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Abstract. The notions of quasi-ideal is generalized into (m,n) quasi-ideals which is a generalization of existed

(m,n) quasi-ideals. Regular semiring is characterized by the product of generalized quasi-ideals.
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1. INTRODUCTION

Steinfeld prefaced the overview of quasi-ideals for rings and semigroups severally in [8].

Mohanraj et al characterized bi-ideals [1] and quasi-ideals [2] of ternary semigroup. Mohanraj

et al classified various type of quasi-ideals in b-semirings [4]. Chinram [9] generalized quasi-

ideals in semiring as one way. In this paper, we generalize further into (m,n) quasi-ideals

which is a generalization of (m,n)quasi-ideals by Chinram [9]. It is validated by suitable giving

example. We characterize regular semiring by generalized (m,n)quasi-ideals.

2. PRELIMINARIES

A algebraic structure (S,+,.) is a semiring in which (S,+) is a commutative semigroup, (S,.)

is a semigroup and it satisfies two distributive laws. We say that a semiring S has an absorbing
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zero, if a+0 = 0+a = a and 0 ·a = a ·0 = 0 for all a∈ S. A subset A of S is called subsemiring

if A is itself a subsemiring. A subemiring R of S is called right(left) ideal if RS⊆ S(SR⊆ S). A

subsemiring Q of S is called quasi-ideal if QS∩SQ⊆Q. A subsemiring B of S is called bi-ideal

if BSB ⊆ B. An element a of a semiring A is called regular if axa = a for some x ∈ A [1]. A

subsemiring Q of S is called (m,n)quasi-ideal [9] if SmQ∩QSn ⊆ Q by Chinram.

3. (m,n)QUASI-IDEALS

Hereafter S denotes semiring. Quasi-ideal is generalized as follows:

Definition 3.1. A subsemiring Q of S is called (m,n) quasi-ideal if QmS∩ SQn ⊆ Q for the

positive integers m and n.

Remark 3.2. (i) Every quasi-ideal in S is a (1,1) quasi-ideal.

(ii) QmS∩SQn ⊆QSm∩QSn ⊆Q implies that every (m,n) quasi-ideal by Chinram [9] is a (m,n)

quasi-ideal by us.

(iii) Example 3.3 contrasts (m,n) quasi-ideals from quasi-ideals.

(iv) Example 3.3 gives a (m,n) quasi-ideal which is not a (m,n) quasi-ideal by Chinram [9] for

all m and n.

Example 3.3. S is the semiring of 4x4 matrices over non negative integers Z∗.

Q =





0 a1 a2 a3

0 0 b1 b2

0 0 0 b3

0 0 0 0


∣∣∣∣∣a1,a2,a3,b1,b2,b3 ∈ Z∗


Clearly Q is a (2,2) quasi-ideal. Now,

QS =





r
′
11 r

′′
12 r

′′′
13 r

′′′′
14

r
′
21 r

′′
22 r

′′′
23 r

′′′′
24

r
′
31 r

′′
32 r

′′′
33 r

′′′′
34

0 0 0 0


∣∣∣∣∣r′i ∈ Z∗
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and

SQ =





0 r
′′
11 r

′′
12 r

′′
13

0 r
′′
21 r

′′
22 r

′′
23

0 r
′′
31 r

′′
32 r

′′
33

0 r
′′
41 r

′′
42 r

′′
43


∣∣∣∣∣r′i ∈ Z∗


Now,

QS∩SQ =





0 t
′
1 t

′′
1 t

′′′
1

0 t
′
2 t

′′
2 t

′′′
2

0 t
′
3 t

′′
3 t

′′′
3

0 0 0 0


∣∣∣∣∣t ′i ∈ Z∗


implies that Q is not quasi-ideal. Since Sn = S, QSm ∩ SnQ = QS∩ SQ * Q implies Q is not

(m,n)quasi-ideal by Chinram[9] for any m and n.

Definition 3.4. A subset G of semiring in S is called generalized (m,n) bi-ideal if i)G+G⊆ G

ii)GmSGn⊆G for the positive integers m and n [1]. A generalized (m,n)bi-ideal is (m,n)bi-ideal

if G ·G⊆ G

Theorem 3.5. Every (m,n) quasi-ideal is a (m,n) bi-ideal.

Proof: Let Q be a (m,n) quasi-ideal.

Then, QmSQn ⊆ QmSS⊆ QmS, and

QmSQn ⊆ SSQn ⊆ SQn imply

QmSQn ⊆ (QmS)∩ (SQn)⊆ Q

Therefore, Q is a (m,n) bi-ideal.

