Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 1, 233-241

ISSN: 1927-5307

ON FUZZY DET - NORM MATRIX

A. NAGOOR GANI* AND A. R. MANIKANDAN
PG \& Research Dept. of Mathematics, Jamal Mohamed College, Tiruchirappalli - 620 020, India

Abstract

In this paper we introduce fuzzy det-norm matrices using the structure of $M_{n}(F)$, the set of ($\mathrm{n} \times \mathrm{n}$) fuzzy det-norm matrices is introduced. From this row and column,determinant of the fuzzy norm has been obtained by imposing an equivalence relation on $M_{n}(F)$. Also, we introduce the concept of fuzzy det-norm matrices, metricand equivalence fuzzy det-matrices.

Keywords: Fuzzy matrix, Fuzzy m-norm matrix, determinant of a square fuzzy matrix
2000 AMS Subject Classification: 03E72, 15B15

1. Introduction

The concept of fuzzy set was introduced by Zadeh in 1965. Nagoorgani A. and Kalyani G. [4] introduced the properties of fuzzy m-norm matrices. In 1995,Ragab.M. Z. and Emam E. G.[1] introduced the determinant and adjoint of a square fuzzy matrix. Nagoorgani A. and Kalyani G.[3] introduced the definition of fuzzy equivalence relation. Meenakshi A.R. and Cokilavany R. [2] introduced the concept of fuzzy 2-normed linear spaces.
In this paper, we introduce the concept of fuzzy det-norm matrices. The purpose of the introduction is to explaindet-norm and its properties for fuzzy matrices. In section 2, fuzzy detnorm is introduced in $M_{n}(F)$. In section 3, fuzzy norm equivalence matrix is discussed.

2. Preliminaries

[^0]We consider $\mathrm{F}=[0,1]$ the fuzzy algebra with operation $[+, \cdot]$ and the standard order " \leq " where $\mathrm{a}+\mathrm{b}=\max \{\mathrm{a}, \mathrm{b}\}, \mathrm{a} \cdot \mathrm{b}=\min \{\mathrm{a}, \mathrm{b}\}$ for all a, b in F.F is a commutative semi-ring with additive and multiplicative identities 0 and 1 respectively. Let $M_{M N}(\mathrm{~F})$ denote the set of all $\mathrm{m} \times \mathrm{n}$ fuzzy matrices over F . In short $M_{n}(\mathrm{~F})$ is the set of all fuzzy matrices of order n . define ' + ' and scalar multiplication in $M_{n}(\mathrm{~F})$ as $\mathrm{A}+\mathrm{B}=\left[a_{i j}+b_{i j}\right]$, where $\mathrm{A}=\left[a_{i j}\right]$ and $\mathrm{B}=\left[b_{i j}\right]$ and $\mathrm{cA}=\left[\mathrm{c} a_{i j}\right]$, where c is in $[0,1]$, with these operations $M_{n}(\mathrm{~F})$ forms a linear space.

3. Fuzzy Matrices And Metric

Definition 2.1. An $\mathrm{m} \times \mathrm{n}$ matrix $A=\left[a_{i j}\right]$ whose components are in the unit interval $[0,1]$ is called a fuzzy matrix.
Definition 2.2. The determinant $|A|$ of an $\mathrm{n} \times \mathrm{n}$ fuzzy matrix A is defined as follows;

$$
|A|=\sum_{\sigma \in S_{n}} a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

Where S_{n} denotes the symmetric group of all permutations of the indices $(1,2, \cdots, n)$
Definition 2.3. Let $M_{n}(\mathrm{~F})$ be the set of all $(\mathrm{n} \times \mathrm{n})$ fuzzy matrices over $\mathrm{F}=[0,1]$, For every A in $M_{n}(\mathrm{~F})$, Define norm of A denoted by $\|A\|$ as

