Available online at http://scik.org
J. Math. Comput. Sci. 2022, 12:179
https://doi.org/10.28919/jmcs/7458
ISSN: 1927-5307

# CHARACTERIZATIONS OF FRENET CURVES IN GALILEAN 3-SPACE 

M. ELZAWY ${ }^{1, *}$, S. MOSA ${ }^{2}$<br>${ }^{1}$ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt. Mathematics Department, College of Science, Taibah University, El Madina, KSA<br>${ }^{2}$ Department of Mathematics, College of Science, University of Bisha, Bisha, Saudi Arabia. Mathematics Department, Faculty of science, Damanhour University, Damanhour, Egypt

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


#### Abstract

The aim of this paper is to prove that the distance function of every Frenet curve in $G_{3}$ satisfies a 4-th order differential equation. Also, we show that if $\alpha$ is a unit speed Frenet curve in $G_{3}$, then $<\alpha(s), T(s)>=s+c$ if and only if $\alpha$ is a rectifying curve. Finally, we obtain some characterizations of spherical curves and helices via the 4-th order differential equation (4).


Keywords: Galilean Space; rectifying curves; spherical curves; helices.
2010 AMS Subject Classification: 53A35, 51A05.

## 1. Introduction

Curves satisfying particular relationships with respect to their curvatures are of greater significance in the theoretical study of differential geometry and applications. The rectifying curves and the helices are two of these famous curves $[1,2,3,4,5]$.

[^0]A curve $\alpha$ is referred to as a curve of Frenet if $\kappa>0$ and $\tau \neq 0$. The distance function $d$ of $\alpha$ is denoted by the equation $d(s)=\|\alpha(s)\|$. The distance function $d$ plays an important role in obtaining the characterization of rectifying curves in addition to curvature and torsion [2].

A helix is a curve whose tangent makes a constant angle with a fixed direction (axis) [6]. There is a well-known general helix classification, a curve is called general helix if and only if $\frac{\kappa}{\tau}=$ constant [6].

The geometry of Manifolds in the de-Sitter space $S_{1}^{2}$ [7], Minkowski space [8, 9] represented as a popular topics for many researchers.

Galilean space is the space of Galilean relativity. More details about Galilean space and pseudo-Galilean space can be seen in the following references [10, 11, 12, 13, 14, 15, 16]. The Galilean relativity geometry serves as a bridge to special relativity from the Euclidean geometry. The curve geometry in Euclidean space was developed along time ago. Mathematicians have started studying curves and surfaces in Galilean space in recent years [6, 17, 18, 19, 20, 21],[22].

In this article, we first prove that the distance function of each Frenet curve in $G_{3}$ satisfies a differential equation of 4-th order. Finally, we give some characterizations of rectifying curves, spherical curves, and helices as a consequence of this differential equation.

## 2. Preliminaries

The Cayley-Klein space is equipped with a signature projective metric $(0,0,+,+)$ represented Galilean three-dimensional space $G_{3}$. The absolute of Galilean geometry is the ordered triple ( $w, f, I$ ) where $w$ is the ideal plane (absolute), the line $f$ in $w$ (absolute line) and $I$ is elliptic point of involution $\left(0,0, x_{2}, x_{3}\right) \rightarrow\left(0,0, x_{3},-x_{2}\right)$ [17].

Suppose that $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ are two vectors in $G_{3}$. Galilean scalar product can be written in $G_{3}$ as

$$
<\vec{x}, \vec{y}>_{G_{3}}= \begin{cases}x_{1} y_{1} & \text { if } x_{1} \neq 0 \text { or } y_{1} \neq 0 \\ x_{2} y_{2}+x_{3} y_{3} & \text { if } x_{1}=0 \text { and } y_{1}=0\end{cases}
$$

