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Abstract. In this paper, we are interested in a primal-dual algorithmic study of a projective interior point method

of a semidefinite quadratic problem (QSDP). In the first instance, we suggested a new projective function to have a

set of simplex like constraints and a linearization of the objectif function, in the second time we have defined a new

potential function to obtain a new polynomial complexity, such that the convergence is obtained after O(L(n+1))

iterations bound.
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1. INTRODUCTION

After the appearance of the Karmarkar’s algorithm [4], most researchers interested in the op-

timality conditions of the positive semidefinite problems (SDP) based on the potential reduction

methods for linear programming, which are extensions of the interior point methods for linear

programming. Indeed, in 1994, [1] was the first researcher to conduct a study primal-dual of the

point interior type projective on (SDP). The choice of the starting point greatly affects the per-

formance of interior point methods (SDP), in 2007, [2] proposed a feasible (SDP) to solve this

∗Corresponding author

E-mail address: m.laouar@univ-batna2.dz

Received August 03, 2022
1



2 MOUNIA LAOUAR, MAHMOUD BRAHIMI, EL-AMIR DJEFFAL

kind of problem. The interior point methods are considered to be among the various approxima-

tions that are effective in solving semidefinite problems. Several authors have proposed some

extensions of interior point methods (IPM) for solving positive semidefinite programming from

linear problem (LP). On the other hand, a primal-dual solution has been obtained by [6], this

method is based on (IPM) with polynomial like complexity.

[3] proposed a quadratic linearization problem so that every iteration has xk and [5] sug-

gested that every iteration has a point x0, these technics are applied in many problems such as

economics, automation, engineering...etc.

The main objectif of this paper is inspired by [1, 4, 5, 9] it aims to construct an improved

primal-dual polynomial feasible interior point algorithm for solving (QSDP). The first step of

this research is to transform a nonlinear problem to a linear programming (LP), by using a

new projective function that generates a new set of simplex constraints and by transforming

algebraically the objective function using a linearization in [5]. Based on a few properties of

the potential function proposed by [7], we have defined a new potential function showing to

obtain a theoretical convergence of primal-dual algorithm with a complexity of the polynomial

type.

This paper is organised as follows: In section 2, we present a description of the method. In

section 3, we give the statement of the algorithm and its theoretical convergence. Finally, a

conclusion is drawn in section 4.

2. DESCRIPTION OF METHOD

General overview.

In the sequel, some notations used throughout of our work are as follows: we denotes the

nonnegative and positive orthants respectively by Rn
+ and Rn

++. Rn×n denotes the set of n× n

real matrices. ‖·‖2 denotes the matrices spectral norm. Let Sn,Sn
+,S

n
++ denote the sets of n×n

symmetric, symmetric positive semidefinite and symmetric positive definite n× n matrices ,

respectively endowed with the standard trace inner product Trace(AB) = A •B for A,B ∈ Sn
+,

and the lowner partial order � (or �) on positive semidefinite (or positive definite) matrices

means A � B (or A � B) if A−B is positive semidefinite(or positive definite). We consider

the primal problem (P) of the quadratic semidefinite program (QSDP) and its dual (D) in the



A METHOD PROJECTIVE FOR SOLUTION OF A QUADRATIC SEMIDEFINITE PROBLEM 3

following forms:

(P)


z∗ = minF(X),

Ai •X = bi for i = 1, ...,m ,

X � 0 ,

where: F(X) =C •X + 1
2X •Ω(X),

(D)


r∗ = maxbT w− 1

2X •Ω(X),

m
∑

i=1
wiAi−Ω(X)+S =C,

S� 0 .

In which C and Ai for i = 1, ...,m are matrices in Sn, bi ∈R for i = 1, ...,m, Ω is a self-adjoint

positive semidefinite linear operator acting on Sn
+ and X in Sn

+.

Without loss of generality, the following assumptions are given throughout this article:

(1) The matrices Ai ∈ Sn, i = 1, ...,m are linearly independent.

(2) The optimal value z∗ of the objective function is unknown from the beginning.

(3) The problems (P) and (D) satisfies the interior point conditions (IPC): i.e. there exists

(X0,S0)� 0 such that:

Ai •X0 = bi for i = 1, ...,m ,

and
m

∑
i=1

wiAi−Ω(X0)+S0 =C.

Remark 2.1. The objective function is convex and twice continuously differentiable function,

therefore, the problem (P) is convex.

