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Abstract. The aim of this paper is to prove that the distance function of every Frenet curve in G3 satisfies a 4-th

order differential equation. Also, we show that if α is a unit speed Frenet curve in G3, then <α(s),T (s)>= s+c if

and only if α is a rectifying curve. Finally, we obtain some characterizations of spherical curves and helices via

the 4-th order differential equation (4).

Keywords: Galilean Space; rectifying curves; spherical curves; helices.

2010 AMS Subject Classification: 53A35, 51A05.

1. INTRODUCTION

Curves satisfying particular relationships with respect to their curvatures are of greater signif-

icance in the theoretical study of differential geometry and applications. The rectifying curves

and the helices are two of these famous curves [1, 2, 3, 4, 5].
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A curve α is referred to as a curve of Frenet if κ > 0 and τ 6= 0. The distance function d of

α is denoted by the equation d(s) =‖ α(s) ‖. The distance function d plays an important role

in obtaining the characterization of rectifying curves in addition to curvature and torsion [2].

A helix is a curve whose tangent makes a constant angle with a fixed direction (axis) [6].

There is a well-known general helix classification, a curve is called general helix if and only if
κ

τ
= constant [6].

The geometry of Manifolds in the de-Sitter space S2
1 [7], Minkowski space [8, 9] represented

as a popular topics for many researchers.

Galilean space is the space of Galilean relativity. More details about Galilean space and

pseudo-Galilean space can be seen in the following references [10, 11, 12, 13, 14, 15, 16]. The

Galilean relativity geometry serves as a bridge to special relativity from the Euclidean geometry.

The curve geometry in Euclidean space was developed along time ago. Mathematicians have

started studying curves and surfaces in Galilean space in recent years [6, 17, 18, 19, 20, 21],[22].

In this article, we first prove that the distance function of each Frenet curve in G3 satisfies a

differential equation of 4-th order. Finally, we give some characterizations of rectifying curves,

spherical curves, and helices as a consequence of this differential equation.

2. PRELIMINARIES

The Cayley-Klein space is equipped with a signature projective metric (0,0,+,+) repre-

sented Galilean three-dimensional space G3. The absolute of Galilean geometry is the ordered

triple (w, f , I) where w is the ideal plane (absolute), the line f in w (absolute line) and I is

elliptic point of involution (0,0,x2,x3)→ (0,0,x3,−x2) [17].

Suppose that −→x = (x1,x2,x3) and −→y = (y1,y2,y3) are two vectors in G3. Galilean scalar

product can be written in G3 as

<−→x ,−→y >G3=

 x1y1 if x1 6= 0 or y1 6= 0;

x2y2 + x3y3 if x1 = 0 and y1 = 0.

Norm of the vector −→x = (x1,x2,x3) is defined by ‖ −→x ‖G3 =
√
<−→x ,−→x >G3 .

If −→x and −→y are vectors in Galilean space G3, then the vector product of −→x and −→y is
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−→x ×−→y =



∣∣∣∣∣∣∣∣∣
0 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣ if x1 6= 0 or y1 6= 0,

∣∣∣∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣ if x1 = 0 and y1 = 0.

Suppose that α : I→ G3 is a unit speed curve in Galilean 3-space G3 with Frenet-apparatus

{κ,τ,T,N,B}, where the curvature, torsion, unit tangent, unit principal normal and unit bi-

normal of α are denoted in Galilean 3-space by κ , τ , T , N and B [12]. For the curve

α(s) = (s,y(s),z(s)), we have [6]

(1) κ(s) =‖ α
′′
(s) ‖G3=

√
y′′2(s)+ z′′2(s),

(2) τ(s) =
det(α

′
(s),α

′′
(s),α

′′′
(s))

κ2(s)
,

T (s) = α
′
(s) = (1,y

′
(s),z

′
(s)),

N(s) =
α
′′
(s)

κ(s)
=

1
κ(s)

(0,y
′′
(s),z

′′
(s)),

B(s) =
1

κ(s)
(0,−z

′′
(s),y

′′
(s)).

In addition, Frenet formulae can be written as

d
ds


T (s)

N(s)

B(s)

=


0 κ 0

0 0 τ

0 −τ 0




T (s)

N(s)

B(s)

 .
3. FRENET CURVES IN GALILEAN 3-SPACE

In this section we will define the Frenet curve and will prove that if α is a Frenet curve in G3,

then the distance function for α satisfies a 4-th order differential equation.

