infty}=\mathrm{O} \tag{22}
\end{equation*}
$$

Define

$$
\mathrm{G}:=\mathrm{Q}_{\infty}^{*} \mathrm{E} .
$$

Multiplying (20) by i and adding the result to (19) we get

$$
\begin{equation*}
\mathrm{G}^{*}=-\mathrm{G}, \tag{23}
\end{equation*}
$$

because F and R_{∞} are upper triangular. The elements of the strict lower triangular part of G satisfy:

For $j<i \in \llbracket 2, n \rrbracket$,

$$
\sum_{k=1}^{j} \mathrm{G}(i, k) \mathrm{R}_{\infty}(k, j)=0
$$

and since the diagonal entries of R_{∞} are nonzero, $\mathrm{G}(i, j)=0$ for $j<i \in \llbracket 2, n \rrbracket$. Since $\mathrm{G}^{*}=-\mathrm{G}, \mathrm{G}(j, i)=0=\mathrm{G}(i, j)$ for $j<i \in \llbracket 2, n \rrbracket$, and $\Re \mathrm{G}(l, l)=0$ for $l \in \llbracket 1, n \rrbracket$.

Hence $G=i D$, where $D \in \operatorname{Ran}\left(\mathcal{D}_{\mathbb{R}}\right)$. So

$$
\mathrm{E}=\mathrm{i} \mathrm{Q}_{\infty} \mathrm{D}, \quad \mathrm{H}=-\mathrm{V}_{\infty} \mathrm{D}, \quad \mathrm{~K}=\mathrm{U}_{\infty} \mathrm{D} .
$$

Since $\mathcal{D}_{\mathbb{R}}(\mathrm{K})=\mathrm{O}, \mathrm{U}_{\infty}(j, j) \mathrm{D}(j, j)=0$ for all $j \in \llbracket 1, n \rrbracket$, and since the diagonal entries of U_{∞} are nonzero, $\mathrm{D}=\mathrm{O}$. But $\mathrm{D}=\mathrm{O}$ implies $\mathrm{E}=\mathrm{G}=\mathrm{F}=\mathrm{O}$. This proves that $\mathcal{F}^{\prime}\left(\varphi_{\infty}\right)$ is invertible. This completes the proof.

Remark 3.2. The proof of theorem 3.1 shows that the condition "for all $i \in \llbracket 1, n \rrbracket$, $\mathrm{U}_{\infty}(i, i) \neq 0$ and $\mathrm{V}_{\infty}(i, i)=0$ " can be relaxed to "for all $i \in \llbracket 1, n \rrbracket, \mathrm{Q}_{\infty}(i, i) \neq 0$ " i.e. "for all $i \in \llbracket 1, n \rrbracket, \mathrm{Q}_{\infty}(i, i) \neq 0$ if and only if $\mathrm{V}_{\infty}(i, i)=0$."

3.3. Finding Constants m_{0} and c_{0}

Suppose that $Q_{0}=I$, and $R_{0}=\mathcal{U}_{\mathbb{F}}(Z)$ are the initial points, so for given matrices $\mathrm{N} \in \mathbb{C}^{n \times n}$ and $\mathrm{J} \in \mathbb{R}^{n \times n}$, we are led to solve

$$
\begin{align*}
\mathrm{F}+\mathrm{ER}_{0} & =\mathrm{N} \tag{24}\\
\mathrm{E}+\mathrm{E}^{*} & =\mathrm{M} \tag{25}\\
\mathcal{D}_{\mathbb{R}}(\mathrm{K}) & =\mathrm{O} \tag{26}
\end{align*}
$$

where $\mathrm{M}:=\left[\mathcal{U}_{\mathbb{R}}(\mathrm{J})+\mathcal{L}_{\mathbb{R}}\left(\mathrm{J}^{\top}\right)-\mathcal{D}_{\mathbb{R}}(\mathrm{J})\right]+\mathrm{i}\left[\mathcal{L}_{\mathbb{R}}(\mathrm{J})-\mathcal{U}_{\mathbb{R}}\left(\mathrm{J}^{\top}\right)\right]$. Remark that $\|\mathrm{M}\| \leq \sqrt{2}\|\mathrm{~J}\|$.
Because F and R_{0} are upper triangular, equation (24) is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{j} \mathrm{E}(i, k) \mathrm{R}_{0}(k, j)=\mathrm{N}(i, j) \tag{27}
\end{equation*}
$$