2.1. Transforming (P) to a simplified Karmarkar problem. This subsection is di-

vided into two parts:

(1) The first part is an extension of the projective method obtained from [1], to have a new

set of so-called simplex constraints.

(2) The objective of the second part is to have a new type of convex problem.
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2.1.1. Projective function. We describe the process of passage from iteration Xk to it-

eration Xk+1 by a projective type algorithm, at each current iteration k, the iterative solution Xk

is strictly feasible of (P), such that Xk ∈ Sn
++ is given as Xk = LkLT

k is a Cholesky’s decompo-

sition where Lk is a lower triangular matrix. We use the projective transformation proposed in

our work to bring the current iteration to the center of the simplex.

We define a projective transformation Tk as an extension of the one proposed by [1], such that

the current iteration reduces to the center A = 1
n+1 In+1 of the simplex Spn+1

+ , where:

Tk : Sn
+→ Spn+1

+

X 7→ Tk(X) = Y,

and:

Spn+1
+ =

{
Y ∈ Sn+1

+ : In+1 •Y = 1
}
,

with:

(2.1)



yi, j =
(L−1

k XL−
T

k )i, j

1+In•(X−1
k X)

, for i, j = 1, ...,n ,

yn+1,n+1 = 1−
n
∑

i=1
yi,i,

yn+1,n+1 6= 0,

yi,n+1 = yn+1, j = 0, f or i, j = 1, ...,n .

Thus, the transformation projective:

(2.2) Y = Tk(X) =

Y [n] 0n

0T
n yn+1,n+1

 ,
and its inverse:

(2.3) X = T−1
k (Y ) =

1
yn+1,n+1

(LkY [n]LT
k ),

where:

(1) Y [n] = yn+1,n+1(L−1
k XL−

T

k ) is the first n×n elements of the matrix Y ,
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(2) yn+1,n+1 =
1

1+In•(X−1
k X)

,

(3) the components of Y [n] are defined as follows:

yi, j = yn+1,n+1(L−1
k XL−

T

k )i, j, i, j = 1, ...,n.

Lemma 2.1. We have Y is a semidefinite symmetric matrix.

Proof. We know that, ∀t = (t1, ..., tn+1)
T ∈ Rn :

〈Yt, t〉 = 〈Y [n]t[n], t[n]〉+ yn+1,n+1 t2
n+1

= yn+1,n+1
〈
X LT

k t[n], LT
k t[n]

〉
+ yn+1,n+1 t2

n+1.

we have: yn+1,n+1 > 0 and X ∈ Sn
+, we conclude that: Y ∈ Sn+1

+ �

2.1.2. The new constraints set. We use the projective transformation (2.2) and its inverse

(2.3) in the problem (P), we obtain:

(2.4)



minG(Y,z∗) = 1
yn+1,n+1

(
Ck(z∗)•Y + 1

2Y •Ωk(Y )
)
,

Bk
i •Y = 0 for i = 1, ...,m ,

In+1 •Y = 0,

Y [n]� 0 and yn+1,n+1 > 0,

with:

(1) Ck(z∗) =


LT

k CLk 0n

0T
n −z∗


,

(2) Ωk(Y ) =

Ωk(X) 0n

0T
n 0

 , where: Ωk(X) = LT
k Ω(X)Lk,
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(3) Bk
i =


−LT

k AiLk 0n

0T
n bi


∈ R(n+1)×(n+1), i = 1, ...,m,

(4) Y =


Y [n] 0n

0T
n yn+1,n+1

 ∈ R(n+1)×(n+1).

To ensure the convexity of the objective function of the last problem, we define the objective

function under the simplex set of constraints as follows:

(2.5)



minH(Y,z∗) = yn+1,n+1G(Y,z∗),

Bk
i •Y = 0 for i = 1, ...,m ,

Y ∈ Spn+1
+ .

Lemma 2.2. The function H(Y,z∗) is a convex function into a feasible set F̂ of the problem

(2.5), where F̂ =
{

Y ∈ Spn+1
+ : Bk

i •Y = 0 for i = 1, ...,m
}

.

Proof. It is enough to verify the following inequality:

∀Y,Ŷ ∈ F̂ : ∀t ∈ [0,1] : H(t Y +(t−1) Ŷ ,z∗)≤ t H(Y,z∗)+(1− t) H(Ŷ ,z∗).

