Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 1, 233-241 ISSN: 1927-5307

ON FUZZY DET - NORM MATRIX

A. NAGOOR GANI^{*} AND A. R. MANIKANDAN

PG & Research Dept. of Mathematics, Jamal Mohamed College, Tiruchirappalli - 620 020, India

Abstract: In this paper we introduce fuzzy det-norm matrices using the structure of $M_n(F)$, the set of $(n \times n)$ fuzzy det-norm matrices is introduced. From this row and column, determinant of the fuzzy norm has been obtained by imposing an equivalence relation on $M_n(F)$. Also, we introduce the concept of fuzzy det-norm matrices, metricand equivalence fuzzy det-matrices.

Keywords: Fuzzy matrix, Fuzzy m-norm matrix, determinant of a square fuzzy matrix

2000 AMS Subject Classification: 03E72, 15B15

1. Introduction

The concept of fuzzy set was introduced by Zadeh in 1965. Nagoorgani A. and Kalyani G. [4] introduced the properties of fuzzy m-norm matrices. In 1995,Ragab.M. Z. and Emam E. G.[1] introduced the determinant and adjoint of a square fuzzy matrix. Nagoorgani A. and Kalyani G.[3] introduced the definition of fuzzy equivalence relation. Meenakshi A.R. and Cokilavany R. [2] introduced the concept of fuzzy 2-normed linear spaces.

In this paper, we introduce the concept of fuzzy det-norm matrices. The purpose of the introduction is to explaindet-norm and its properties for fuzzy matrices. In section 2, fuzzy det-norm is introduced in $M_n(F)$. In section 3, fuzzy norm equivalence matrix is discussed.

2. Preliminaries

^{*}Corresponding author

Received December 11, 2012

We consider F=[0,1] the fuzzy algebra with operation $[+,\cdot]$ and the standard order " \leq " where $a+b = \max\{a,b\}$, $a\cdot b = \min\{a,b\}$ for all a,b in F.F is a commutative semi-ring with additive and multiplicative identities 0 and 1 respectively. Let $M_{MN}(F)$ denote the set of all $m \times n$ fuzzy matrices over F. In short $M_n(F)$ is the set of all fuzzy matrices of order n. define '+' and scalar multiplication in $M_n(F)$ as $A + B = [a_{ij} + b_{ij}]$, where $A = [a_{ij}]$ and $B = [b_{ij}]$ and $cA = [ca_{ij}]$, where c is in [0,1], with these operations $M_n(F)$ forms a linear space.

3. Fuzzy Matrices And Metric

Definition 2.1. An m×n matrix $A = [a_{ij}]$ whose components are in the unit interval [0,1] is called a fuzzy matrix.

Definition 2.2. The determinant |A| of an n \times n fuzzy matrix A is defined as follows;

$$|A| = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

Where S_n denotes the symmetric group of all permutations of the indices $(1, 2, \dots, n)$

Definition 2.3. Let $M_n(F)$ be the set of all $(n \times n)$ fuzzy matrices over F = [0,1], For every A in $M_n(F)$, Define norm of A denoted by ||A|| as

||A|| = det[A], where $A = [a_{ij}]$

Theorem 2.1. If $M_n(F)$ is the set of all $(n \times n)$ fuzzy matrices over F = [0,1] then for all fuzzy matrices A and B in $M_n(F)$ and any scalar α in [0,1], we have

- (*i*) $||A|| = det[A] \ge 0$ and ||A|| = 0 if and only if A=0
- (ii) $\|\alpha A\| = \alpha \det[A]$ for any α in [0,1]

(iii)
$$||A + B|| = det[A] + det[B]$$
 for A, B in $M_n(F)$

(iv)
$$||AB|| = det[A]det[B]$$
 for A, B in $M_n(F)$

Proof.

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two fuzzy matrices.

First we prove

(i) If ||A|| is a fuzzy matrix in $M_n(F)$. Since all $a_{ij} \in [0,1]$,

$$det[A] = ||A|| \ge 0$$
, for all A in $M_n(F)$.

If ||A|| = 0 then det[A] = 0, $a_{ii} = 0$ for all i and j, A=0.