Definition 1. In Galilean 3-space G3, a curve α is referred to as a Frenet curve if κ > 0 and

τ 6= 0.
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Definition 2. For a curve α : I → G3, I ⊂ R, parametrized by the invariant parameter s, the

distance function d(s) is defined by d(s) =< α(s),α(s) >
1
2 . Moreover, we can define the

function h(s) =< α(s),T (s)>.

We can easily prove the next proposition.

Proposition 1. Each unit speed Frenet curve α = α(s) in G3 satisfies the following differential

equations

(1) h
′′′
(s) =< α(s),T

′′′
(s)> .

(2) h
′′′
(s) = (2κ ′τ +κτ ′)< α(s),B(s)>+(κ ′′−κτ2)< α(s),N(s)> .

Lemma 1. Let α : I → G3 be Frenet unit speed curve. We can easily prove the following

statements.

(3)


< α(s),T (s)>

′
= 1+κ < α(s),N(s)>,

< α(s),N(s)>
′

= τ < α(s),B(s)>,

< α(s),B(s)>
′

= −τ < α(s),N(s)> .

Theorem 1. If α(s) is Frenet curve of unit speed in G3, then α(s) satisfies the 4-th order

differential equation of the form

(4) (ρ σ)h
′′′
+((σρ)

′
+σρ

′
)h
′′
+((σρ

′
)
′
+

ρ

σ
)h
′
= (σρ

′
)
′
+

ρ

σ
.

where ρ = κ−1, σ = τ−1 , h(s) = d(s)d
′
(s) and ′ = d

ds .

Proof. By differentiating h(s) =< α(s),T (s)> and using (3), we get

(5) ρ(s) (h
′
(s)−1) =< α(s),N(s)> .

By differentiating (5), we obtain

(6) σ(s) ρ(s) h
′′
(s)+σ(s) ρ

′
(s)(h

′
(s)−1) =< α(s),B(s)> .

After differentiating (6), and considering (5), we get

(σ ρ) h
′′′
+((σ ρ)

′
+σρ

′
)h
′′
+((σ ρ

′
)
′
+ ρ

σ
)h
′
= (σ ρ

′
)
′
+ ρ

σ
. �
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Example 1. Suppose that α(s) = (s, −cos(s), sin(s)).

α(s) = (s,−cos(s),sin(s)).

By simple computation, we get the Frenet vectors of α(s) as :

T = (1,sins,coss),

N = (0,coss,−sins),

B = (0,sins,coss).

respectively. The curvature of α(s) is κ = 1, and the torsion of α(s) is τ =−1. Finally, h
′
(s)= 1

and hence equation (4) is satisfied.

Example 2. Consider the curve β (s) = (s, sin( s√
2
)− cos( s√

2
), sin( s√

2
)+ cos( s√

2
)).

β (s) = (s,sin(
s√
2
)− cos(

s√
2
),sin(

s√
2
)+ cos(

s√
2
)).
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By calculations, we have the distance function of β is d(s) = s. The tangent, normal, and

binormal vectors of β are

T = (1,
1√
2

cos(
s√
2
)+

1√
2

sin(
s√
2
),

1√
2

cos(
s√
2
)− 1√

2
sin(

s√
2
)),

N =
√

2(0,−1
2

sin(
s√
2
)+

1
2

cos(
s√
2
),−1

2
sin(

s√
2
)− 1

2
cos(

s√
2
)),

B =
√

2(0,
1
2

sin(
s√
2
)+

1
2

cos(
s√
2
),−1

2
sin(

s√
2
)+

1
2

cos(
s√
2
)).

Moreover, the curvature of β (s) is κ = 1√
2
, the torsion of β (s) is τ = −1

2
√

2
and h

′
(s) = 1 which

satisfies equation (4).

4. SOME EXAMPLES OF FRENET CURVES IN G3

In this section, we can easily use theorem 1 for useful characterizations of rectifying curves,

spherical curves and helices in G3.

4.1. Rectifying Curves in G3. In this subsection we will introduce rectifying curves in terms

of the distance function and apply theorem 1 on it.

Definition 3. [5] Let α be a curve in Galilean 3-dimensional space G3. If the position vector of

α always lies in its rectifying plane, then α is called rectifying curve.

H. Oztekin [5] prove that if α is a Frenet unit speed curve in G3, then < α(s),T (s)>= s+ c

if and only if α is a rectifying curve.