$$
\|A\|=\operatorname{det}[A], \text { where } A=\left[a_{i j}\right]
$$

Theorem 2.1. If $M_{n}(F)$ is the set of all $(n \times n)$ fuzzy matrices over $F=[0,1]$ then for all fuzzy matrices A and B in $M_{n}(F)$ and any scalar α in [0,1], we have
(i) $\quad\|A\|=\operatorname{det}[A] \geq 0$ and $\|A\|=0$ if and only if $A=0$
(ii) $\quad\|\alpha A\|=\alpha \operatorname{det}[A]$ for any α in $[0,1]$
(iii) $\quad\|A+B\|=\operatorname{det}[A]+\operatorname{det}[B]$ for A, B in $M_{n}(F)$
(iv) $\|A B\|=\operatorname{det}[A] \operatorname{det}[B]$ for A, B in $M_{n}(F)$

Proof.

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two fuzzy matrices.
First we prove
(i) If $\|A\|$ is a fuzzy matrix in $M_{n}(\mathrm{~F})$. Since all $a_{i j} \in[0,1]$,

$$
\operatorname{det}[A]=\|A\| \geq 0, \text { for all } \mathrm{A} \text { in } M_{n}(\mathrm{~F}) .
$$

If $\|A\|=0$ then $\operatorname{det}[A]=0, a_{i j}=0$ for all i and $\mathrm{j}, \mathrm{A}=0$.
Conversely, if $\mathrm{A}=0$ then $\operatorname{det}[A]=0,\|A\|=0$

Therefore $\|A\|_{m}=0$ if and only if $\mathrm{A}=0$
(ii) If α in $[0,1]$ then $\alpha A=[\alpha A]$,

$$
\begin{aligned}
\|\alpha A\| & =\operatorname{det}[\alpha A] \\
& =\alpha \operatorname{det}[A] \\
\|\alpha A\| & =\alpha\|A\|
\end{aligned}
$$

(iii) Let $\|A\|=\operatorname{det}[A]$ and $\|B\|=\operatorname{det}[B]$

Now $\|A+B\|=\operatorname{det}[C]$, Where $c_{i j}=\left[a_{i j}\right]+\left[b_{i j}\right]$
$\|A+B\|=\operatorname{det}[[A]+[B]]$
$\|A+B\|=\operatorname{det}[A]+\operatorname{det}[B]$
$\|A+B\|=\|A\|+\|B\|$
(iv) Let $\|A\|=\operatorname{det}[A]$ and $\|B\|=\operatorname{det}[B]$

If $\mathrm{AB}=\mathrm{D}$, then the entries of D are given by $d_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$

$$
\begin{align*}
& d_{i j}=\sum_{k=1}^{n}\left\{\min \left(a_{i k} b_{k j}\right)\right\} \\
& d_{i j}=\min \left(a_{i 1} b_{1 j}\right)+\min \left(a_{i 1} b_{2 j}\right) \cdots \min \left(a_{i n} b_{i n}\right) \tag{2.1}
\end{align*}
$$

Case(1) If all $a_{i j} \leq b_{i j}$ for $\mathrm{j}=1,2, \ldots, \mathrm{n}$. Then we have $d_{i j}=a_{i 1}+a_{i 2}+\cdots+a_{i n}($ from (2.1))

$$
\begin{aligned}
& d_{i j}=a_{i 1}+a_{i 2}+\cdots+a_{i n} \\
& d_{i j}=a_{i j} \\
& \operatorname{det}[D]=\operatorname{det}[A] \\
& \|A B\|=\|A\|=\|A\|\|B\|
\end{aligned}
$$

Case(2) If all $b_{i j} \leq a_{i j}$ for $\mathrm{j}=1,2, \ldots, \mathrm{n}$. Then we have $d_{i j}=b_{i 1}+b_{i 2}+\cdots+b_{\text {in }}($ from (2.1))

$$
\begin{aligned}
& d_{i j}=b_{i j} \\
& \operatorname{det}[D]=\operatorname{det}[B] \\
& \|A B\|=\|B\|=\|A\|\|B\|
\end{aligned}
$$