Conversely, if A = 0 then det[A] = 0, ||A|| = 0

Therefore $||A||_m = 0$ if and only if A=0 (ii) If α in [0,1] then $\alpha A = [\alpha A]$, $\|\alpha A\| = det[\alpha A]$ $= \alpha det[A]$ $\|\alpha A\| = \alpha \|A\|$ (iii) Let ||A|| = det[A] and ||B|| = det[B]Now $||A + B|| = \det[C]$, Where $c_{ij} = [a_{ij}] + [b_{ij}]$ $||A + B|| = \det[[A] + [B]]$ $||A + B|| = \det[A] + \det[B]$ ||A + B|| = ||A|| + ||B||(iv) Let $||A|| = \det[A]$ and $||B|| = \det[B]$ If AB=D, then the entries of D are given by $d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ $d_{ii} = \sum_{k=1}^{n} \{\min(a_{ik}b_{ki})\}$ $d_{ii} = \min(a_{i1}b_{1i}) + \min(a_{i1}b_{2i}) \cdots \min(a_{in}b_{in})$ (2.1)Case(1) If all $a_{ij} \le b_{ij}$ for j=1,2,...,n. Then we have $d_{ij} = a_{i1} + a_{i2} + \dots + a_{in}$ (from (2.1)) $d_{ij} = a_{i1} + a_{i2} + \dots + a_{in}$ $d_{ii} = a_{ii}$ det[D] = det[A]||AB|| = ||A|| = ||A|| ||B||Case(2) If all $b_{ij} \le a_{ij}$ for j=1,2,...,n. Then we have $d_{ij} = b_{i1} + b_{i2} + \dots + b_{in}$ (from (2.1)) $d_{ii} = b_{ii}$ det[D] = det[B]||AB|| = ||B|| = ||A|| ||B||Case(3) Let some $a_{ij} \le b_{ij}$ and some other $b_{ij} \le a_{ij}$. Let us assume that $a_{im} < b_{im}$ for all n<m and $b_{im} < a_{im}$ for all $n \ge m$. From(2.1), $d_{ij} = a_{ij} + \dots + a_{im} + b_{i(m+1)} + \dots + b_{ij}$ i

$$d_{ij} = \sum_{j=1}^{m} a_{ij} + \sum_{j=m+1}^{n} b_{ij} = a_{ij} + b_{ij}$$
$$d_{ij} = a_{ij} \text{if} a_{ij} \ge b_{ij}$$
$$d_{ij} = b_{ij} \text{if} a_{ij} \le b_{ij}$$
$$\det[D] = \det[A] = ||A||$$

 $\det[D] = \det[B] = ||B||$ or $||AB|| = ||A|| ||B|| = \det[A]\det[B]$ Example. $A = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0.6 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4 \end{bmatrix}$ If $||A|| = 0.8 \begin{bmatrix} 0.9 & 0.6 \\ 0.7 & 0.7 \end{bmatrix} + 0.3 \begin{bmatrix} 0.6 & 0.6 \\ 0.1 & 0.7 \end{bmatrix} + 0.2 \begin{bmatrix} 0.6 & 0.9 \\ 0.1 & 0.7 \end{bmatrix}$ = 0.8[0.7 + 0.6] + 0.3[0.6 + 0.1] + 0.2[0.6 + 0.1]= 0.7 + 0.3 + 0.2||A|| = 0.7 $\|B\| = 0.6 \begin{bmatrix} 0.3 & 0.7 \\ 0.7 & 0.4 \end{bmatrix} + 0.2 \begin{bmatrix} 0.4 & 0.7 \\ 0.6 & 0.4 \end{bmatrix} + 0.1 \begin{bmatrix} 0.4 & 0.3 \\ 0.6 & 0.7 \end{bmatrix}$ ||B|| = 0.6[0.3 + 0.7] + 0.2[0.4 + 0.6] + 0.1[0.4 + 0.3]= 0.6(0.7) + 0.2(0.6) + 0.1(0.4)= 0.6 + 0.2 + 0.1||B|| = 0.6 $\|A + B\| = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.7 \\ 0.1 & 0.7 & 0.7 \end{bmatrix}$ = 0.8[0.7+0.7]+0.3[0.6+0.6]+0.2[0.6+0.6]= 0.8(0.7)+0.3(0.6)+0.2(0.6)= 0.7 + 0.3 + 0.2||A + B|| = 0.7||A + B|| = ||A|| + ||B||||A + B|| = det|A| + det|B| = 0.7 + 0.6 = 0.7Set $\alpha = 0.5$ $\alpha A = 0.5 \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7 \end{bmatrix}$ $\alpha A = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.5 & 0.5 & 0.5 \end{bmatrix}$ $\|\alpha A\| = 0.5(0.5) + 0.3(0.5) + 0.2(0.5)$