Now we prove the following corollary.

Corollary 1. Every rectifying curve in G3 satisfies the fourth order differential equation (4).

Proof. Assume that α is a rectifying curve, then d(s) =
√

s2 +ms+n is the distance function,

where m ∈ R and n ∈ R−{0}. Therefore

d
′
(s) =

2s+m

2
√

s2 +ms+n
,

which gives

h(s) = s+ c,

with c = m
2 which satisfies equation (4). �
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4.2. Spherical Curves in G3. In this subsection, we will consider the spherical curves in G3.

We also give some classifications of such curves according to theorem 1.

Definition 4. [5, 24] Galilean sphere of radius r and center m is defined by the relation

S2(m,r) = {ϕ−m ∈ G3 :< ϕ−m,ϕ−m >=±r2}

Moreover, spherical curves are the special space curves that lies on the sphere [23]. So we

will give the next proposition for Frenet unit speed curve to be a spherical curve in G3.

Proposition 2. Let α = α(s) be a Frenet curve of unit speed in G3. Subsequently, if α(s) is

spherical curve, it fulfills the relation (σ ρ
′
)
′
+ ρ

σ
= 0.

Proof. Let α(s) be a spherical curve that lies on a sphere of radius a. We consider the sphere is

centered at the origin without loss of generality, so the distance function d(s) = a which gives

h(s) = d(s)d
′
(s) = 0. By substituting in the equation (4), we have (σ ρ

′
)
′
+ ρ

σ
= 0. �

Example 3. Consider the spherical curve α(s) = (s,y(s),z(s)) with curvature κ(s) = 1
s ,s > 0

and substituting in the equation (σ ρ
′
)
′
+ ρ

σ
= 0, we can easily obtain τ(s) = 1√

c1−s2
where c1

is constant. Substituting for κ(s) = 1
s and τ(s) = 1√

c1−s2
in the equations (1) and (2) we will

obtain the following differential equations

(7) y′′+ z′′ =
1
s2 ,

(8) y′′z′′′− y′′′z′′ =
1

s2
√

c1− s2
.

By integrating equation (7) twice with respect to s, which yields

(9) y(s) = a2 +a1s− lns− z(s).

Next we differentiate equation (7) with respect to s, which yields

(10) z′′′ =− 2
s3 − y′′′.
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By making use of (7) and (10) one gets from (8) that

y′′
(
− 2

s3 − y′′′
)
− y′′′

(
1
s2 − y′′

)
=

1

s2
√

c1− s2
⇒

(11)
y′′′

s2 +
2
s3 y′′ =

−1

s2
√

c1− s2
.

Writing y′′(s) = u(s)⇒ y′′′ = u′(s) in (11) and multiplying both sides by s2, we obtain

(12) u′+
2
s

u =
−1√
c1− s2

,

which is a linear first order differential equation, its integrating factor µ = exp(
∫ 2

s ds) = s2.

Hence the solution of equation (12) is given by

s2u(s) =
∫ −s2√

c1− s2
ds+α1⇒

(13) y′′(s) =

√
c1− s2

2s
− c1

2s2 tan−1

(
s√

c1− s2

)
+

α1

s2 .

By integrating equation (13), with respect to s, we get

y′(s) =
(

1
2
+

1
s

)
c1

2
tan−1

(
s√

c1− s2

)
+

√
c1

2
ln

(
2c1 +2

√
c1− s2

s

)
+

(14)
s
4

√
c1− s2− α1

s
+α2.

Finally by integrating equation (14), we have

y(s) =
5c1s2 +2c2

1− s4

12
√

c1− s2
+
( s

2
+1+ lns

) c1

2
tan−1

(
s√

c1− s2

)
+

ic1

4
Li2

(
e
−2sinh−1

(
is√c1

))
+

√
c1

2
s ln
(

2s
(√

c1 (c1− s2)+ c1

))
+

ic1

2
lns

ln

√1− s2

c1
+

is
√

c1

− ic1

4

(
sinh−1

(
is
√

c1

))2

−

ic1

2

(
sinh−1

(
is
√

c1

))
ln
(

1− e
−2sinh−1

(
is√c1

))
−α1 lns+α2s+α3.
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The function Lia(z) is a polylogarithm function and it is defined by

Lia(z) =
∞

∑
n=1

zn

an , |z|< 1.