Theorem 3.6. The (m,n)quasi ideal generated by ‘a’, is {r1a + r2a2 + ...+ rmam + (amS ∩

San)|ri ∈ Z∗, i = 1 to m}, m > n and is denoted by 〈a〉(m,n)q.
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Proof: Let us take m > n. Now,

A = {r1a+ r2a2 + ...+ rmam +(amS∩San)|r ∈ Z∗} implies

A+A = {r1a+ r2a2 + ...+ rmam +amS∩San|ri ∈ Z∗}+

{t1a+ t2a2 + ...+ tmam +amS∩San|ti ∈ Z∗}

= {(r1 + t1)a+(r2 + t2)a2 + ...+(rm + tm)am +amS∩San}

= {s1a+ s2a2 + ...+ smam +amS∩San|si ∈ Z∗} ⊆ A

AA = {r1a+ r2a2 + ...+ rmam +(amS∩San)} ·

{t1a+ t2a2 + ...+ tmam +(amS∩San)|t ∈ Z∗}

= {r
′
a2 + ...+ r

′
m−1am +(amS∩San)+ r

′′
i ai(amS∩San)

+(amS∩San)t
′
ak +amS∩San|r

′
,r
′′
i , t
′
∈ Z∗, i = 1 to n}

Now, am+i ∈ amS∩San, for i = 1 to m, m > n

For any k, k = 1 to m and r,r1 ∈ amS∩San

akr = ak(ams)

= am(aks) ∈ amS

akr = ak · (s1an)

= (aks1)an ∈ San

Thus, ak(amS∩San) ⊆ amS∩San

Now, rr1 = (ams1)ams2

= am(s1ams2) ∈ amS

rr1 = (ams1)(s
′
2an)

= (ams1s
′
2)a

n ∈ San,

Then, (amS∩San)(amS∩San)⊆ amS∩San.

Therefore, A ·A⊆ A.
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Am = {r1a+ r2a2 + ...+ rmam +amS∩San}...{r1a+ r2a2 +

...+ rmam +amS∩San}

= {r
′
1am + r

′
2am+1 + ...+ r

′
mam2

+ai(amS∩San)m−i +(amS∩San)m− ja j +

(amS∩San)m|i, j = 1 to m−1}

If 1≤ i≤ m, ai(amS∩San)m−i ⊆ amS,

x ∈ ai(amS∩San)m−i implies x = (aksan...s)an ∈ San

Thus, ai(amS∩San)m−i ⊆ amS∩San, i = 1 to m−1

Similarly,(amS∩San)m− ja j ⊆ amS∩San, j = 1 to m−1

y ∈ (amS∩San) implies ym = am(s1...ams1) ∈ amS and

ym = (s2an...s2)an ∈ San

Then, (amS∩San)m ⊆ amS∩San

There f ore, AmS ⊆ amS∩San

Similarly, SAn ⊆ amS∩San

Thus, AmS∩SAn ⊆ A.

Therefore, A is a (m,n) quasi-ideal. By similar arguement, A= {r1a+r2a2+ ...+rnan+(amS∩

San)|ri ∈ Z∗, i = 1 to n} when n > m, A is a (m,n) quasi-ideal. Suppose that B is a (m,n) quasi-

ideal containing ‘a’, ak ∈ B for all k = 1 to m. Now, a ∈ B implies amS∩San ⊆ B, then A⊆ B.

Therefore A is a (m,n) quasi-ideal generated by ‘a’.

Theorem 3.7. Every (m,n) quasi-ideal is a (i, j) quasi-ideal for i≥ m and j ≥ n.

Proof: For a (m,n) quasi-ideal, QmS∩SQn ⊆ S. Now,

Qm+1S∩SQn ⊆ Qm(QS)∩SQn

QmS∩SQn+1 ⊆ QmS∩SQn ⊆ Q

⊆ QmS∩ (SQ)Qn
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⊆ QmS∩SQn ⊆ Q

Qm+1S∩SQn+1 ⊆ QmS∩SQn ⊆ Q

Thus Q is a (m+1,n) quasi-ideal, (m,n+1) quasi-ideal. Therefore Q is a (i, j) quasi-ideal for

i≥ m and j ≥ n.

Corollary 3.8. Every quasi-ideal is a (m,n)quasi-ideal for all

m,n≥ 1

Theorem 3.9. The intersection of (i, j) quasi-ideal and (k,l)quasi-ideal is a (m,n) quasi-ideal

for all m≥ max{i,k} and n≥ { j, l}.

Proof: Let B1 be a (i, j) quasi-ideals, and B2 be a (k, l) quasi-ideal. Then by Theorem 3.7, B1

and B2 are (m,n) quasi-ideals for m ≥ max{i,k} and n ≥ max{ j, l}. Therefore (B1∩B2)
mS∩

S(B1∩B2)
n ⊆ Bm

i S∩SBn
i ⊆ Bi, i = 1,2 imply B1∩B2 is a (m,n)quasi-ideal.

Corollary 3.10. If Qi is a (m,n) quasi-ideal in S for all i, then
n⋂

i=1
Qi is a (m,n) quasi-ideal for

any finite n.

Theorem 3.11. For a semiring S, the following statements are equivalent.