$$=0.5+0.3+0.2$$

$$\|\alpha A\| = 0.5$$

$$\alpha \|A\| = (0.5)(0.7) = 0.5$$

$$\|\alpha A\| = \alpha \|A\| = 0.5$$

$$\|AB\| = \begin{bmatrix} 0.6 & 0.3 & 0.3 \\ 0.6 & 0.6 & 0.7 \\ 0.6 & 0.7 & 0.7 \end{bmatrix}$$

$$= 0.6(0.6+0.7)+0.3(0.6+0.6)+0.3(0.6+0.6)$$

$$= 0.6+0.3+0.3$$

$$\|AB\| = 0.6$$

$$\|AB\| = \|A\| \|B\| = 0.6$$

4. Equivalence Fuzzy Matrices

Definition 3.1. A fuzzy matrix A is defined to be greater than B if $||B|| \le ||A||$, A is strictly greater than B if ||B|| < ||A||. We also say that B is smaller than A.

Example:

Let $A = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7 \end{bmatrix}$ and $B = \begin{bmatrix} 0.6 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4 \end{bmatrix}$ $\|A\| = 0.7$ and $\|B\| = 0.6$ $\|B\| < \|A\| = 0.6 < 0.7$

Therefore, A is strictly greater than B.

Definition 3.2. Define a mapping d: $M_n(F) \times M_n(F) \rightarrow [0,1]$ as

d(A, B) = ||A + B|| = det[A, B] for all A, B in $M_n(F)$.

Theorem 3.1. The above mapping d satisfies the following conditions for all A, B, C in $M_n(F)$

(i)
$$d(A,B) \ge 0$$
 and $d(A,B) = 0$ then $A = B$

- $(ii) \qquad d(A,B) = d(B,A)$
- (iii) $d(A,B) \leq d(A,C) + d(B,C)$ for all A,B,C in $M_n(F)$

Then d is a pseudo-metric in $M_n(F)$

Proof.

(i)
$$d(A, B) = ||A + B|| = det[A, B] \ge 0$$
 for all A, B in $M_n(F)$

Therefore $d(A, B) \ge 0$

Suppose d(A, B) = 0 then ||A + B|| = det[A, B] = 0 $\implies ||A|| + ||B|| = \det[A] + \det[B] = 0$ $\Rightarrow A = 0$ and B = 0 $\Rightarrow A = B$ But A = B imples ||A|| = ||B|| $\Rightarrow ||A + B|| = ||B|| + ||B|| = \det[B] + \det[B]$ $\Rightarrow ||A + B|| = ||B|| = \det[B]$ \Rightarrow d(A, B) \neq 0 Therefore, A=B need not implies det[A, B] = 0d(A, B) = ||A + B|| = ||B + A|| = d(B, A)(ii) det[A,B] = det[B,A]d(A,B) = d(B,A)Let A,B,Cin $M_n(F)$ be such that $||C|| \ge ||B|| \ge ||A||$ (iii) d(A, B) = ||A + B|| $= \det[A] + \det[B]$ = det[B] + det[B] $= \det[B] = ||B||$ d(A, C) = ||A + C||= det[A] + det[C]= det[C] + det[C]= det[C] = ||C||d(B,C) = ||B + C||= det[B] + det[C] $= \det[C] = ||C||$ d(A, C) + d(B, C) = ||C|| + ||C|| = ||C||Therefore $d(A, B) \leq d(A, C) + d(B, C)$ For the other cases also we have $d(A, B) \leq d(A, C) + d(B, C)$. Thus in all cases $d(A, B) \leq d(B, C) + d(C, A)$ for all A,B,C in $M_n(F)$. Thus from (i), (ii) and (iii) we see that d is a pseudo-metric on $M_n(F)$.