Norm of the vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is defined by $\|\vec{x}\|_{G_{3}}=\sqrt{<\vec{x}, \vec{x}>_{G_{3}}}$.
If $\vec{x}$ and $\vec{y}$ are vectors in Galilean space $G_{3}$, then the vector product of $\vec{x}$ and $\vec{y}$ is

$$
\vec{x} \times \vec{y}=\left\{\begin{array}{l}
\left|\begin{array}{lll}
0 & e_{2} & e_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right| \text { if } x_{1} \neq 0 \text { or } y_{1} \neq 0 \\
\left|\begin{array}{lll}
e_{1} & e_{2} & e_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right| \text { if } x_{1}=0 \text { and } y_{1}=0
\end{array}\right.
$$

Suppose that $\alpha: I \rightarrow G_{3}$ is a unit speed curve in Galilean 3-space $G_{3}$ with Frenet-apparatus $\{\kappa, \tau, T, N, B\}$, where the curvature, torsion, unit tangent, unit principal normal and unit binormal of $\alpha$ are denoted in Galilean 3-space by $\kappa, \tau, T, N$ and $B$ [12]. For the curve $\alpha(s)=(s, y(s), z(s))$, we have [6]

$$
\begin{equation*}
\kappa(s)=\left\|\alpha^{\prime \prime}(s)\right\|_{G_{3}}=\sqrt{y^{\prime \prime 2}(s)+z^{\prime \prime 2}(s)} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\tau(s)=\frac{\operatorname{det}\left(\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s)\right)}{\kappa^{2}(s)},  \tag{2}\\
T(s)=\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right), \\
N(s)=\frac{\alpha^{\prime \prime}(s)}{\kappa(s)}=\frac{1}{\kappa(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right), \\
B(s)=\frac{1}{\kappa(s)}\left(0,-z^{\prime \prime}(s), y^{\prime \prime}(s)\right) .
\end{gather*}
$$

In addition, Frenet formulae can be written as

$$
\frac{d}{d s}\left[\begin{array}{c}
T(s) \\
N(s) \\
B(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
0 & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
T(s) \\
N(s) \\
B(s)
\end{array}\right]
$$

## 3. Frenet Curves in Galilean 3-Space

In this section we will define the Frenet curve and will prove that if $\alpha$ is a Frenet curve in $G_{3}$, then the distance function for $\alpha$ satisfies a 4-th order differential equation.

Definition 1. In Galilean 3-space $G_{3}$, a curve $\alpha$ is referred to as a Frenet curve if $\kappa>0$ and $\tau \neq 0$.

Definition 2. For a curve $\alpha: I \rightarrow G_{3}, I \subset \mathbb{R}$, parametrized by the invariant parameter $s$, the distance function $d(s)$ is defined by $d(s)=<\alpha(s), \alpha(s)>^{\frac{1}{2}}$. Moreover, we can define the function $h(s)=<\alpha(s), T(s)>$.

We can easily prove the next proposition.

Proposition 1. Each unit speed Frenet curve $\alpha=\alpha(s)$ in $G_{3}$ satisfies the following differential equations
(1) $h^{\prime \prime \prime}(s)=<\alpha(s), T^{\prime \prime \prime}(s)>$.
(2) $h^{\prime \prime \prime}(s)=\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right)<\alpha(s), B(s)>+\left(\kappa^{\prime \prime}-\kappa \tau^{2}\right)<\alpha(s), N(s)>$.

Lemma 1. Let $\alpha: I \rightarrow G_{3}$ be Frenet unit speed curve. We can easily prove the following statements.

$$
\left\{\begin{array}{l}
<\alpha(s), T(s)>^{\prime}=1+\kappa<\alpha(s), N(s)>  \tag{3}\\
<\alpha(s), N(s)>^{\prime}=\tau<\alpha(s), B(s)> \\
<\alpha(s), B(s)>^{\prime}=-\tau<\alpha(s), N(s)>
\end{array}\right.
$$

Theorem 1. If $\alpha(s)$ is Frenet curve of unit speed in $G_{3}$, then $\alpha(s)$ satisfies the 4-th order differential equation of the form

$$
\begin{equation*}
(\rho \sigma) h^{\prime \prime \prime}+\left((\sigma \rho)^{\prime}+\sigma \rho^{\prime}\right) h^{\prime \prime}+\left(\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma}\right) h^{\prime}=\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma} \tag{4}
\end{equation*}
$$

where $\rho=\kappa^{-1}, \sigma=\tau^{-1}, h(s)=d(s) d^{\prime}(s)$ and ${ }^{\prime}=\frac{d}{d s}$.

