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Abstract. In this paper, by employing a contractive condition of integral type, we obtain a unique common fixed

point for four weakly compatible self maps of a S-metric space which satisfy common limit range property.
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1. INTRODUCTION

Gerald Jungck [6] introduced the concept of compatibility to generalize the notion of commu-

tative property. Further Jungck and Rhoades [7] proposed weakly compatibility of mappings.

Also they proved that for a pair of mappings compatibility always implies weakly compatibility

but not conversely.

To prove common fixed point theorems, Sintunavarat et al [14] initiated common limit range

(CLR) property.

Several authors Dhage, Gahler, Sedghi, Mustafa [2,3,4,8,13] generalized the notion of metric

space by introducing 2-metric space, D∗-metric spaces and G-metric spaces.
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Shaban Sedghi et al [12] proposed S-metric space as further generalization of metric spaces.

This concept of S-metric spaces generated lot of interest among many researches.

In this paper, we prove a common fixed point theorem for four weakly compatible self maps

of S-metric space satisfying common limit range property along with an integral type contrac-

tive condition [1]. Our result generalizes the results already proved in literature [15]. A suitable

example is provided to validate our theorem.

2. PRELIMINARIES

Definition 2.1. [12] Let M be non empty set. A function S : M3 −→ [0,∞) is said to be an

S-metric on M,if for each ν ,ω,ϑ ,ρ ∈M

1. S(ν ,ω,ϑ)≥ 0

2. S(ν ,ω,ϑ) = 0⇔ ν = ω = ϑ

3. S(ν ,ω,ϑ)≤ S(ν ,ν ,ρ)+S(ω,ω,ρ)+S(ϑ ,ϑ ,ρ)

Then (M,S) is called an S-metric space.

Lemma 2.1. [10] In a S-metric space we have S(ν ,ν ,ω) = S(ω,ω,ν) for all ν ,ω ∈M

Definition 2.2. [11] Let (M,S) be a S- metric space.

(a) A sequence (νn) in M converge to ν if S(νn,νn,ν)→ 0 as n→ ∞ then for each ε > 0

there exists n0 ∈ N such that for n ≥ n0,S(νn,νn,ν) < ε and we denote this by writing

lim
n→∞

νn = ν .

(b) A sequence (νn) be a Cauchy sequence if for each ε > 0 ,there exists n0 ∈ N such that

S(νn,νn,νm)< ε for each n,m≥ n0.

(c) By a complete S-metric space we mean a S-metric space in which every Cauchy se-

quence is convergent.

Lemma 2.2. [11] In a S-metric space (M,S), if there exist two sequences (νn) and (ωn) such

that lim
n→∞

νn = ν and lim
n→∞

ωn = ω , then lim
n→∞

S(νn,νn,ωn) = S(ν ,ν ,ω)

Definition 2.3. [7] The self mappings E,F of a S-metric space (M,S) are called weakly compat-

ible if EFν = FEν whenever Eν = Fν for any ν in M.
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Definition 2.4. [9] In a S-metric space (M,S), the two pairs of self mappings (E,G) and (F,H)

on M are said to satisfy common (E.A)-property if there exist two sequences (νn) and (ωn) in

M such that

lim
n→∞

Eνn = lim
n→∞

Gνn = lim
n→∞

Fωn = lim
n→∞

Hωn = τ, where τ ∈M.

Definition 2.5. [14] In a S-metric space (M,S), the two pairs of self mappings (E,G) and (F,H)

on M are said to satisfy common limit range property with respect to G and H,denoted by

(CLRGH) if there exists two sequences (νn) and (ωn) in M such that

lim
n→∞

Eνn = lim
n→∞

Gνn = lim
n→∞

Fωn = lim
n→∞

Hωn = τ, where τ ∈ G(M)∩H(M).

Remark 2.1. Throughout this paper ϕ : [0,∞) −→ [0,∞) is a Lebesgue integrable function

which is summable on compact subset of [0,∞) with
∫

ε

0 ϕ(α)dα > 0, for any ε > 0.

3. MAIN RESULTS

Now we state our main theorem.