Example 3.1.

$$\begin{aligned} & \text{If } A = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7 \end{bmatrix}, B = \begin{bmatrix} 0.6 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0.8 & 0.4 & 0.6 \\ 0.2 & 0.9 & 0.2 \\ 0.1 & 0.6 & 0.8 \end{bmatrix} \end{aligned}$$

$$(i) \qquad \|A + B\| = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.7 \\ 0.1 & 0.7 & 0.7 \end{bmatrix} = 0.7, \\ \|A\| = 0.7 \text{ and } \|B\| = 0.6 \\ \|A + B\| = \|A\| + \|B\| \\ \|A + B\| = \|B\| + \|B\| = 0.6 + 0.6 = 0.6 \\ \|A + B\| = \|B\| + \|B\| = 0.6 \\ (ii) \qquad \|B + A\| = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.7 \\ 0.6 & 0.7 & 0.7 \end{bmatrix} = 0.7 \text{ and } \|A + B\| = 0.7 \\ d(A, B) = \|A + B\| = \|B + A\| = 0.7 \\ (iii) \qquad \Rightarrow \|A + B\| = \|B\| = \det[B] = 0.6 \\ \|A + C\| = \begin{bmatrix} 0.8 & 0.4 & 0.6 \\ 0.6 & 0.9 & 0.7 \\ 0.6 & 0.7 & 0.8 \end{bmatrix} \\ = 0.8[0.8 + 0.6] + 0.4[0.6 + 0.1] + 0.6[0.6 + 0.1] \\ = 0.8(0.8) + 0.4(0.6) + 0.6(0.6) \\ = 0.8 + 0.4 + 0.6 \\ \|A + C\| = 0.8 \\ \|B + C\| = \begin{bmatrix} 0.8 & 0.4 & 0.6 \\ 0.4 & 0.9 & 0.7 \\ 0.6 & 0.7 & 0.8 \end{bmatrix} \\ = 0.8[0.8 + 0.7] + 0.4[0.4 + 0.6] + 0.6[0.4 + 0.6] \\ = 0.8(0.8) + 0.4(0.6) + 0.6(0.6) \\ = 0.8 + 0.4 + 0.6 \\ \|B + C\| = \begin{bmatrix} 0.8 & 0.4 & 0.6 \\ 0.4 & 0.9 & 0.7 \\ 0.6 & 0.7 & 0.8 \end{bmatrix} \\ = 0.8[0.8 + 0.7] + 0.4[0.4 + 0.6] + 0.6[0.4 + 0.6] \\ = 0.8(0.8) + 0.4(0.6) + 0.6(0.6) \\ = 0.8 + 0.4 + 0.6 \\ \|B + C\| = 0.8 \\ \|B\| = 0.6 \text{ and } \|C\| = 0.8 \\ \|B\| = 0.6 \text{ and } \|C\| = 0.8 \\ \|B\| = 0.6 \text{ and } \|C\| = 0.8 \\ \|B\| = 0.6 \text{ and } \|C\| = 0.8 \\ \|B\| = 0.8 \text{ and } \|C\| = 0.8 \\ \|A + C\| = \|C\| = \det[C] = 0.8 \\ \|A + C\| = \|C\| = \det[C] = 0.8 \\ \|A + C\| = \|C\| = \det[C] = 0.8 \\ \|A + B\| \le \|A + C\| + \|B + C\| = 0.7 \le 0.8 + 0.8 = 0.7 \le 0.8 \\ \text{Therefore } (A, B) \le d(A, C) + d(B, C) \end{aligned}$$

Theorem 3.2. If A, A', B, B' in $M_n(F)$. Then d(A, B) + d(A', B') = d(A, A') + d(B, B')**Proof.**

$$d(A, B) + d(A', B') = det[A + B] + det[A' + B']$$

= det[A] + det[B] + det[A'] + det[B']
= det[A + A'] + det[B + B']
= ||A + A'|| + ||B + B'||
d(A, B) + d(A', B') = d(A, A') + d(B, B')

Example 3.2.