Proof. By differentiating $h(s)=<\alpha(s), T(s)>$ and using (3), we get

$$
\begin{equation*}
\rho(s)\left(h^{\prime}(s)-1\right)=<\alpha(s), N(s)>. \tag{5}
\end{equation*}
$$

By differentiating (5), we obtain

$$
\begin{equation*}
\sigma(s) \rho(s) h^{\prime \prime}(s)+\sigma(s) \rho^{\prime}(s)\left(h^{\prime}(s)-1\right)=<\alpha(s), B(s)> \tag{6}
\end{equation*}
$$

After differentiating (6), and considering (5), we get

$$
(\sigma \rho) h^{\prime \prime \prime}+\left((\sigma \rho)^{\prime}+\sigma \rho^{\prime}\right) h^{\prime \prime}+\left(\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma}\right) h^{\prime}=\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma}
$$

Example 1. Suppose that $\alpha(s)=(s,-\cos (s), \sin (s))$.


By simple computation, we get the Frenet vectors of $\alpha(s)$ as :

$$
\begin{aligned}
T & =(1, \text { sins }, \operatorname{coss}) \\
N & =(0, \operatorname{coss},-\sin s) \\
B & =(0, \sin s, \operatorname{coss})
\end{aligned}
$$

respectively. The curvature of $\alpha(s)$ is $\kappa=1$, and the torsion of $\alpha(s)$ is $\tau=-1$. Finally, $h^{\prime}(s)=1$ and hence equation (4) is satisfied.

Example 2. Consider the curve $\beta(s)=\left(s, \sin \left(\frac{s}{\sqrt{2}}\right)-\cos \left(\frac{s}{\sqrt{2}}\right), \sin \left(\frac{s}{\sqrt{2}}\right)+\cos \left(\frac{s}{\sqrt{2}}\right)\right)$.


$$
\beta(s)=\left(s, \sin \left(\frac{s}{\sqrt{2}}\right)-\cos \left(\frac{s}{\sqrt{2}}\right), \sin \left(\frac{s}{\sqrt{2}}\right)+\cos \left(\frac{s}{\sqrt{2}}\right)\right) .
$$

By calculations, we have the distance function of $\beta$ is $d(s)=s$. The tangent, normal, and binormal vectors of $\beta$ are

$$
\begin{aligned}
T & =\left(1, \frac{1}{\sqrt{2}} \cos \left(\frac{s}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}} \sin \left(\frac{s}{\sqrt{2}}\right), \frac{1}{\sqrt{2}} \cos \left(\frac{s}{\sqrt{2}}\right)-\frac{1}{\sqrt{2}} \sin \left(\frac{s}{\sqrt{2}}\right)\right) \\
N & =\sqrt{2}\left(0,-\frac{1}{2} \sin \left(\frac{s}{\sqrt{2}}\right)+\frac{1}{2} \cos \left(\frac{s}{\sqrt{2}}\right),-\frac{1}{2} \sin \left(\frac{s}{\sqrt{2}}\right)-\frac{1}{2} \cos \left(\frac{s}{\sqrt{2}}\right)\right) \\
B & =\sqrt{2}\left(0, \frac{1}{2} \sin \left(\frac{s}{\sqrt{2}}\right)+\frac{1}{2} \cos \left(\frac{s}{\sqrt{2}}\right),-\frac{1}{2} \sin \left(\frac{s}{\sqrt{2}}\right)+\frac{1}{2} \cos \left(\frac{s}{\sqrt{2}}\right)\right)
\end{aligned}
$$

Moreover, the curvature of $\beta(s)$ is $\kappa=\frac{1}{\sqrt{2}}$, the torsion of $\beta(s)$ is $\tau=\frac{-1}{2 \sqrt{2}}$ and $h^{\prime}(s)=1$ which satisfies equation (4).

