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Abstract. In this pager, we define simple of nLA-rings. Finally we will study properties of simple of nLA-rings

and some properties of ideal of nLA-rings.

Keywords: nLA-ring; simple.

2010 AMS Subject Classification: 16Y60, 03E72.

1. INTRODUCTION

M.A. Kazim and MD. Naseeruddin defined LA-semigroup as the following; a groupoid S is

called a left almost semigroup, abbreviated as LA-semigroup if

(ab)c = (cb)a, ∀a,b,c ∈ S.

We called properties above left invertive law.

M.A. Kazim and MD. Naseeruddin [1] asserted that, in every LA-semigroups G a medial law

hold

(ab)(cd) = (ac)(bd), ∀a,b,c,d ∈ G.
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Q. Mushtaq and M. Khan [3] asserted that, in every LA-semigroups G with left identity

(ab)(cd) = (db)(ca), ∀a,b,c,d ∈ G.

Further M. Khan, Faisal, and V. Amjid [2], asserted that, if a LA-semigroup G with left identity

the following law holds

a(bc) = b(ac), ∀a,b,c ∈ G.

In this note we prefer to called left almost semigroup (LA-semigroup) as Abel-Grassmann’s

groupoid (abbreviated as an “AG-groupoid”).

M. Sarwar (Kamran) [5] defined LA-group as the following; a groupoid G is called a left

almost group, abbreviated as LA-group, if (i) there exists e ∈ G such that ea = a for all a ∈ G,

(ii) for every a∈G there exists a′ ∈G such that, a′a= e, (iii) (ab)c= (cb)a for every a,b,c∈G.

We called (iii) left invertive law.

Let 〈G, ·〉 be an LA-group and S be a non-empty subset of G and S is itself and LA-group

under the binary operation induced by G, the S is called an LA-subgroup of G, then S is called

an LA-subgroup of 〈G, ·〉.

S.M. Yusuf in [8] introduces the concept of a left almost ring (LA-ring). That is, a non-

empty set R with two binary operations “+” and “·” is called a left almost ring, if 〈R,+〉 is

an LA-group, 〈R, ·〉 is an LA-semigroup and distributive laws of “·” over “+” holds. T. Shah

and I. Rehman [8] asserted that a commutative ring 〈R,+, ·〉, we can always obtain an LA-ring

〈R,⊕, ·〉 by defining, for a,b,c ∈ R, a⊕ b = b− a and a · b is same as in the ring. We can not

assume the addition to be commutative in an LA-ring. An LA-ring 〈R,+, ·〉 is said to be LA-

integral domain if a ·b = 0, a,b ∈ R, then a = 0 or b = 0. Let 〈R,+, ·〉 be an LA-ring and S be a

non-empty subset of R and S is itself and LA-ring under the binary operation induced by R, the

S is called an LA-subring of R, then S is called an LA-subring of 〈R,+, ·〉. If S is an LA-subring

of an LA-ring 〈R,+, ·〉, then S is called a left ideal of R if RS ⊆ S. Right and two-sided ideals

are defined in the usual manner.

By [4] a near-ring is a non-empty set N together with two binary operations “+” and “·” such

that 〈N,+〉 is a group (not necessarily abelian), 〈N, ·〉 is a semigroup and one sided distributive

(left or right) of “·” over “+” holds.
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In this page we will defined of simple of nLA-ring such that we will defined the same as

simple of nearring.

2. NEAR LEFT ALMOST RINGS

T. Shah, F. Rehman and M. Raees [7] introduces the concept of a near left almost ring (nLA-

ring). And we study some properties of nLA-ring

Definition 2.1. [7]. A non-empty set N with two binary operation “+” and “·” is called a near

left almost ring (or simply an nLA-ring) if and only if

(1) 〈N,+〉 is an LA-group.

(2) 〈N, ·〉 is an LA-semigroup.

(3) Left distributive property of · over + holds, that is a · (b+ c) = a ·b+a · c

for all a,b,c ∈ N.

Definition 2.2. [7]. An nLA-ring 〈N,+〉 with left identity 1, such that 1 ·a = a for all a ∈ N, is

called an nLA-ring with left identity.

Let N be an nLA-ring. If A,B are non-empty subset of N, we denote by AB the subset of N

consisting of all finite sums of the form ∑aibi where ai ∈ A and bi ∈ B, i.e.,

AB =

{
m

∑
i=1

aibi | n ∈N,ai ∈ A,b j ∈ B

}
for all i

Definition 2.3. [7]. A non-empty subset S of an nLA-ring N is said to be an nLA-subring if and

only if S is itself an nLA-ring under the same binary operations as in N.

Theorem 2.1. [7]. A non-empty subset S of an nLA-ring 〈N,+, ·〉 is an nLA-subring if and

only if a−b ∈ S and ab ∈ S for all a,b ∈ S.