Case(3) Let some $a_{i j} \leq b_{i j}$ and some other $b_{i j} \leq a_{i j}$. Let us assume that $a_{i m}<b_{i m}$ for all $\mathrm{n}<\mathrm{m}$ and $b_{i m}<a_{i m}$ for all $\mathrm{n} \geq \mathrm{m}$.
$\operatorname{From}(2.1), d_{i j}=a_{i j}+\cdots+a_{i m}+b_{i(m+1)}+\cdots+b_{i j}$

$$
\begin{aligned}
& d_{i j}=\sum_{j=1}^{m} a_{i j}+\sum_{j=m+1}^{n} b_{i j}=a_{i j}+b_{i j} \\
& d_{i j}=a_{i j} \mathrm{if} a_{i j} \geq b_{i j} \\
& d_{i j}=b_{i j} \operatorname{if} a_{i j} \leq b_{i j} \\
& \operatorname{det}[D]=\operatorname{det}[A]=\|A\|
\end{aligned}
$$

or $\quad \operatorname{det}[D]=\operatorname{det}[B]=\|B\|$

$$
\|A B\|=\|A\|\|B\|=\operatorname{det}[A] \operatorname{det}[B]
$$

Example.
If $\quad A=\left[\begin{array}{lll}0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7\end{array}\right]$ and $B=\left[\begin{array}{ccc}0.6 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4\end{array}\right]$

$$
\begin{aligned}
& \|A\|=0.8\left[\begin{array}{cc}
0.9 & 0.6 \\
0.7 & 0.7
\end{array}\right]+0.3\left[\begin{array}{ll}
0.6 & 0.6 \\
0.1 & 0.7
\end{array}\right]+0.2\left[\begin{array}{ll}
0.6 & 0.9 \\
0.1 & 0.7
\end{array}\right] \\
& =0.8[0.7+0.6]+0.3[0.6+0.1]+0.2[0.6+0.1] \\
& =0.7+0.3+0.2 \\
& \|A\|=0.7 \\
& \|B\|=0.6\left[\begin{array}{ll}
0.3 & 0.7 \\
0.7 & 0.4
\end{array}\right]+0.2\left[\begin{array}{ll}
0.4 & 0.7 \\
0.6 & 0.4
\end{array}\right]+0.1\left[\begin{array}{ll}
0.4 & 0.3 \\
0.6 & 0.7
\end{array}\right] \\
& \|B\|=0.6[0.3+0.7]+0.2[0.4+0.6]+0.1[0.4+0.3] \\
& =0.6(0.7)+0.2(0.6)+0.1(0.4) \\
& =0.6+0.2+0.1 \\
& \|B\|=0.6 \\
& \|A+B\|=\left[\begin{array}{lll}
0.8 & 0.3 & 0.2 \\
0.6 & 0.9 & 0.7 \\
0.1 & 0.7 & 0.7
\end{array}\right] \\
& =0.8[0.7+0.7]+0.3[0.6+0.6]+0.2[0.6+0.6] \\
& =0.8(0.7)+0.3(0.6)+0.2(0.6) \\
& =0.7+0.3+0.2 \\
& \|A+B\|=0.7 \\
& \|A+B\|=\|A\|+\|B\| \\
& \|A+B\|=\operatorname{det}|A|+\operatorname{det}|B|=0.7+0.6=0.7
\end{aligned}
$$

Set $\alpha=0.5$

$$
\begin{aligned}
& \alpha A=0.5\left[\begin{array}{lll}
0.8 & 0.3 & 0.2 \\
0.6 & 0.9 & 0.6 \\
0.1 & 0.7 & 0.7
\end{array}\right] \\
& \alpha A=\left[\begin{array}{lll}
0.5 & 0.3 & 0.2 \\
0.5 & 0.5 & 0.5 \\
0.1 & 0.5 & 0.5
\end{array}\right] \\
& \|\alpha A\|=0.5(0.5)+0.3(0.5)+0.2(0.5)
\end{aligned}
$$

$$
\begin{aligned}
& =0.5+0.3+0.2 \\
\|\alpha A\| & =0.5 \\
\alpha\|A\| & =(0.5)(0.7)=0.5 \\
\|\alpha A\| & =\alpha\|A\|=0.5 \\
\|A B\| & =\left[\begin{array}{lll}
0.6 & 0.3 & 0.3 \\
0.6 & 0.6 & 0.7 \\
0.6 & 0.7 & 0.7
\end{array}\right] \\
& =0.6(0.6+0.7)+0.3(0.6+0.6)+0.3(0.6+0.6) \\
& =0.6+0.3+0.3 \\
\|A B\| & =0.6 \\
\|A B\| & =\|A\|\|B\|=0.6
\end{aligned}
$$