## 4. Some Examples of Frenet Curves in $G_{3}$

In this section, we can easily use theorem 1 for useful characterizations of rectifying curves, spherical curves and helices in $G_{3}$.
4.1. Rectifying Curves in $G_{3}$. In this subsection we will introduce rectifying curves in terms of the distance function and apply theorem 1 on it.

Definition 3. [5] Let $\alpha$ be a curve in Galilean 3-dimensional space $G_{3}$. If the position vector of $\alpha$ always lies in its rectifying plane, then $\alpha$ is called rectifying curve.
H. Oztekin [5] prove that if $\alpha$ is a Frenet unit speed curve in $G_{3}$, then $<\alpha(s), T(s)>=s+c$ if and only if $\alpha$ is a rectifying curve.

Now we prove the following corollary.

Corollary 1. Every rectifying curve in $G_{3}$ satisfies the fourth order differential equation (4).
Proof. Assume that $\alpha$ is a rectifying curve, then $d(s)=\sqrt{s^{2}+m s+n}$ is the distance function, where $m \in \mathbb{R}$ and $n \in \mathbb{R}-\{0\}$. Therefore

$$
d^{\prime}(s)=\frac{2 s+m}{2 \sqrt{s^{2}+m s+n}}
$$

which gives

$$
h(s)=s+c,
$$

with $c=\frac{m}{2}$ which satisfies equation (4).
4.2. Spherical Curves in $G_{3}$. In this subsection, we will consider the spherical curves in $G_{3}$. We also give some classifications of such curves according to theorem 1 .

Definition 4. [5, 24] Galilean sphere of radius $r$ and center $m$ is defined by the relation

$$
S^{2}(m, r)=\left\{\varphi-m \in G_{3}:\langle\varphi-m, \varphi-m\rangle= \pm r^{2}\right\}
$$

Moreover, spherical curves are the special space curves that lies on the sphere [23]. So we will give the next proposition for Frenet unit speed curve to be a spherical curve in $G_{3}$.

Proposition 2. Let $\alpha=\alpha(s)$ be a Frenet curve of unit speed in $G_{3}$. Subsequently, if $\alpha(s)$ is spherical curve, it fulfills the relation $\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma}=0$.

Proof. Let $\alpha(s)$ be a spherical curve that lies on a sphere of radius $a$. We consider the sphere is centered at the origin without loss of generality, so the distance function $d(s)=a$ which gives $h(s)=d(s) d^{\prime}(s)=0$. By substituting in the equation (4), we have $\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma}=0$.

Example 3. Consider the spherical curve $\alpha(s)=(s, y(s), z(s))$ with curvature $\kappa(s)=\frac{1}{s}, s>0$ and substituting in the equation $\left(\sigma \rho^{\prime}\right)^{\prime}+\frac{\rho}{\sigma}=0$, we can easily obtain $\tau(s)=\frac{1}{\sqrt{c_{1}-s^{2}}}$ where $c_{1}$ is constant. Substituting for $\kappa(s)=\frac{1}{s}$ and $\tau(s)=\frac{1}{\sqrt{c_{1}-s^{2}}}$ in the equations (1) and (2) we will obtain the following differential equations

$$
\begin{gather*}
y^{\prime \prime}+z^{\prime \prime}=\frac{1}{s^{2}},  \tag{7}\\
y^{\prime \prime} z^{\prime \prime \prime}-y^{\prime \prime \prime} z^{\prime \prime}=\frac{1}{s^{2} \sqrt{c_{1}-s^{2}}} .
\end{gather*}
$$