1. S is regular.

2. G∩Q⊆ GSQ for any generalized (m,n) bi-ideal G and for any (m,n) quasi-ideal Q.

3. B∩Q⊆ BSQ for any (m,n) bi-ideal B and for any (m,n) quasi-ideal Q.

4. Q1∩Q2 ⊆ Q1SQ2 for any (m,n) quasi-ideal Q1 and Q2.

5. I∩Q⊆ ISQ for any quasi-ideal I and for any (m,n) quasi-ideal Q.

6. I1∩ I2 ⊆ I1SI2 for any quasi-ideal I1 and I2.

7. B∩Q⊆ BSQ for any bi-ideal B and for any (m,n) quasi-ideal Q.

8. B∩Q⊆ BSQ for any bi-ideal B and for any quasi-ideal Q.

9. G∩Q⊆ GSQ for any genaralized bi-ideal G and for any (m,n) quasi-ideal Q.

10. G∩Q⊆ GSQ for any generalized bi-ideal G and for any quasi-ideal Q.

11. Q1∩Q2 ⊆ Q1SQ2 for any quasi-ideal Q1 and Q2.

12. Q∩G⊆ QSG for any (m,n) quasi-ideal Q and for any generalized (m,n) bi-ideal G.

13. Q∩B⊆ QSB for any (m,n) quasi-ideal Q and for any (m,n) bi-ideal B.
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14. Q∩ I ⊆ QSI for any (m,n) quasi-ideal Q and for any quasi-ideal I.

15. Q∩B⊆ QSB for any (m,n) quasi-ideal Q and for any bi-ideal B.

16. Q∩B⊆ QSB for any quasi-ideal Q and for any bi-ideal B.

17. Q∩G⊆ QSG for any (m,n) quasi-ideal Q and for any generalized bi-ideal G.

18. Q∩ I ⊆ QSG for any quasi-ideal Q and for any generalized bi-ideal G.

19. Q∩L⊆ QL for any quasi-ideal Q and for any left ideal L.

20. R∩Q⊆ RQ for any right ideal R and for any quasi-ideal Q.

21. R∩L = RL for any right ideal R and for any left ideal L.

Proof: First we prove that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6), (6)⇒ (19)⇒ (21)⇒ (1),

(3)⇒ (7)⇒ (8)⇒ (20)⇒ (21), (2)⇒ (9)⇒ (10)⇒ (21), (4)⇒ (11)⇒ (20), (1)⇒ (12)⇒

(13)⇒ (14)⇒ (19), (13)⇒ (15)⇒ (16)⇒ (20), (12)⇒ (17)⇒ (18)⇒ (19).

(1)⇒ (2) Let a ∈ G∩Q, then a = axa ∈ GSQ. Thus G∩Q⊆ GSQ.

(2)⇒ (3) Straight forward.

(3)⇒ (4) By Theorem 3.5, (4) holds.

(4)⇒ (5) By Theorem 3.7, (5)it follows.

(5)⇒ (6) By Theorem 3.7, (6)it follows.

(6)⇒ (19) By (6), Q∩L⊆ QSL⊆ QL for any quasi-ideal Q and left ideal L.

(19)⇒ (21) Now, R∩L ⊆ RL for any right ideal R and left ideal L RL ⊆ R and RL ⊆ L imply

R∩L = RL.

(21)⇒ (1) Now, a ∈ 〈a〉r∩〈a〉l = 〈a〉r · 〈a〉l

Then, 〈a〉r.〈a〉l = {ma+as|m ∈ Z∗,s ∈ S}.

{na+as|m ∈ Z∗,s ∈ S}

= {na2|n ∈ Z∗}+aSa+aSa+aSa

If, a ∈ {na2|n ∈ Z∗}, then, a = na2 = (na)(na2)

= n2a3

= a(n2a)a
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Therefore S is regular.

(3)⇒ (7) Straightforward.

(7)⇒ (8) By Corollary 3.8 it follows.

(8)⇒ (20) For any right ideal R and by (20) holds.

(20)⇒ (21) By (20), for any right ideal R and left ideal L,

R∩L⊆ RSL⊆ RL,RL⊆ RS⊆ R and RL⊆ SL⊆ L imply RL⊆ R∩L.Therefore RL = R∩L.

(2)⇒ (9) Straightforward.

(9)⇒ (10) By Corollary 3.8 it follows.

(10)⇒ (21) By (10), for any right ideal R and left ideal L R∩L ⊆ RSL ⊆ RL but RL ⊆ R∩L

imply R∩L = RL.

(4)⇒ (11) By Corollary 3.8, (11) it follows.

(11)⇒ (20) Right ideal R is a quasi-ideal, then (20) follows.

(1)⇒ (12) Let a ∈ Q∩G. Then a = axa ∈ QSG. Thus, Q∩G⊆ QSG.

(12)⇒ (13) Straight forward.

(13)⇒ (14) By Theorem 3.5 and Corollary 3.8, (11) it follows.

(14)⇒ (19) By Corollary 3.8, (19) it follows.

(13)⇒ (15) Straightforward.

(15)⇒ (16) Straight forward.

(16)⇒ (20) Right ideal R is a bi-ideal implies R∩Q⊆ RSQ⊆ RQ.

(12)⇒ (17) Straight forward.

(17)⇒ (18) By Corollary 3.8, (18) it follows.

(18)⇒ (19) Straight forward.
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