4. Equivalence Fuzzy Matrices

Definition 3.1. A fuzzy matrix A is defined to be greater than B if $\|B\| \leq\|A\|$, A is strictly greater than B if $\|B\|<\|A\|$. We also say that B is smaller than A .

Example:

Let $\quad A=\left[\begin{array}{lll}0.8 & 0.3 & 0.2 \\ 0.6 & 0.9 & 0.6 \\ 0.1 & 0.7 & 0.7\end{array}\right]$ and $B=\left[\begin{array}{ccc}0.6 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.7 \\ 0.6 & 0.7 & 0.4\end{array}\right]$

$$
\begin{aligned}
& \|A\|=0.7 \quad \text { and } \quad\|B\|=0.6 \\
& \|B\|<\|A\|=0.6<0.7
\end{aligned}
$$

Therefore, A is strictly greater than B .
Definition 3.2. Define a mapping d: $M_{n}(F) \times M_{n}(F) \rightarrow[0,1]$ as
$\mathrm{d}(\mathrm{A}, \mathrm{B})=\|A+B\|=\operatorname{det}[A, B]$ for all A, B in $M_{n}(F)$.
Theorem 3.1. The above mapping d satisfies the following conditions for all A, B, C in $M_{n}(F)$
(i) $\quad d(A, B) \geq 0$ and $d(A, B)=0$ then $A=B$
(ii) $d(A, B)=d(B, A)$
(iii) $\quad d(A, B) \leq d(A, C)+d(B, C)$ for all A, B, C in $M_{n}(F)$

Then d is a pseudo-metric in $M_{n}(F)$
Proof.
(i) $\quad \mathrm{d}(\mathrm{A}, \mathrm{B})=\|A+B\|=\operatorname{det}[A, B] \geq 0$ for all A, B in $M_{n}(F)$

Therefore $\mathrm{d}(\mathrm{A}, \mathrm{B}) \geq 0$

Suppose $\mathrm{d}(\mathrm{A}, \mathrm{B})=0$ then $\|A+B\|=\operatorname{det}[A, B]=0$

$$
\begin{aligned}
& \Rightarrow\|A\|+\|B\|=\operatorname{det}[A]+\operatorname{det}[B]=0 \\
& \Rightarrow A=0 \operatorname{and} B=0 \\
& \Rightarrow A=B
\end{aligned}
$$

But $A=B$ imples $\|A\|=\|B\|$

$$
\begin{aligned}
& \Rightarrow\|A+B\|=\|B\|+\|B\|=\operatorname{det}[B]+\operatorname{det}[B] \\
& \Rightarrow\|A+B\|=\|B\|=\operatorname{det}[B] \\
& \Rightarrow \mathrm{d}(\mathrm{~A}, \mathrm{~B}) \neq 0
\end{aligned}
$$

Therefore, $\mathrm{A}=\mathrm{B}$ need not implies $\operatorname{det}[A, B]=0$
(ii)

$$
\begin{gathered}
\mathrm{d}(\mathrm{~A}, \mathrm{~B})=\|A+B\|=\|B+A\|=d(B, A) \\
\quad \operatorname{det}[\mathrm{A}, \mathrm{~B}]=\operatorname{det}[\mathrm{B}, \mathrm{~A}] \\
\mathrm{d}(\mathrm{~A}, \mathrm{~B})=\mathrm{d}(\mathrm{~B}, \mathrm{~A})
\end{gathered}
$$