By integrating equation (7) twice with respect to $s$, which yields

$$
\begin{equation*}
y(s)=a_{2}+a_{1} s-\ln s-z(s) . \tag{9}
\end{equation*}
$$

Next we differentiate equation (7) with respect to $s$, which yields

$$
\begin{equation*}
z^{\prime \prime \prime}=-\frac{2}{s^{3}}-y^{\prime \prime \prime} \tag{10}
\end{equation*}
$$

By making use of (7) and (10) one gets from (8) that

$$
\begin{gathered}
y^{\prime \prime}\left(-\frac{2}{s^{3}}-y^{\prime \prime \prime}\right)-y^{\prime \prime \prime}\left(\frac{1}{s^{2}}-y^{\prime \prime}\right)=\frac{1}{s^{2} \sqrt{c_{1}-s^{2}}} \Rightarrow \\
\frac{y^{\prime \prime \prime}}{s^{2}}+\frac{2}{s^{3}} y^{\prime \prime}=\frac{-1}{s^{2} \sqrt{c_{1}-s^{2}}} .
\end{gathered}
$$

Writing $y^{\prime \prime}(s)=u(s) \Rightarrow y^{\prime \prime \prime}=u^{\prime}(s)$ in (11) and multiplying both sides by $s^{2}$, we obtain

$$
\begin{equation*}
u^{\prime}+\frac{2}{s} u=\frac{-1}{\sqrt{c_{1}-s^{2}}}, \tag{12}
\end{equation*}
$$

which is a linear first order differential equation, its integrating factor $\mu=\exp \left(\int \frac{2}{s} d s\right)=s^{2}$. Hence the solution of equation (12) is given by

$$
\begin{gather*}
s^{2} u(s)=\int \frac{-s^{2}}{\sqrt{c_{1}-s^{2}}} d s+\alpha_{1} \Rightarrow \\
y^{\prime \prime}(s)=\frac{\sqrt{c_{1}-s^{2}}}{2 s}-\frac{c_{1}}{2 s^{2}} \tan ^{-1}\left(\frac{s}{\sqrt{c_{1}-s^{2}}}\right)+\frac{\alpha_{1}}{s^{2}} . \tag{13}
\end{gather*}
$$

By integrating equation (13), with respect to $s$, we get

$$
y^{\prime}(s)=\left(\frac{1}{2}+\frac{1}{s}\right) \frac{c_{1}}{2} \tan ^{-1}\left(\frac{s}{\sqrt{c_{1}-s^{2}}}\right)+\frac{\sqrt{c_{1}}}{2} \ln \left(\frac{2 c_{1}+2 \sqrt{c_{1}-s^{2}}}{s}\right)+
$$

$$
\begin{equation*}
\frac{s}{4} \sqrt{c_{1}-s^{2}}-\frac{\alpha_{1}}{s}+\alpha_{2} \tag{14}
\end{equation*}
$$

Finally by integrating equation (14), we have

$$
\begin{aligned}
& y(s)= \frac{5 c_{1} s^{2}+2 c_{1}^{2}-s^{4}}{12 \sqrt{c_{1}-s^{2}}}+\left(\frac{s}{2}+1+\ln s\right) \frac{c_{1}}{2} \tan ^{-1}\left(\frac{s}{\sqrt{c_{1}-s^{2}}}\right)+ \\
&\left.\frac{i c_{1}}{4} \operatorname{Li}_{2}\left(e^{-2 \sinh ^{-1}\left(\frac{i s}{\sqrt{c_{1}}}\right)}\right)+\frac{\sqrt{c_{1}}}{2} s \ln \left(2 s\left(\sqrt{c_{1}\left(c_{1}-s^{2}\right.}\right)+c_{1}\right)\right)+ \\
& \frac{i c_{1}}{2} \ln s\left(\ln \left(\sqrt{1-\frac{s^{2}}{c_{1}}}+\frac{i s}{\sqrt{c_{1}}}\right)\right)-\frac{i c_{1}}{4}\left(\sinh ^{-1}\left(\frac{i s}{\sqrt{c_{1}}}\right)\right)^{2}- \\
& \frac{i c_{1}}{2}\left(\sinh ^{-1}\left(\frac{i s}{\sqrt{c_{1}}}\right)\right) \ln \left(1-e^{-2 \sinh ^{-1}\left(\frac{i s}{\sqrt{c_{1}}}\right)}\right)-\alpha_{1} \ln s+\alpha_{2} s+\alpha_{3} .
\end{aligned}
$$