Corollary 2.2. Let A,B be non-empty subset of nLA-ring N. Then AB is an nLA-subring of N.

Proof. Since A,B 6= /0 we have AB 6= /0.

Let x = ∑
m
i=1 risi, y = ∑

n
j=1 u jv j ∈ AB. Then

x− y =
m

∑
i=1

risi−
n

∑
j=1

u jv j ∈ AB
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and

xy =

(
m

∑
i=1

risi

)(
n

∑
j=1

u jv j

)
∈ AB.

Thus AB is an nLA-subring of N. �

Theorem 2.3. Let N be an nLA-ring. If A,B and C are non-empty subset of N. Then (AB)C ⊆

(CB)A

Proof. Let x ∈ (AB)C then x = ∑
n
i=1

(
∑

m
j=1 a jb j

)
ci where m,n ∈N,

a j ∈ A,b j ∈ B,ci ∈C for all i, j. Thus

x = ∑
n
i=1

(
∑

m
j=1 a jb j

)
ci = ∑

n
i=1 ∑

m
j=1(a jb j)ci

= ∑
n
i=1 ∑

m
j=1(cib j)ai = ∑

n
i=1 ∑

m
j=1(cib j)ai ∈ (CB)A

Hence (AB)C ⊆ (CB)A �

Next we will defined of zero and we will study properties of zero of nLA-ring.

Definition 2.4. Let N be an nLA-ring. An element x ∈ N is called a left (right) zero if xy =

x(yx = x) for all x,y ∈ N. Furthermore if x is both a left and right zero of N then x is called a

zero of N

Theorem 2.4. Let N be an nLA-ring. Then the following statement hold

(1) If N has a left zero and right zero, then N has a zero.

(2) If N has zero, then that zero is unique.

Proof. (1) Let e and f be a left zero and right zero of N, respectively. Then e = e f = f N.

Thus N has a zero.

(2) This is obvious from the proof of (1) that the zero is unique.

�

Definition 2.5. An nLA-ring N with additive identity 0 is called zero-symmetric if 0x = 0 = x0

for all x ∈ N

Definition 2.6. [7]. An nLA-subring I of an nLA-ring N is called a left ideal of N if NI ⊆ I,

and I is called a right ideal if for all n,m ∈ N and i ∈ I such that (i+n)m−nm ∈ I, and is called

two sided ideal or simply ideal if it is both left and right ideal.
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Theorem 2.5. Let N be an nLA-ring. Then N is a zero-symmetric if and only {0} is an ideal.

Proof. (⇒) Assume that N is a zero-symmetric. Then {0} is an LA-subsemigroup of N, since

0 is the zero of N. Thus {0} is an ideal of N.

(⇐) Assume that {0} is an ideal of N. By Definition 2.5 then N is a zero-symmetric. �

3. SIMPLE OF NEAR LEFT ALMOST RINGS

Next we will defined of simple in nLA-ring and study properties of simple in nLA-ring.

Definition 3.1. An nLA-ring N is called left (right) simple if left (right) ideal of N it self.

Furthermore N is called a simple if the only ideal of N is self.

Theorem 3.1. Let N be an nLA-ring. If N is left (right) zero then N is a left (right) simple.

Proof. Let N be a left (right) zero, A is left ideal of N and x ∈ N. Then x = xa ∈ A. Thus N ⊆ A

Since A is a left ideal of N. Then A ⊆ N. Thus N = A. Hence N is a left simple. Similarly we

can show that N is a right simple. �

Theorem 3.2. Let N be an nLA-ring. Then the following statement hold.

(1) If Nx = N for all x ∈ N, then N a left simple.

(2) xN = N for all x ∈ N if and only if N is a right simple.

(3) If (Nx)N = N for all x ∈ N then N is a simple.

Proof. (1) Assume that Nx = N for all x ∈ N. Let L be a left ideal of N and x ∈ L. Then

L⊆ N. Consider

N = Nx⊆ NL⊆ L.

Then N ⊆ L .Thus N = L. Hence N a left simple.

(2) (⇒) Assume that xN = N for all x ∈ N. Let A be a right ideal and x ∈ A Then A ⊆ N.

Consider

N = xN ⊆ AN ⊆ A.

Then N ⊆ A .Thus N = A. Hence N a right simple.

(⇐) Assume that Nis a right simple. For each x ∈ N Then xN is a right of N. Thus

Nx = N
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(3) Assume that (Nx)N = N for all x ∈ N. Let I be an ideal of N and x ∈ I Then I ⊆ N.

Consider

N = (Nx)N ⊆ IN ⊆ I.

Then N ⊆ I. Thus N = I. Hence N is a simple.

�
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