where $j<i \in \llbracket 2, n \rrbracket$. This implies that, for $j \in \llbracket 1, n-1 \rrbracket$,

$$
\begin{equation*}
\mathrm{E}(i, j)=\frac{1}{\mathrm{R}_{0}(j, j)}\left(\mathrm{N}(i, j)-\sum_{k=1}^{j-1} \mathrm{E}(i, k) \mathrm{R}_{0}(k, j)\right) \tag{28}
\end{equation*}
$$

So for $j \in \llbracket 1, n-1 \rrbracket$,

$$
\left\|\mathrm{E}_{j+1,1}(:, j)\right\|_{2}^{2} \leq(n-j) \mathrm{W}(j)^{2}\|\mathrm{~N}\|
$$

where

$$
\mathrm{W}(j):=\frac{1}{\left|\mathrm{R}_{0}(j, j)\right|}+\sum_{k=1}^{j-1} \mathrm{~W}(k)\left|\mathrm{R}_{0}(k, j)\right|
$$

and

$$
\begin{aligned}
& \mathrm{E}_{p, q}:=\left[\begin{array}{cccc}
\mathrm{E}(p, q) & \mathrm{E}(p, q+1) & \cdots & \mathrm{E}(p, n) \\
\mathrm{E}(p+1, q) & \mathrm{E}(p+1, q+1) & \cdots & \mathrm{E}(p+1, n) \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{E}(n, q) & \mathrm{E}(n, q+1) & \cdots & \mathrm{E}(n, n)
\end{array}\right] \in \mathbb{C}^{(n-p) \times(n-q)}, \\
& \mathrm{N}_{j}:=\left[\begin{array}{c}
\mathrm{N}(j+1, j) \\
\mathrm{N}(j+2, j) \\
\vdots \\
\mathrm{N}(n, j)
\end{array}\right], \quad \mathrm{M}_{j}:=\left[\begin{array}{c}
\mathrm{M}(j+1, j) \\
\mathrm{M}(j+2, j) \\
\vdots \\
\mathrm{M}(n, j)
\end{array}\right] \in \mathbb{C}^{(n-j) \times 1},
\end{aligned}
$$

and equations (25), (26) imply

$$
\begin{equation*}
\mathrm{E}_{1, j+1}(j,:)=\overline{\mathrm{M}_{j}}-\overline{\mathrm{E}_{j+1,1}(:, j)}, \tag{29}
\end{equation*}
$$

and for all $i \in \llbracket 1, n \rrbracket$,

$$
\mathrm{E}(i, i)=\frac{1}{2} \mathrm{M}(i, i) .
$$

So

$$
\sum_{i=1}^{n}|\mathrm{E}(i, i)|^{2} \leq \frac{1}{4}\|\mathrm{M}\|^{2} \leq \frac{1}{2}\|J\|^{2}
$$

Also for all $j \in \llbracket 1, n-1 \rrbracket$,

$$
\begin{aligned}
\left\|\mathrm{E}_{1, j+1}(j,:)\right\|_{2} & =\left\|\mathrm{M}_{j}\right\|_{2}+\left\|\mathrm{E}_{j+1,1}(:, j)\right\|_{2} \\
& \leq(\sqrt{2}+\sqrt{(n-j)} \mathrm{W}(j))\|(\mathrm{N}, \mathrm{~J})\|
\end{aligned}
$$

Now

$$
\|\mathrm{E}\|^{2}=\sum_{j=1}^{n-1}\left(\left\|\mathrm{E}_{j+1,1}(:, j)\right\|_{2}^{2}+\left\|\mathrm{E}_{1, j+1}(j,:)\right\|_{2}^{2}\right)+\sum_{i=1}^{n}|\mathrm{E}(i, i)|^{2},
$$