The function $\mathrm{Li}_{a}(z)$ is a polylogarithm function and it is defined by

$$
\mathrm{Li}_{a}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{a^{n}},|z|<1
$$

Substituting $y(s)$ in the equation (9), we will obtain $z(s)$.
4.3. Helices in $G_{3}$. In this subsection, the definitions of general helix and circular helix in $G_{3}$ will be introduced. The sufficient condition for the general helix to be Frenet curve will be considered.

Definition 5. [6, 24] Let $\alpha$ be a curve in Galilean 3-dimensional space $G_{3}$, and let $\{T, N, B\}$ be the Frenet frame along $\alpha$. A curve such that $\frac{\kappa}{\tau}$ equals constant is called a general helix.

Definition 6. [6] Let $\alpha$ be a curve in Galilean 3-dimensional space $G_{3}$, and let $\{T, N, B\}$ be Frenet frame along $\alpha$. If there are positive constants $\kappa$ and $\tau$ along $\alpha$, then $\alpha$ is referred to as a circular helix.

There exists some properties of general and circular helix which will be used in proving the next theorem [6].
(1) $T^{\prime \prime \prime}-K T^{\prime}=3 \kappa^{\prime} N^{\prime}$.
(2) $T^{\prime \prime \prime}-K T^{\prime}=3 \lambda \tau^{\prime} N^{\prime}$.
(3) $T^{\prime \prime \prime}-\tilde{K} B^{\prime}=3 \kappa^{\prime} N^{\prime}$.
(4) $T^{\prime \prime \prime}-\tilde{K} B^{\prime}=3 \lambda \tau^{\prime} N^{\prime}$.
where $K=\frac{\kappa^{\prime \prime}}{\kappa}-\tau^{2}, \tilde{K}=\frac{-\kappa^{\prime \prime}}{\tau}+\kappa \tau$, and $\lambda=\frac{\kappa}{\tau}$.
If the curve is a circular helix, then
(1) $T^{\prime \prime \prime}=-\tau^{2} T^{\prime}$.
(2) $T^{\prime \prime \prime}=\kappa \tau B^{\prime}$.

Theorem 2. Let $\alpha: I \rightarrow G_{3}$ be a unit speed Frenet curve in $G_{3}$. If $\alpha$ is a circular helix, then $h(s)$ satisfies the following equation

$$
h(s)=-c_{1} \sigma \cos (\tau s)+c_{2} \sigma \sin (\tau s)+s+c
$$

where $\sigma=\frac{1}{\tau}, c_{1}, c_{2}$ and $c_{3}$ are constants.

Proof. Assume that $\alpha$ is a circular helix. Then we have $\rho^{\prime}=0$ and $\sigma^{\prime}=0$. Writing them in equation (4), we obtain

$$
\begin{gather*}
\sigma \rho h^{\prime \prime \prime}(s)+\frac{\rho}{\sigma} h^{\prime}(s)-\frac{\rho}{\sigma}=0, \\
h^{\prime \prime \prime}(s)+\frac{1}{\sigma^{2}} h^{\prime}(s)-\frac{1}{\sigma^{2}}=0, \\
h^{\prime \prime \prime}(s)+\tau^{2} h^{\prime}(s)-\tau^{2}=0 . \tag{15}
\end{gather*}
$$