Theorem 3.1. In a S-metric space (M,S), suppose E,F,G,H are self mappings of M satisfying

the following conditions

(i) The pairs (E,G) and (F,H) are weakly compatible

(ii) The pairs (E,G) and (F,H) share (CLRGH)-property

(iii)
∫ S(Eν ,Eν ,Fω)

0 ϕ(α)dα ≤ λ
∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0 ϕ(α)dα +µ

∫ S(Gν ,Gν ,Hω)
0 ϕ(α)dα

where λ ,µ > 0 with λ +µ < 1

then E,F,G and H have a unique common fixed point in M.

Proof. From the (CLRGH)-property of the pairs (E,G) and (F,H), we have two sequences (νn)

and (ωn) in M such that

(1) lim
n→∞

Eνn = lim
n→∞

Gνn = lim
n→∞

Fωn = lim
n→∞

Hωn = τ, where τ ∈ G(M)∩H(M)

Also there exists a point η ∈M such that Gη = τ , from (1),we have

(2) lim
n→∞

Eνn = lim
n→∞

Gνn = lim
n→∞

Fωn = lim
n→∞

Hωn = τ = Gη



4 A. SRINIVAS, V. KIRAN

We now claim that Eη = τ ,if Eη 6= τ then S(Eη ,Eη ,τ)> 0

keeping ν = η and ω = ωn in condition (iii) of the Theorem 3.1 we get

∫ S(Eη ,Eη ,Fωn)

0
ϕ(α)dα ≤ λ

∫ S(Fωn,Fωn,Hωn)[1+S(Eη ,Eη ,Gη)]

[1+S(Gη ,Gη ,Hωn)]
0

ϕ(α)dα(3)

+µ

∫ S(Gη ,Gη ,Hωn)

0
ϕ(α)dα

on passing to the limits

∫ S(Eη ,Eη ,τ)

0
ϕ(α)dα ≤ λ

∫ S(τ,τ,τ)[1+S(Eη ,Eη ,τ)]

[1+S(τ,τ,τ)]
0

ϕ(α)dα +µ

∫ S(τ,τ,τ)

0
ϕ(α)dα

(4)
∫ S(Eη ,Eη ,τ)

0
ϕ(α)dα = 0

giving that S(Eη ,Eη ,τ) = 0

leading to a contradiction to the fact that S(Eη ,Eη ,τ)> 0

proving Eη = τ

(5) Giving Gη = Eη = τ

Also Hζ = τ . Again from (1) we obtain

(6) lim
n→∞

Eνn = lim
n→∞

Gνn = lim
n→∞

Fωn = lim
n→∞

Hωn = τ = Hζ

We now claim that Fζ = τ . For if Fζ 6= τ then S(Fζ ,Fζ ,τ)> 0

on taking ν = νn and ω = ζ in condition (iii) of the Theorem 3.1, we obtain

∫ S(Eνn,Eνn,Fζ )

0
ϕ(α)dα ≤ λ

∫ S(Fζ ,Fζ ,Hζ )[1+S(Eνn,Eνn,Gνn)]

[1+S(Gνn,Gνn,Hζ )]
0

ϕ(α)dα(7)

+µ

∫ S(Gνn,Gνn,Hζ )

0
ϕ(α)dα

on passing to the limits

∫ S(τ,τ,Fζ )

0
ϕ(α)dα ≤ λ

∫ S(Fζ ,Fζ ,τ)[1+S(τ,τ,τ)]
[1+S(τ,τ,τ)]

0
ϕ(α)dα +µ

∫ S(τ,τ,τ)

0
ϕ(α)dα

∫ S(τ,τ,Fζ )

0
ϕ(α)dα ≤ λ

∫ S(Fζ ,Fζ ,τ)

0
ϕ(α)dα +0
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(8) (1−λ )
∫ S(Fζ ,Fζ ,τ)

0
ϕ(α)dα ≤ 0

which gives S(Fζ ,Fζ ,τ) = 0

Again leading to a contradiction to the fact that S(Fζ ,Fζ ,τ)> 0

proving Fζ = τ

(9) Therefore Fζ = Hζ = τ

Further,we obtain

(10) Eη = Gη = Fζ = Hζ = τ

Now we established τ is a common fixed point of E,F,G and H.