So

$$
\|\mathrm{E}\| \leq \nu\|(\mathrm{N}, \mathrm{~J})\|,
$$

where

$$
\nu^{2}:=\frac{1}{2}+\sum_{j=1}^{n-1}\left[(n-j) \mathbf{W}(j)^{2}+(\sqrt{2}+\sqrt{(n-j)} \mathrm{W}(j))^{2}\right] .
$$

From equation (24),

$$
\|\mathrm{F}\| \leq\|\mathrm{N}\|+\left\|\mathrm{R}_{0}\right\|\|\mathrm{E}\| \leq\left(1+\left\|\mathrm{R}_{0}\right\| \nu\right)\|(\mathrm{N}, \mathrm{~J})\| .
$$

Thus

$$
\left\|\mathcal{F}^{\prime}\left(\varphi_{0}\right)^{-1}(\mathrm{~N}, \mathrm{~J})\right\| \leq \sqrt{\|\mathrm{E}\|^{2}+\|\mathrm{F}\|^{2}} \leq \sqrt{\nu^{2}+\left(1+\left\|\mathrm{R}_{0}\right\| \nu\right)^{2}}\|(\mathrm{~N}, \mathrm{~J})\| .
$$

We can set

$$
m_{0}:=\sqrt{\nu^{2}+\left(1+\left\|\mathrm{R}_{0}\right\| \nu\right)^{2}} .
$$

To produce c_{0} we just estimate

$$
\left\|\mathcal{F}^{\prime}\left(\varphi_{0}\right)^{-1} \mathcal{F}\left(\varphi_{0}\right)\right\| \leq m_{0}\left\|\mathcal{F}\left(\varphi_{0}\right)\right\| \leq m_{0}\left\|\mathrm{Z}-\mathrm{R}_{0}\right\|=: c_{0} .
$$

Following Theorem 2.3,

$$
\left\|Z-\mathcal{U}_{\mathbb{F}}(Z)\right\|<\frac{1}{2 \sqrt{5} m_{0}^{2}}
$$

is a sufficient condition for convergence.
The above computations can be simplied if \mathbf{Z} is a quasi-diagonal matrix and if we take $\mathrm{R}_{0}:=\mathcal{D}_{\mathbb{F}}(\mathrm{Z})$.

3.4. Performing Iterations

In order to simplify notations we will write

$$
\begin{aligned}
\varphi_{k} & :=(\widetilde{\mathrm{Q}}, \widetilde{\mathrm{R}}), \text { the current iterate, } \\
\varphi_{k+1} & :=(\mathrm{Q}, \mathrm{R}), \text { the next iterate },
\end{aligned}
$$

This means that the equations of the following subsection is to be solved for (Q, R).

3.4.1. Newton-Kantorovich

The method defined by (2) and (3) amounts to solve for (Q,R) at each step k,

$$
\begin{align*}
\mathrm{R}+\mathrm{G} \widetilde{\mathrm{R}} & =\widetilde{\mathrm{R}}+\widetilde{\mathrm{Q}}^{-1} \mathrm{Z}, \\
\mathrm{G}+\mathrm{G}^{*} & =\widetilde{\mathrm{Q}}^{-1} \widetilde{\mathrm{Q}}^{-*}+\mathrm{I}, \tag{30}\\
\mathcal{D}_{\mathbb{R}}(\Im \widetilde{\mathrm{Q}} \mathrm{G}) & =\mathrm{O},
\end{align*}
$$

where $\mathrm{G}:=\widetilde{\mathrm{Q}}^{-1} \mathrm{Q}$.