Let $h^{\prime}(s)=y(s)$, then $h^{\prime \prime}(s)=y^{\prime}(s)$ and $h^{\prime \prime \prime}(s)=y^{\prime \prime}(s)$. Writing them in the equation (15), we obtain the following non homogeneous differential equation

$$
\begin{equation*}
y^{\prime \prime}(s)+\tau^{2} y(s)=\tau^{2} . \tag{16}
\end{equation*}
$$

Solving the homogeneous differential equation $y^{\prime \prime}(s)+\tau^{2} y(s)=0$, we obtain

$$
\begin{equation*}
y_{c}=c_{1} \sin (\tau s)+c_{2} \cos (\tau s) \tag{17}
\end{equation*}
$$

where $c_{1}$ and $c_{2}$ are constants. The particular solution of the non homogeneous equation is $y_{p}=A$, which gives $y_{p}^{\prime}=0$ and $y_{p}^{\prime \prime}=0$. Substituting in equation (16), we get $\tau^{2} A=\tau^{2}$, that $\operatorname{implies} A=1$. Now, the general solution of the given non homogeneous differential equation is given by

$$
y=c_{1} \sin (\tau s)+c_{2} \cos (\tau s)+1
$$

## Moreover,

$$
\begin{aligned}
h^{\prime}(s) & =c_{1} \sin (\tau s)+c_{2} \cos (\tau s)+1 \\
h(s) & =\frac{-c_{1}}{\tau} \cos (\tau s)+\frac{c_{2}}{\tau} \sin (\tau s)+s+c_{3}
\end{aligned}
$$

and hence,

$$
h(s)=-c_{1} \sigma \cos (\tau s)+c_{2} \sigma \sin (\tau s)+s+c_{3}
$$

Corollary 2. Let $\alpha$ be Frenet curve in $G_{3}$. If $\alpha$ is a general helix, then
(1) $h^{\prime \prime \prime}(s)=<\alpha(s), K T^{\prime}+3 \kappa^{\prime} N^{\prime}(s)>$; where $K=\frac{\kappa^{\prime \prime}}{\kappa}-\tau^{2}$.
(2) $h^{\prime \prime \prime}(s)=<\alpha(s), \tilde{K} B^{\prime}+3 \lambda \tau^{\prime} N^{\prime}>$; where $\tilde{K}=-\frac{\kappa^{\prime \prime}}{\tau}+k \tau$, and $\lambda=\frac{k}{\tau}=$ const.

Proof. By direct substitution from the properties of the general helix, we obtain the two relations.

Moreover, it is clear to prove the following corollary.

Corollary 3. Let $\alpha$ be a Frenet curve in $G_{3}$ and $\alpha$ be a circular helix. Then
(1) $h^{\prime \prime \prime}(s)=<\alpha(s),-\tau^{2} T^{\prime}>$, and
(2) $h^{\prime \prime \prime}(s)=<\alpha(s), \kappa \tau B^{\prime}>$.

## 5. Conclusion

In this study, Frenet curve in Galilean 3-dimensional space $G_{3}$ is defined. It is proved that the distance function $d(s)$ of each Frenet curve in $G_{3}$ satisfies a 4-th order differential equation. Also, rectifying curves, spherical curves, and helices are given. Moreover, some useful characterizations of such curves via this 4-th order differential equation is obtained.

## ACKNowledgement

The authors wish to express their sincere thanks to referee for making several useful comments that improved the first version of the paper.

## Conflict of Interests

The author(s) declare that there is no conflict of interests.