(iii) Let $\mathrm{A}, \mathrm{B}, \mathrm{Cin} M_{n}(F)$ be such that $\|C\| \geq\|B\| \geq\|A\|$

$$
\begin{aligned}
\mathrm{d}(\mathrm{~A}, \mathrm{~B}) & =\|A+B\| \\
& =\operatorname{det}[A]+\operatorname{det}[B] \\
& =\operatorname{det}[B]+\operatorname{det}[B] \\
& =\operatorname{det}[B]=\|B\| \\
\mathrm{d}(\mathrm{~A}, \mathrm{C}) & =\|A+C\| \\
& =\operatorname{det}[A]+\operatorname{det}[C] \\
& =\operatorname{det}[C]+\operatorname{det}[C] \\
& =\operatorname{det}[C]=\|C\| \\
\mathrm{d}(\mathrm{~B}, \mathrm{C}) & =\|B+C\| \\
& =\operatorname{det}[B]+\operatorname{det}[C] \\
& =\operatorname{det}[C]=\|C\| \\
\mathrm{d}(\mathrm{~A}, \mathrm{C}) & +\mathrm{d}(\mathrm{~B}, \mathrm{C})=\|C\|+\|C\|=\|C\|
\end{aligned}
$$

Therefore $d(A, B) \leq d(A, C)+d(B, C)$
For the other cases also we haved $(A, B) \leq d(A, C)+d(B, C)$. Thus in all cases $\mathrm{d}(\mathrm{A}, \mathrm{B}) \leq \mathrm{d}(\mathrm{B}, \mathrm{C})+\mathrm{d}(\mathrm{C}, \mathrm{A})$ for all $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in $M_{n}(F)$. Thus from (i), (ii) and (iii) we see that d is a pseudo-metric on $M_{n}(F)$.

Example 3.1.

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{lll}
0.8 & 0.3 & 0.2 \\
0.6 & 0.9 & 0.6 \\
0.1 & 0.7 & 0.7
\end{array}\right], B=\left[\begin{array}{lll}
0.6 & 0.2 & 0.1 \\
0.4 & 0.3 & 0.7 \\
0.6 & 0.7 & 0.4
\end{array}\right] \text { and } C=\left[\begin{array}{lll}
0.8 & 0.4 & 0.6 \\
0.2 & 0.9 & 0.2 \\
0.1 & 0.6 & 0.8
\end{array}\right] \\
& \text { (i) } \quad\|A+B\|=\left[\begin{array}{lll}
0.8 & 0.3 & 0.2 \\
0.6 & 0.9 & 0.7 \\
0.1 & 0.7 & 0.7
\end{array}\right]=0.7 \text {, } \\
& \|A\|=0.7 \text { and }\|B\|=0.6 \\
& \|A+B\|=\|A\|+\|B\| \\
& \|A+B\|=\|B\|+\|B\|=0.6+0.6=0.6 \\
& \|A+B\|=\|B\|=0.6 \\
& \text { (ii) } \quad\|B+A\|=\left[\begin{array}{lll}
0.8 & 0.3 & 0.2 \\
0.6 & 0.9 & 0.7 \\
0.6 & 0.7 & 0.7
\end{array}\right]=0.7 \text { and }\|A+B\|=0.7 \\
& \mathrm{~d}(\mathrm{~A}, \mathrm{~B})=\|A+B\|=\|B+A\|=0.7 \\
& \text { (iii) } \quad \Rightarrow\|A+B\|=\|B\|=\operatorname{det}[B]=0.6 \\
& \|A+C\|=\left[\begin{array}{lll}
0.8 & 0.4 & 0.6 \\
0.6 & 0.9 & 0.7 \\
0.6 & 0.7 & 0.8
\end{array}\right] \\
& =0.8[0.8+0.6]+0.4[0.6+0.1]+0.6[0.6+0.1] \\
& =0.8(0.8)+0.4(0.6)+0.6(0.6) \\
& =0.8+0.4+0.6 \\
& \|A+C\|=0.8 \\
& \|B+C\|=\left[\begin{array}{lll}
0.8 & 0.4 & 0.6 \\
0.4 & 0.9 & 0.7 \\
0.6 & 0.7 & 0.8
\end{array}\right] \\
& =0.8[0.8+0.7]+0.4[0.4+0.6]+0.6[0.4+0.6] \\
& =0.8(0.8)+0.4(0.6)+0.6(0.6) \\
& =0.8+0.4+0.6 \\
& \|B+C\|=0.8 \\
& \|B\|=0.6 \text { and }\|C\|=0.8 \\
& \Rightarrow\|B+C\|=\|C\|=\operatorname{det}[C]=0.8 \\
& \|A+C\|=0.8,\|A\|=0.7 \text { and }\|C\|=0.8 \\
& \Rightarrow\|A+C\|=\|C\|=\operatorname{det}[C]=0.8 \\
& \|A+B\| \leq\|A+C\|+\|B+C\|=0.7 \leq 0.8+0.8=0.7 \leq 0.8 \\
& \text { Therefore } \mathrm{d}(\mathrm{~A}, \mathrm{~B}) \leq \mathrm{d}(\mathrm{~A}, \mathrm{C})+\mathrm{d}(\mathrm{~B}, \mathrm{C})
\end{aligned}
$$