3.5. Numerical Experiments

The following examples have been done with Matlab 6.5. For a given matrix W we introduce the mesure of Departure from Unity:

$$
\mathrm{DU}(\mathrm{~W}):=\frac{\left\|\mathrm{W}^{*} \mathrm{~W}-\mathrm{I}\right\|}{\|\mathrm{W}\|^{2}}
$$

and for a couple of matrices (W, Λ) the mesure of Relative Residual:

$$
\operatorname{RelRes}(\mathrm{W}, \Lambda):=\frac{\|\mathrm{W} \Lambda-\mathrm{Z}\|}{\|\mathrm{W}\|\|\Lambda\|}
$$

Example 3.3.

Data:

$$
Z:=\left[\begin{array}{rrrr}
2.0 & 1.0 & 0.0 & 0.0 \\
0.5 & 2.0 & -0.5 & 0.0 \\
0.0 & 1.0 & 2.0 & 0.0 \\
-0.5 & 0.0 & 0.5 & 2.0
\end{array}\right]
$$

Starting point:

$$
\mathrm{Q}_{0}:=\mathrm{I}, \quad \mathrm{R}_{0}:=\mathcal{U}_{\mathbb{F}}(\mathrm{Z}) .
$$

Convergence table:

Example 3.3	Newton-Kantorovich	
Iteration	$\mathrm{DU}\left(\mathrm{Q}_{k}\right)$	$\operatorname{RelRes}\left(\mathrm{Q}_{k}, \mathrm{R}_{k}\right)$
0	$0.00 E+00$	$0.16 E-00$
1	$0.13 E-00$	$0.88 E-01$
2	$0.19 E-01$	$0.10 E-01$
3	$0.42 E-04$	$0.33 E-03$
4	$0.23 E-06$	$0.25 E-06$
5	$0.14 E-12$	$0.16 E-12$
6	$0.50 E-17$	$0.92 E-17$

Example 3.4.

Data:

$$
\mathrm{Z}:=\left[\begin{array}{lll}
1.0 & 0.5 & 0.0 \\
0.5 & 2.0 & 0.5 \\
0.0 & 0.5 & 3.0
\end{array}\right] \text {. }
$$

Starting point:

$$
\mathrm{Q}_{0}:=\mathrm{I}, \quad \mathrm{R}_{0}:=\mathcal{D}_{\mathbb{F}}(\mathrm{Z})
$$

Convergence table:

Example 3.4	Newton-Kantorovich	
Iteration	$\mathrm{DU}\left(\mathrm{Q}_{k}\right)$	$\operatorname{RelRes}\left(\mathrm{Q}_{k}, \mathrm{R}_{k}\right)$
0	$0.00 E+00$	$0.15 E-00$
1	$0.12 E-00$	$0.13 E-00$
2	$0.13 E-01$	$0.11 E-01$
3	$0.18 E-03$	$0.11 E-03$
4	$0.37 E-07$	$0.25 E-07$
5	$0.13 E-14$	$0.54 E-15$

Example 3.5.

Data:

$$
Z:=\text { gallery }(\text { 'prolate' }, 5):=\left[\begin{array}{rrrrr}
0.5000 & 0.3183 & 0.0000 & -0.1061 & -0.0000 \\
0.3183 & 0.5000 & 0.3183 & 0.0000 & -0.1061 \\
0.0000 & 0.3183 & 0.5000 & 0.3183 & 0.0000 \\
-0.1061 & 0.0000 & 0.3183 & 0.5000 & 0.3183 \\
-0.0000 & -0.1061 & 0.0000 & 0.3183 & 0.5000
\end{array}\right] .
$$

Starting point:

$$
\mathrm{Q}_{0}:=\mathrm{I}, \quad \mathrm{R}_{0}:=\mathrm{I} .
$$

Convergence table:

Example 3.5	Newton-Kantorovich	
Iteration	$\mathrm{DU}\left(\mathrm{Q}_{k}\right)$	$\operatorname{RelRes}\left(\mathrm{Q}_{k}, \mathrm{R}_{k}\right)$
0	$0.00 E+00$	$0.29 E-00$
1	$0.93 E-01$	$0.19 E-00$
2	$0.16 E-00$	$0.18 E-00$
3	$0.32 E-00$	$0.29 E-00$
4	$0.17 E-00$	$0.11 E-00$
5	$0.61 E-00$	$0.32 E-00$
6	$0.40 E-00$	$0.15 E-00$
7	$0.15 E-00$	$0.38 E-01$
8	$0.25 E-01$	$0.77 E-02$
9	$0.89 E-03$	$0.27 E-03$
10	$0.62 E-05$	$0.20 E-05$
11	$0.19 E-09$	$0.48 E-10$
12	$0.13 E-15$	$0.10 E-15$