## References

[1] S. Cambie, W. Goemans, V. Bussche, Rectifying curves in the n-dimensional Euclidean space, Turk. J. Math. 40 (2016), 210-223.
[2] S. Deshmukh, B.Y. Chen, N. Turki, A differential equations for Frenet curves in Euclidean 3-space and its applications, Romanian J. Math. Computer Sci. 8 (2018), 1-6.
[3] S. Deshmukh, I. Al-Dayel, K. Ilarslan, Frenet curves in Euclidean 4-space, Int. Electron. J. Geom. 10 (2017), 56-66.
[4] K. Ilarslan, E. Nešović, Some characterization of rectifying curves in the Euclidean space $E^{4}$, Turk. J. Math. 32 (2008), 21-30.
[5] H. Öztekin, Normal and rectifying curves in Galilean space $G_{3}$, Proc. IAM. 5 (2016), 98-109.
[6] A.O. Ogrenmis, M. Ergut, M. Bekts, On the helices in the Galilean space $G_{3}$, Iran. J. Sci. Technol. Trans. A. 18 (2007), 177-181.
[7] M. Samah, Inextensible flows of spacelike curves in de-sitter space $S^{2,1}$. Appl. Math. Inf. Sci. Lett. 6 (2018), 75-83.
[8] J. Walrave, Curves and surfaces in Minkowski space, K.U. Leuven, 1995.
[9] H.K. El-sayied, M. Elzawy, A. Elsharkawy, Equiform spacelike normal curves according to equiform-Bishop frame in $E_{1}^{3}$. Math. Meth. Appl. Sci. 41 (2018), 5754-5760.
[10] M.E. Aydin, A. Mihai, A.O. Ogrenmis, M. Ergut, Geometry of the solutions of localized induction equation in the pseudo-Galilean space, Adv. Math. Phys. 2015 (2015), 905978.
[11] S. Büyükkütük, I. Kisi, V.N. Mishra, G. Oztürk, Some charaterizations of curves in Galilean 3-space $G_{3}$, Facta Univ. (NIS), Ser. Math. Inform. 31 (2016), 503-512.
[12] M. Dede, C. Ekici, On parallel ruled surfaces in Galilea space, Kragujevac J. Math. 4 (2016), 47-59.
[13] M. Elzawy, S. Mosa, Smarandache curves in the Galilean 4-space G4, J. Egypt. Math. Soc. 25 (2017), 53-56.
[14] M.K. Karacan, Y. Tuncer, Characterization of slant helix in Galilean and pseudo-Galilean spaces, SAU Fen Edebiyat Dergisi. 12 (2010), 43-53.
[15] S. Mosa, M. Elzawy, Helicoidal surfaces in Galilean space with density, Front. Phys. 8 (2020), 1-6.
[16] Ž.M. Šipuš, B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J. Math. Math. Sci. 2012 (2012), 375264.
[17] M. Dede, C. Ekici, A.C. Cöken, On the parallelsurfaces in Galilean space, Hacettepe J. Math. Stat. 42 (2013), 605-615.
[18] M. Elzawy, S. Mosa, Razzaboni surfaces in the Galilean Space $G^{3}$, Far East J. Math. Sci. 108 (2018), 13-26.
[19] I.M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag: New York, 1979.
[20] D.W. Yoon, J.W. Lee, C.W. Lee, Osculating curves in the Galilean 4-space, Int. J. Pure Appl. Math. 100 (2015), 497-506.
[21] D.W. Yoon, Some classification of translation surfaces in Galilean 3-space. Int. J. Math. Anal, 6 (2012), 1355-1361.
[22] G. Öztürk, S. Büyükkütük, İ. Kişi, A characterization of curve in Galilean 4-space G4, Bull. Iran. Math. Soc. 43 (2017), 771-780.
[23] B. Okullup, H. Kocayigit, A. Aydint, An explicit characterization of spherical curves according to Bishop frame and an approximately solution, Thermal Sci. 23 (2019), 361-370.
[24] S. Yılmaz, Construction of the Frenet-Serret frame of a curve in 4D Galilean space and some applications, Int. J. Phys. Sci. 5 (2010), 1284-1289.


[^0]:    *Corresponding author
    E-mail address: mervatelzawy@science.tanta.edu.eg
    Received April 27, 2022