Theorem 3.2. If $A, A^{\prime}, B, B^{\prime}$ in $M_{n}(F)$. Then $d(A, B)+d\left(A^{\prime}, B^{\prime}\right)=d\left(A, A^{\prime}\right)+d\left(B, B^{\prime}\right)$
Proof.

$$
\begin{aligned}
\mathrm{d}(\mathrm{~A}, \mathrm{~B})+\mathrm{d}\left(\mathrm{~A}^{\prime}, \mathrm{B}^{\prime}\right)= & \operatorname{det}[\mathrm{A}+\mathrm{B}]+\operatorname{det}\left[\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right] \\
& =\operatorname{det}[A]+\operatorname{det}[B]+\operatorname{det}\left[\mathrm{A}^{\prime}\right]+\operatorname{det}\left[\mathrm{B}^{\prime}\right] \\
& =\operatorname{det}\left[\mathrm{A}+\mathrm{A}^{\prime}\right]+\operatorname{det}\left[\mathrm{B}+\mathrm{B}^{\prime}\right] \\
& =\left\|A+\mathrm{A}^{\prime}\right\|+\left\|B+\mathrm{B}^{\prime}\right\| \\
\mathrm{d}(\mathrm{~A}, \mathrm{~B})+\mathrm{d}\left(\mathrm{~A}^{\prime}, \mathrm{B}^{\prime}\right)= & \mathrm{d}\left(\mathrm{~A}, \mathrm{~A}^{\prime}\right)+\mathrm{d}\left(\mathrm{~B}, \mathrm{~B}^{\prime}\right)
\end{aligned}
$$

Example 3.2.