4. The $(\mathrm{L}+\mathrm{I}) \mathrm{U}$ factorization

4.1. Defining the nonlinear operator \mathcal{F}

Following Theorem 2.2 , there exist L_{∞} in $\operatorname{Ker}\left(\mathcal{U}_{\mathbb{C}}\right)$ and U_{∞} in $\operatorname{Ran}\left(\mathcal{U}_{\mathbb{C}}\right)$, such that

$$
\begin{equation*}
\left(\mathrm{L}_{\infty}+\mathrm{I}\right) \mathrm{U}_{\infty}-\mathrm{Z}=\mathrm{O} \tag{31}
\end{equation*}
$$

Note that if L is such that $L U=Z$ and if the diagonal entries of L are not one then there exists an inversible diagonal matrix D such that $\mathrm{L}_{\infty}:=\mathrm{LD}$ has unit diagonal entries and $U_{\infty}:=D^{-1} U$ is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

Role	Symbol
Strictly lower triangular matrix	L
Increment of a strictly lower traingular matrix	E
Upper triangular matrix	U
Increment of an upper triangular matrix	F

Some of these symbols may carry subscripts or upperscripts like in $U_{\infty}, E_{0}, L_{k}, \widehat{U}$ or \widetilde{F}.
We consider the spaces

$$
\mathbb{B}_{1}:=\operatorname{Ker}\left(\mathcal{U}_{\mathbb{C}}\right) \times \operatorname{Ran}\left(\mathcal{U}_{\mathbb{C}}\right), \quad \mathbb{B}_{2}:=\mathbb{C}^{n \times n}
$$

Equation (31) is equivalent to:

$$
\begin{equation*}
\mathrm{L}_{\infty} \mathrm{U}_{\infty}+\mathrm{U}_{\infty}-\mathrm{Z}_{\infty}=0 \tag{33}
\end{equation*}
$$

Let $\mathcal{F}: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}$ be the nonlinear operator defined by

$$
\begin{equation*}
\mathcal{F}[\mathrm{L}, \mathrm{U}]:=\mathrm{LU}+\mathrm{U}-\mathrm{Z} . \tag{34}
\end{equation*}
$$

The problem of finding a $(\mathrm{L}+\mathrm{I}) \mathrm{U}$ factorization of Z reduces to

Find $\left[\mathrm{L}_{\infty}, \mathrm{U}_{\infty}\right] \in \mathbb{B}_{1}$ such that $\mathcal{F}\left(\mathrm{L}_{\infty}, \mathrm{U}_{\infty}\right)=\mathrm{O}$.

4.2. A Lipschitz Constant and the Invertibility of the Fréchet Derivative

The Fréchet derivative of \mathcal{F} at $[\mathrm{L}, \mathrm{U}]$ is given by

$$
\mathcal{F}^{\prime}(\mathrm{L}, \mathrm{U})(\mathrm{E}, \mathrm{~F})=\mathrm{EU}+\mathrm{LF}
$$

Hence, for $[\mathrm{L}, \mathrm{U}],[\widehat{\mathrm{L}}, \widehat{\mathrm{U}}],[\mathrm{E}, \mathrm{F}] \in \mathbb{B}_{1}$,

$$
\left(\mathcal{F}^{\prime}(\mathrm{L}, \mathrm{U})-\mathcal{F}^{\prime}(\widehat{\mathrm{L}}, \widehat{\mathrm{U}})\right)(\mathrm{E}, \mathrm{~F})=\mathrm{E}(\mathrm{U}-\widehat{\mathrm{U}})+(\mathrm{L}-\widehat{\mathrm{L}}) \mathrm{F}
$$