Substituting y(s) in the equation (9), we will obtain z(s).

4.3. Helices in G3. In this subsection, the definitions of general helix and circular helix in

G3 will be introduced. The sufficient condition for the general helix to be Frenet curve will be

considered.

Definition 5. [6, 24] Let α be a curve in Galilean 3-dimensional space G3, and let {T,N,B} be

the Frenet frame along α . A curve such that κ

τ
equals constant is called a general helix.

Definition 6. [6] Let α be a curve in Galilean 3-dimensional space G3, and let {T,N,B} be

Frenet frame along α . If there are positive constants κ and τ along α , then α is referred to as a

circular helix.

There exists some properties of general and circular helix which will be used in proving the

next theorem [6].

(1) T
′′′−KT

′
= 3κ

′
N
′
.

(2) T
′′′−KT

′
= 3 λ τ

′
N
′
.

(3) T
′′′− K̃ B

′
= 3 κ

′
N
′
.

(4) T
′′′− K̃ B

′
= 3 λ τ

′
N
′
.

where K = κ
′′

κ
− τ2, K̃ = −κ

′′

τ
+κ τ, and λ = κ

τ
.

If the curve is a circular helix, then

(1) T
′′′
=− τ2 T

′
.

(2) T
′′′
= κ τ B

′
.

Theorem 2. Let α : I → G3 be a unit speed Frenet curve in G3. If α is a circular helix, then

h(s) satisfies the following equation

h(s) =−c1 σ cos(τ s)+ c2 σ sin(τ s)+ s+ c.

where σ = 1
τ
, c1, c2 and c3 are constants.



10 M. ELZAWY, S. MOSA

Proof. Assume that α is a circular helix. Then we have ρ
′
= 0 and σ

′
= 0. Writing them in

equation (4), we obtain

σ ρ h
′′′
(s)+ ρ

σ
h
′
(s)− ρ

σ
= 0,

h
′′′
(s)+ 1

σ2 h
′
(s)− 1

σ2 = 0,

(15) h
′′′
(s)+ τ

2 h
′
(s)− τ

2 = 0.

Let h
′
(s) = y(s), then h

′′
(s) = y

′
(s) and h

′′′
(s) = y

′′
(s). Writing them in the equation (15), we

obtain the following non homogeneous differential equation

(16) y
′′
(s)+ τ

2 y(s) = τ
2.

Solving the homogeneous differential equation y
′′
(s)+ τ2 y(s) = 0, we obtain

(17) yc = c1 sin(τ s)+ c2 cos(τ s),

where c1 and c2 are constants. The particular solution of the non homogeneous equation is

yp = A, which gives y
′
p = 0 and y

′′
p = 0. Substituting in equation (16), we get τ2 A = τ2, that

implies A = 1. Now, the general solution of the given non homogeneous differential equation is

given by

y = c1 sin(τ s)+ c2 cos(τ s)+1.

Moreover,

h
′
(s) = c1 sin(τ s)+ c2 cos(τ s)+1,

h(s) =
−c1

τ
cos(τ s)+

c2

τ
sin(τ s)+ s+ c3,

and hence,

h(s) =−c1 σ cos(τ s)+ c2 σ sin(τ s)+ s+ c3.

�

Corollary 2. Let α be Frenet curve in G3. If α is a general helix, then

(1) h
′′′
(s) =< α(s), KT

′
+3 κ

′
N
′
(s)>; where K = κ

′′

κ
− τ2.

(2) h
′′′
(s) =< α(s),K̃B′+3λτ ′N

′
>; where K̃ =−κ

′′

τ
+ kτ, and λ = k

τ
= const.
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Proof. By direct substitution from the properties of the general helix, we obtain the two rela-

tions. �

Moreover, it is clear to prove the following corollary.

Corollary 3. Let α be a Frenet curve in G3 and α be a circular helix. Then

(1) h
′′′
(s) =< α(s), −τ2 T

′
>, and

(2) h
′′′
(s) =< α(s), κ τ B

′
> .

5. CONCLUSION

In this study, Frenet curve in Galilean 3-dimensional space G3 is defined. It is proved that

the distance function d(s) of each Frenet curve in G3 satisfies a 4-th order differential equa-

tion. Also, rectifying curves, spherical curves, and helices are given. Moreover, some useful

characterizations of such curves via this 4-th order differential equation is obtained.
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