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{lll}
0.8 & 0.3 & 0.2 \\
0.6 & 0.9 & 0.6 \\
0.1 & 0.7 & 0.7
\end{array}\right], B=\left[\begin{array}{lll}
0.6 & 0.2 & 0.1 \\
0.4 & 0.3 & 0.7 \\
0.6 & 0.7 & 0.4
\end{array}\right] \text { and } \\
& A^{\prime}=\left[\begin{array}{lll}
0.8 & 0.6 & 0.1 \\
0.3 & 0.9 & 0.7 \\
0.2 & 0.6 & 0.7
\end{array}\right], B^{\prime}=\left[\begin{array}{lll}
0.6 & 0.4 & 0.6 \\
0.2 & 0.3 & 0.7 \\
0.1 & 0.7 & 0.4
\end{array}\right] \\
& \|A\|=0.7 \text { and }\|B\|=0.6 \\
& \left\|A^{\prime}\right\|=0.8\left[\begin{array}{ll}
0.9 & 0.7 \\
0.6 & 0.7
\end{array}\right]+0.6\left[\begin{array}{cc}
0.3 & 0.7 \\
0.2 & 0.7
\end{array}\right]+0.1\left[\begin{array}{cc}
0.3 & 0.9 \\
0.2 & 0.6
\end{array}\right] \\
& =0.8[0.7+0.6]+0.6[0.3+0.2]+0.1[0.3+0.2] \\
& =0.7+0.3+0.1 \\
& \left\|A^{\prime}\right\|=0.7 \\
& \left\|B^{\prime}\right\|=0.6\left[\begin{array}{ll}
0.3 & 0.7 \\
0.7 & 0.4
\end{array}\right]+0.4\left[\begin{array}{ll}
0.2 & 0.7 \\
0.1 & 0.4
\end{array}\right]+0.6\left[\begin{array}{ll}
0.3 & 0.7 \\
0.7 & 0.4
\end{array}\right] \\
& \left\|B^{\prime}\right\|=0.6[0.3+0.7]+0.4[0.2+0.1]+0.6[0.3+0.7] \\
& =0.6(0.7)+0.4(0.2)+0.6(0.7) \\
& =0.6+0.2+0.6 \\
& \left\|B^{\prime}\right\|=0.6 \\
& \left\|A^{\prime}+B^{\prime}\right\|=\left[\begin{array}{lll}
0.8 & 0.6 & 0.6 \\
0.3 & 0.9 & 0.7 \\
0.2 & 0.7 & 0.7
\end{array}\right] \\
& =0.8[0.7+0.7]+0.6[0.3+0.2]+0.6[0.3+0.2] \\
& =0.8(0.7)+0.6(0.3)+0.6(0.3) \\
& =0.7+0.3+0.3 \\
& \left\|A^{\prime}+B^{\prime}\right\|=0.7
\end{aligned}
$$

$$
\begin{aligned}
& \left\|A+A^{\prime}\right\|=\left[\begin{array}{lll}
0.8 & 0.6 & 0.2 \\
0.6 & 0.9 & 0.7 \\
0.2 & 0.7 & 0.7
\end{array}\right] \\
& =0.8[0.7+0.7]+0.6[0.6+0.2]+0.2[0.6+0.2] \\
& =0.8(0.7)+0.6(0.6)+0.2(0.6) \\
& =0.7+0.6+0.2 \\
& \left\|A+A^{\prime}\right\|=0.7 \\
& \left\|B+B^{\prime}\right\|=\left[\begin{array}{lll}
0.6 & 0.4 & 0.6 \\
0.4 & 0.3 & 0.7 \\
0.6 & 0.7 & 0.4
\end{array}\right] \\
& =0.6[0.3+0.7]+0.4[0.4+0.6]+0.6[0.4+0.3] \\
& =0.6(0.7)+0.4(0.6)+0.6(0.4) \\
& =0.6+0.4+0.4 \\
& \left\|B+B^{\prime}\right\|=0.6 \\
& \left\|A+A^{\prime}\right\|+\left\|B+B^{\prime}\right\|=0.7+0.6=0.7 \\
& d\left(A, A^{\prime}\right)+d\left(B, B^{\prime}\right)=\left\|A+A^{\prime}\right\|+\left\|B+B^{\prime}\right\|
\end{aligned}
$$

Conclusion

In this paper, a new definition det-norm on fuzzy matrix and its properties are discussed. Numerical examples are given to clarify the developed theory and the proposed det-norm.

REFERENCES

[1] Ragab.M. Z. and Emam E. G. The determinant and adjoint of a square fuzzy matrix, An international journal of Information Sciences-Intelligent systems, Vol 84, 1995, 209-220.
[2] Meenakshi A.R. and Cokilavany R., On fuzzy 2-normed linear spaces, The Journal of fuzzy mathematics, volume 9(No.2) 2001 (345-351)
[3] Nagoorgani A. and Kalyani G. Binormed sequences in fuzzy matrices. Bulletin of Pure and Applied Science. Vol. 22E(No.2) 2003; P. 445-451
[4] Nagoorgani A. and Kalyani G. On Fuzzy m-norm matrices. Bulletin of Pure and Applied Sciences. Vol. 22E(No.1) 2003; P. 1-11.

[^0]: *Corresponding author
 Received December 11, 2012