and

$$
\|\left(\mathcal{F}^{\prime}(\mathrm{L}, \mathrm{U})-\mathcal{F}^{\prime}(\widehat{\mathrm{L}}, \widehat{\mathrm{U}})(\mathrm{E}, \mathrm{~F})\|\leq\| \mathrm{E}\| \| \mathrm{U}-\widehat{\mathrm{U}}\|+\| \mathrm{F}\| \| \mathrm{L}-\widehat{\mathrm{L}}\|\leq\|(\mathrm{E}, \mathrm{~F})\| \|(\mathrm{L}-\widehat{\mathrm{L}}, \mathrm{U}-\widehat{\mathrm{U}}) \|\right.
$$

So we may set

$$
\begin{equation*}
\ell:=1 . \tag{36}
\end{equation*}
$$

To determine a sufficient condition for the Fréchet derivative $\mathcal{F}^{\prime}(\mathrm{L}, \mathrm{U})$ to be nonsingular, we study the kernel of $\mathcal{F}^{\prime}(\mathrm{L}, \mathrm{U})$, where $[\mathrm{L}, \mathrm{U}]$ may be either φ_{0} or φ_{∞}. The equation

$$
\begin{equation*}
\mathcal{F}^{\prime}(\mathrm{L}, \mathrm{U})[\mathrm{E}, \mathrm{~F}]=\mathrm{O} \tag{37}
\end{equation*}
$$

translates into the following equation:

$$
\begin{equation*}
\mathrm{EU}+\mathrm{LF}+\mathrm{F}=\mathrm{O} \tag{38}
\end{equation*}
$$

Theorem 4.1. If Z is invertible, then $\mathcal{F}^{\prime}\left(\varphi_{\infty}\right)$ is invertible.
Proof. From (38) we get

$$
\begin{equation*}
\mathrm{GU}_{\infty}+\mathrm{F}=\mathrm{O} \tag{39}
\end{equation*}
$$

where

$$
\mathrm{G}:=\left(\mathrm{L}_{\infty}+\mathrm{I}\right)^{-1} \mathrm{E} .
$$

It is clear G is a strictly lower triangular matrix as E is. And, since F and U_{∞} are upper triangular, $\mathrm{G}=0$. Consequently, $\mathrm{E}=0$ and $\mathrm{F}=0$. This completes the proof.

4.3. Finding Constants m_{0} and c_{0}

Suppose that $\mathrm{L}_{0}=\mathrm{O}$, and $\mathrm{U}_{0}=\mathcal{U}_{\mathbb{F}}(\mathrm{Z})$ are the initial points. For given matrices $\mathrm{N} \in \mathbb{C}^{n \times n}$ we are led to solve

$$
\begin{equation*}
\mathrm{F}+\mathrm{EU}_{0}=\mathrm{N} \tag{40}
\end{equation*}
$$

Because F and U_{0} are upper triangular matrices, equation (40) is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{j} \mathrm{E}(i, k) \mathrm{U}_{0}(k, j)=\mathrm{N}(i, j) \tag{41}
\end{equation*}
$$

where $j<i \in \llbracket 2, n \rrbracket$. This implies that, for $j \in \llbracket 1, n-1 \rrbracket$,

$$
\begin{equation*}
\mathrm{E}(i, j)=\frac{1}{\mathrm{U}_{0}(j, j)}\left(\mathrm{N}(i, j)-\sum_{k=1}^{j-1} \mathrm{E}(i, k) \mathrm{U}_{0}(k, j)\right) \tag{42}
\end{equation*}
$$

So, for $j \in \llbracket 1, n-1 \rrbracket$,

$$
\left\|\mathrm{E}_{j+1,1}(:, j)\right\|_{2}^{2} \leq(n-j) \mathrm{W}(j)^{2}\|\mathrm{~N}\|,
$$

where

$$
\mathbf{W}(j):=\frac{1}{\left|\mathrm{U}_{0}(j, j)\right|}+\sum_{k=1}^{j-1} \mathbf{W}(k)\left|\mathrm{U}_{0}(k, j)\right|
$$