$$\begin{aligned} \text{If } A &= \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7 \end{bmatrix}, B &= \begin{bmatrix} 0.6 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4 \end{bmatrix} \text{ and} \\ A' &= \begin{bmatrix} 0.8 & 0.6 & 0.1 \\ 0.3 & 0.9 & 0.7 \\ 0.2 & 0.6 & 0.7 \end{bmatrix}, B' &= \begin{bmatrix} 0.6 & 0.4 & 0.6 \\ 0.2 & 0.3 & 0.7 \\ 0.1 & 0.7 & 0.4 \end{bmatrix} \\ \|A\| &= 0.7 \text{and} \|B\| &= 0.6 \\ \|A'\| &= 0.8 \begin{bmatrix} 0.9 & 0.7 \\ 0.6 & 0.7 \end{bmatrix} + 0.6 \begin{bmatrix} 0.3 & 0.7 \\ 0.2 & 0.7 \end{bmatrix} + 0.1 \begin{bmatrix} 0.3 & 0.9 \\ 0.2 & 0.6 \end{bmatrix} \\ &= 0.8 \begin{bmatrix} 0.7 + & 0.6 \end{bmatrix} + 0.6 \begin{bmatrix} 0.3 & 0.7 \\ 0.2 & 0.7 \end{bmatrix} + 0.1 \begin{bmatrix} 0.3 & 0.9 \\ 0.2 & 0.6 \end{bmatrix} \\ &= 0.7 + 0.3 + 0.1 \\ \|A'\| &= 0.7 \\ \|B'\| &= 0.6 \begin{bmatrix} 0.3 & 0.7 \\ 0.7 & 0.4 \end{bmatrix} + 0.4 \begin{bmatrix} 0.2 & 0.7 \\ 0.1 & 0.4 \end{bmatrix} + 0.6 \begin{bmatrix} 0.3 & 0.7 \\ 0.7 & 0.4 \end{bmatrix} \\ \|B'\| &= 0.6 \begin{bmatrix} 0.3 + 0.7 \end{bmatrix} + 0.4 \begin{bmatrix} 0.2 + 0.7 \\ 0.1 & 0.4 \end{bmatrix} + 0.6 \begin{bmatrix} 0.3 & 0.7 \\ 0.7 & 0.4 \end{bmatrix} \\ \|B'\| &= 0.6 \begin{bmatrix} 0.3 & 0.6 & 0.6 \\ 0.3 & 0.9 & 0.7 \\ 0.2 & 0.7 & 0.7 \end{bmatrix} \\ &= 0.6 + 0.2 + 0.6 \\ \|B'\| &= 0.6 \\ \|A' + B'\| &= \begin{bmatrix} 0.8 & 0.6 & 0.6 \\ 0.3 & 0.9 & 0.7 \\ 0.2 & 0.7 & 0.7 \end{bmatrix} \\ &= 0.8 [0.7 + 0.7] + 0.6 [0.3 + 0.2] + 0.6 [0.3 + 0.2] \\ &= 0.8 [0.7 + 0.7] + 0.6 [0.3 + 0.2] + 0.6 [0.3 + 0.2] \\ &= 0.8 (0.7) + 0.6 (0.3) + 0.6 (0.3) \\ &= 0.7 + 0.3 + 0.3 \\ \|A' + B'\| &= 0.7 \end{aligned}$$

$$||A + A'|| = \begin{bmatrix} 0.8 & 0.6 & 0.2 \\ 0.6 & 0.9 & 0.7 \\ 0.2 & 0.7 & 0.7 \end{bmatrix}$$

= 0.8[0.7+0.7]+0.6[0.6+0.2]+0.2[0.6+0.2]
= 0.8(0.7)+0.6(0.6)+0.2(0.6)
= 0.7+0.6+0.2
||A + A'|| = 0.7
||B + B'|| = \begin{bmatrix} 0.6 & 0.4 & 0.6 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4 \end{bmatrix}
= 0.6[0.3+0.7]+0.4[0.4+0.6]+0.6[0.4+0.3]
= 0.6(0.7)+0.4(0.6)+0.6(0.4)
= 0.6+0.4+0.4
||B + B'|| = 0.6
||A + A'|| + ||B + B'|| = 0.7 + 0.6 = 0.7
d(A, A') + d(B, B') = ||A + A'|| + ||B + B'||

Conclusion

In this paper, a new definition det-norm on fuzzy matrix and its properties are discussed. Numerical examples are given to clarify the developed theory and the proposed det-norm.

REFERENCES

[1] Ragab.M. Z. and Emam E. G. The determinant and adjoint of a square fuzzy matrix, An international journal of Information Sciences-Intelligent systems, Vol 84, 1995, 209-220.

[2] Meenakshi A.R. and Cokilavany R., On fuzzy 2-normed linear spaces, The Journal of fuzzy mathematics, volume 9(No.2) 2001 (345-351)

[3] Nagoorgani A. and Kalyani G. Binormed sequences in fuzzy matrices. Bulletin of Pure and Applied Science. Vol. 22E(No.2) 2003; P. 445-451

[4] Nagoorgani A. and Kalyani G. On Fuzzy m-norm matrices. Bulletin of Pure and Applied Sciences. Vol. 22E(No.1) 2003; P. 1-11.