clearly GEη = EGη

from which we get

(11) Gτ = Eτ

and

HFζ = FHζ

(12) Hτ = Fτ

we have Eτ = τ ,For if Eτ 6= τ then S(Eτ,Eτ,τ)> 0

substituting ν = τ and ω = ζ in condition (iii) of the Theorem 3.1 , we get

∫ S(Eτ,Eτ,Fζ )

0
ϕ(α)dα ≤ λ

∫ S(Fζ ,Fζ ,Hζ )[1+S(Eτ,Eτ,Gτ)]

[1+S(Gτ,Gτ,Hζ )]
0

ϕ(α)dα

+µ

∫ S(Gτ,Gτ,Hζ )

0
ϕ(α)dα

∫ S(Eτ,Eτ,τ)

0
ϕ(α)dα ≤ λ

∫ S(τ,τ,τ)[1+S(Eτ,Eτ,Eτ)]

[1+S(Eτ,Eτ,τ)]
0

ϕ(α)dα +µ

∫ S(Eτ,Eτ,τ)

0
ϕ(α)dα∫ S(Eτ,Eτ,τ)

0
ϕ(α)dα ≤ µ

∫ S(Eτ,Eτ,τ)

0
ϕ(α)dα
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(13) (1−µ)
∫ S(Eτ,Eτ,τ)

0
ϕ(α)dα ≤ 0

which gives S(Eτ,Eτ,τ) = 0

contradicting the fact that S(Eτ,Eτ,τ)> 0

proving Eτ = τ

(14) therefore Gτ = Eτ = τ

similarly, we can prove that

(15) Fτ = Hτ = τ

from(14) and (15), it follows that

(16) Eτ = Fτ = Gτ = Hτ = τ

proving τ is a common fixed point of E,F,G and H.

For if ς(ς 6= τ) is in M such that

Eς = Fς = Gς = Hς = ς

Then on taking ν = τ and ω = ς in condition (iii) of the Theorem 3.1, we get

∫ S(Eτ,Eτ,Fς)

0
ϕ(α)dα ≤ λ

∫ S(Fς ,Fς ,Hς)[1+S(Eτ,Eτ,Gτ)]

[1+S(Gτ,Gτ,Hς)]
0

ϕ(α)dα

+µ

∫ S(Gτ,Gτ,Hς)

0
ϕ(α)dα

∫ S(τ,τ,ς)

0
ϕ(α)dα ≤ λ

∫ S(ς ,ς ,ς)[1+S(τ,τ,τ)]
[1+S(τ,τ,ς)]

0
ϕ(α)dα +µ

∫ S(τ,τ,ς)

0
ϕ(α)dα

(17) (1−µ)
∫ S(τ,τ,ς)

0
ϕ(α)dα ≤ 0

giving S(τ,τ,ς) = 0

from which it follows that τ = ς

proving that E,F,G and H have a unique common fixed point in M. �
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As an illustration we have the following example.

Example 1. Let M = [0,2] be a S-metric space with S(ν ,ω,ϑ) = |ν −ϑ |+ |ω −ϑ |,where

ν ,ω,ϑ ∈M and E,F,G and H be self maps on M,defined by

E(ν) =


1, ν ∈ [0,1],

1
3
, ν ∈ (1,2].

F(ν) =


1, ν ∈ [0,1],

1
2
, ν ∈ (1,2].

G(ν) =


1, ν ∈ [0,1],

3
4
, ν ∈ (1,2].

H(ν) =


1, ν ∈ [0,1],

3
2
, ν ∈ (1,2].

Also take ϕ(α) = 3α2 for α ∈ [0,∞)

Let (νn) and (ωn) be sequences in M with νn =
n

n+1
and ωn =

n
n+2

, where n≥ 1,then

lim
n→∞

Eνn = lim
n→∞

E(
n

n+1
) = 1 = E(1)

lim
n→∞

Gνn = lim
n→∞

G(
n

n+1
) = 1 = G(1)

lim
n→∞

Fωn = lim
n→∞

F(
n

n+2
) = 1 = F(1)

lim
n→∞

Hωn = lim
n→∞

H(
n

n+2
) = 1 = H(1)

thus lim
n→∞

Eνn = lim
n→∞

Gνn = lim
n→∞

Fωn = lim
n→∞

Hωn = 1 and 1 ∈ G(M)∩H(M)

proving (E,G) and (F,H) satisfy (CLRGH)-property.