Now

$$
\|\mathrm{E}\|^{2}=\sum_{j=1}^{n-1}\left(\left\|\mathrm{E}_{j+1,1}(:, j)\right\|_{2}^{2}\right.
$$

So

$$
\|\mathrm{E}\| \leq \nu\|\mathrm{N}\|
$$

where

$$
\nu^{2}:=\sum_{j=1}^{n-1}(n-j) \mathbf{W}(j)^{2}
$$

From equation (40),

$$
\|\mathrm{F}\| \leq\|\mathrm{N}\|+\left\|\mathrm{U}_{0}\right\|\|\mathrm{E}\| \leq\left(1+\left\|\mathrm{U}_{0}\right\| \nu\right)\|\mathrm{N}\| .
$$

Thus

$$
\left\|\mathcal{F}^{\prime}\left(\varphi_{0}\right)^{-1}(\mathrm{~N})\right\| \leq \sqrt{\|\mathrm{E}\|^{2}+\|\mathrm{F}\|^{2}} \leq \sqrt{\nu^{2}+\left(1+\left\|\mathrm{U}_{0}\right\| \nu\right)^{2}}\|\mathrm{~N}\| .
$$

We can set

$$
m_{0}:=\sqrt{\nu^{2}+\left(1+\left\|\mathrm{U}_{0}\right\| \nu\right)^{2}} .
$$

To produce c_{0} we just estimate

$$
\left\|\mathcal{F}^{\prime}\left(\varphi_{0}\right)^{-1} \mathcal{F}\left(\varphi_{0}\right)\right\| \leq m_{0}\left\|\mathcal{F}\left(\varphi_{0}\right)\right\| \leq m_{0}\left\|\mathrm{Z}-\mathrm{U}_{0}\right\|=: c_{0} .
$$

Following Theorem 2.3,

$$
\left\|Z-\mathcal{U}_{\mathbb{F}}(Z)\right\|<\frac{1}{2 \sqrt{5} m_{0}^{2}}
$$

is a sufficient condition for convergence.
As before, some simplifications are possible if Z is a quasi-diagonal matrix and if we take $\mathrm{U}_{0}:=\mathcal{D}_{\mathbb{F}}(\mathrm{Z})$.

5. Performing Iterations

In order to simplify notations we will write

$$
\begin{aligned}
\varphi_{k} & :=(\widetilde{\mathrm{L}}, \widetilde{\mathrm{U}}), \text { the current iterate, } \\
\varphi_{k+1} & :=(\mathrm{L}, \mathrm{U}), \text { the next iterate }
\end{aligned}
$$

This means that the equations of the following subsection is to be solved for (L, U).

5.1. Newton-Kantorovich

The method defined by (2) and (3) amounts to solve for (L, U) at each step k,

$$
\begin{equation*}
\mathrm{G} \widetilde{\mathrm{U}}+\mathrm{U}=(\widetilde{\mathrm{L}}+\mathrm{I})^{-1}(\widetilde{\mathrm{~L}} \widetilde{\mathrm{U}}+\mathrm{Z}) \tag{43}
\end{equation*}
$$

where $\mathrm{G}:=(\widetilde{\mathrm{L}}+\mathrm{I})^{-1} \mathrm{~L}$.

5.2. Numerical Experiments

The following examples have been done with Matlab 6.5. For a couple of matrices (W, Λ) we introduce the mesure of Relative Residual:

$$
\operatorname{RelRes}(\mathrm{W}, \Lambda):=\frac{\|\mathrm{W} \Lambda-\mathrm{Z}\|}{\|\mathrm{W}\|\|\Lambda\|}
$$

Example 5.1.

Data:

$$
Z:=\operatorname{gallery}(\prime \text { 'frank', }, 6):=\left[\begin{array}{cccccc}
6 & 5 & 4 & 3 & 2 & 1 \\
5 & 5 & 4 & 3 & 2 & 1 \\
& 4 & 4 & 3 & 2 & 1 \\
& & 3 & 3 & 2 & 1 \\
& & & 2 & 2 & 1 \\
& & & & 1 & 1
\end{array}\right] .
$$

Starting point:

$$
\mathrm{L}_{0}:=0, \quad \mathrm{U}_{0}:=\mathcal{U}_{\mathbb{F}}(\mathrm{Z}) .
$$

Convergence table:

Example 5.1	Newton-Kantorovich
Iteration	$\operatorname{RelRes}\left(\mathrm{L}_{\mathrm{k}}+\mathrm{I}, \mathrm{U}_{k}\right)$
0	$0.42 E+01$
1	$0.21 E+01$
2	$0.78 E-14$

Example 5.2.

Data:

$$
Z:=\operatorname{gallery}(\text { 'smok', } 4):=\left[\begin{array}{rrrr}
0.00+1.00 i & 1.00 & & \\
0 & -1.00+0.00 i & 1.00 & \\
0 & 0 & -0.00-1.00 i & 1.00 \\
1.00 & 0 & 0 & 1.00
\end{array}\right] .
$$

Starting point:

$$
\mathrm{L}_{0}:=0, \quad \mathrm{U}_{0}:=\mathcal{D}_{\mathbb{F}}(\mathrm{Z})
$$

Convergence table:

Example 5.2	Newton-Kantorovich
Iteration	$\operatorname{RelRes}\left(\mathrm{L}_{\mathrm{k}}+\mathrm{I}, \mathrm{U}_{k}\right)$
0	$0.20 E+01$
1	$0.12 E+01$
2	$0.86 E-31$
3	$0.10 E+01$

Example 5.3.

Data:

$$
\mathrm{Z}:=\operatorname{gallery}(\text { 'moler', }, 5):=\left[\begin{array}{rrrrr}
1 & -1 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 & 0 \\
-1 & 0 & 3 & 1 & 1 \\
-1 & 0 & 1 & 4 & 2 \\
-1 & 0 & 1 & 2 & 5
\end{array}\right]
$$

Starting point:

$$
\mathrm{L}_{0}:=\mathrm{O}, \quad \mathrm{U}_{0}:=\mathrm{I} .
$$

Convergence table:

Example 5.3	Newton-Kantorovich
Iteration	$\operatorname{Rel} \operatorname{Res}\left(\mathrm{L}_{\mathrm{k}}+\mathrm{I}, \mathrm{U}_{k}\right)$
0	$0.71 E+01$
1	$0.24 E+02$
2	$0.75 E+01$
3	$0.31 E+01$
4	$0.13 E+01$
5	$0.29 E-14$

6. Complexity and Final Comments

In terms of flops (elementary operations are addition and multiplication) in real arithmetic, each iteration has a cost of the order of n^{3}. Details are shown in the following table :

	NK
QR	$43 n^{3}+20 n^{2}-37 n+14$
$(\mathrm{~L}+\mathrm{I}) \mathrm{U}$	$34 n^{3}+2 n^{2}-9 n$

Newton type iterations show to be an efficient scheme to compute in a few flops the classical QR and $(\mathrm{L}+\mathrm{I}) \mathrm{U}$ factorizations when applied to a data matrix which is already almost upper triangular. The convergence hypotheses include the invertibility of both the data and its diagonal part. An application of these strategies is given in [1], where both factorizations are used for spectral computation purposes.

References

[1] M. Ahues, M. Hama and A. Largillier, Newton-Kantorovich method for Refining Schur and Gauss triangular forms, Inter. J. of pure and applied mathematics, Vol. 65 (2010), No.2.
[2] M. Ahues, Newton Methods with Hölder Derivative, Numer. Func. Anal. and Optimiz. Vol. 25, 5\&6, (2004) 1-17.
[3] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, MD, 3rd edition, (1996).
[4] L.V. Kantorovich and V.I. Krylov, Approximate Methods of Higher Analysis, Wiley (Interscience), New York, (1955).

[^0]: *Corresponding author
 Received December 1, 2012