Now we verify condition (iii) of Theorem 3.1 in different cases.

Case(i). Let ν ,ω ∈ [0,1]

then Eν = Gν = Fω = Hω = 1 and from (iii)∫ S(Eν ,Eν ,Fω)

0
ϕ(α)dα =

∫ S(1,1,1)

0
3α

2dα = 0

λ

∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0

ϕ(α)dα +µ

∫ S(Gν ,Gν ,Hω)

0
ϕ(α)dα

λ

∫ S(1,1,1)[1+S(1,1,1)]
[1+S(1,1,1)]

0
3α

2dα +µ

∫ S(1,1,1)

0
3α

2dα = 0
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therefore

∫ S(Eν ,Eν ,Fω)

0
ϕ(α)dα = λ

∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0

ϕ(α)dα

+µ

∫ S(Gν ,Gν ,Hω)

0
ϕ(α)dα

case(ii). Let ν ,ω ∈ (1,2]

then Eν =
1
3

,Gν =
3
4

,Fω =
1
2

, Hω =
3
2

and from (iii)

∫ S(Eν ,Eν ,Fω)

0
ϕ(α)dα =

∫ S(
1
3
,
1
3
,
1
2
)

0
3α

2dα =
1

27

λ

∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0

ϕ(α)dα +µ

∫ S(Gν ,Gν ,Hω)

0
ϕ(α)dα

λ

∫
S(

1
2
,
1
2
,
3
2
)[1+S(

1
3
,
1
3
,
3
4
)]

[1+S(
3
4
,
3
4
,
3
2
)]

0
3α

2dα +µ

∫ S(
3
4
,
3
4
,
3
2
)

0
3α

2dα = λ

∫ 22
15

0
3α

2dα +µ

∫ 3
2

0
3α

2dα

= λ
10648
3375

+µ
27
8

since λ ,µ > 0 with λ +µ < 1

therefore

∫ S(Eν ,Eν ,Fω)

0
ϕ(α)dα < λ

∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0

ϕ(α)dα

+µ

∫ S(Gν ,Gν ,Hω)

0
ϕ(α)dα

Case(iii). Let ν ∈ [0,1] and ω ∈ (1,2]

then Eν = 1,Gν = 1,Fω =
1
2
,Hω =

3
2

and from (iii)

∫ S(Eν ,Eν ,Fω)

0
ϕ(α)dα =

∫ S(1,1,
1
2
)

0
3α

2dα = 1

λ

∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0

ϕ(α)dα +µ

∫ S(Gν ,Gν ,Hω)

0
ϕ(α)dα
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= λ

∫
S(

1
2
,
1
2
,
3
2
)[1+S(1,1,1)]

[1+S(1,1,
3
2
)]

0
3α

2dα +µ

∫ S(1,1,
3
2
)

0
3α

2dα = λ

∫ 2

0
3α

2dα +µ

∫ 1

0
3α

2dα

= λ8+µ

since λ ,µ > 0 with λ +µ < 1

thus we have

∫ S(Eν ,Eν ,Fω)

0
ϕ(α)dα ≤ λ

∫ S(Fω,Fω,Hω)[1+S(Eν ,Eν ,Gν)]

[1+S(Gν ,Gν ,Hω)]
0

ϕ(α)dα

+µ

∫ S(Gν ,Gν ,Hω)

0
ϕ(α)dα

Any λ ,µ satisfying conditions obtained in case (ii) and case(iii) with λ ,µ > 0 and λ + µ < 1

will work here.

Similarly we can check condition (iii) of Theorem 3.1 in case if ω ∈ [0,1] and ν ∈ (1,2]. Hence

condition (iii) is satisfied in various cases.

Observe that 1 is the unique common fixed point of E,F,G,H.
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