We have:

∀ Y,Ŷ ∈ F̂ , ∃ X , X̂ ∈ Rn
+ : T−1

k (Y ) = X and T−1
k (Ŷ ) = X̂ ,

we know that:

H(Y,z∗) = yn+1,n+1[F(T−1
k (Y ))− z∗],

therefore:

H(tY +(1− t)Ŷ ,z∗) = (tyn+1,n+1 +(1− t)ŷn+1,n+1)

[
F(

Lk(tY [n]+ (1− t)Ŷ [n])LT
k

tyn+1 +(1− t)ŷn+1
)− z∗

]
.

From the convexity of the function F and we get our result. �

Remark 2.2. A = 1
n+1 In+1 is a feasible strictly solution of the problem (2.5), seeing that:
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(1) On the one hand

Bk
i •A =

1
n+1

Bk
i • In+1 =

1
n+1

(−Ak
i • In +bi) =

1
n+1

(−Ai •Xk +bi) = 0,

(2) and on the other hand

In+1 •A =
1

n+1
In+1 • In+1 = 1.

2.2. Approximation of the optimal value z∗. Since, the optimal value z∗ is unknown, an

upper bound on z∗ is used, taking at each iteration k,

zk =C •Xk +
1
2

Xk •Ω(Xk),

we establish that:

(2.6) C •Xk +
1
2

Xk •Ω(Xk) =Ck • In +
1
2

In •Ωk(Xk),

wherein:

(1) zk > z∗,

(2) Ck = LT
k CLk,

In the following, we relax the problem (2.5) into a semidefinite problem such that we obtain

a linear objective function under a spherical constraint set.

2.3. Linearization of the objective function. We have:

(2.7)



minH(Y,z∗),

Bk
i •Y = 0 for i = 1, ...,m,

Y ∈ Spn+1
+ .

According to the properties of the cost function of the problem (2.5), this is what will give us

the right to use the Taylor series development in the neighbourhood of the point Y0 =
1

n+1 In+1

to obtain the linearization of H and to have the following result:

H(Y,zk) = H(Y0,zk)+∇H(Y0,zk)• (Y −Y0) f or Y ∈
{

Y ∈ Sn+1
+ : ‖Y −Y0‖2 ≤ α

2
}
.
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Thus, we get the following sub-problem:

(2.8)



rk(α) = min∇H(Y0,zk)• (Y −Y0),

Bk
i • (Y −Y0) = 0 for i = 1, ...,m ,

In+1 • (Y −Y0) = 0,

‖Y −Y0‖2 ≤ α2,

in which: ∇H(Y0,zk) =Ck(zk)+Ωk(Y0).

2.4. The iterative solutions.

Lemma 2.3. The optimal solution of the problem (2.8) is:

(2.9) Y ∗(α) = Y0−αDk,

such that:

Dk =
∇H(Y0,zk)+∑

m
i=1 wiBk

i +wm+1In+1∥∥∇H(Y0,zk)+∑
m
i=1 wiBk

i +wm+1In+1
∥∥ .

Proof. We put D = Y −Y 0, so:

(2.10)



min(D,α)∇H(Y0,zk)•D = rk(α),

B
′k
i •D = 0 for i = 1, ...,m+1 ,

‖D‖2 ≤ α2 and D ∈ Sn+1
++ ,

where:

B
′k
i =


Bk

i if i = 1, ...,m ,

In+1 if i = m+1.

Since the problem (2.10) is convex and D ∈ Sn+1
++ is an optimal solution, there exists w ∈ Rm

and t ∈ Rn+1
+ , such that:

(2.11) ∇H(Y0,zk)+
m+1

∑
i=1

wiB
′k
i + tD = 0,
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(2.12) B
′k
i •D = 0 for i = 1, ...,m+1 ,

(2.13) t(‖D‖2−α
2) = 0,

(2.14) ‖D‖2 ≤ α
2.

From (2.11), we obtain:

(2.15) D =−t−1Pk,

with:

Pk = ∇H(Y0,zk)+
m+1

∑
i=1

wiB
′k
i ,

and w = (w1, ...,wm+1)
T is a solution of the following linear system:

Mw = d,

we have, from the equation (2.12):

∀i = 1, ...,m+1 : B
′k
i •Pk = 0,

implies that:

∀i = 1, ...,m+1 : B
′k
i •∇H(Y0,zk)+

m+1

∑
j=1

w jB
′k
i •B

′k
j = 0.

So:

(1) di =−∇H(Y0,zk)•B
′k
i , i = 1, ...,m+1 ,

(2) Mi, j = B
′k
i •B

′k
j , i, j = 1, ...,m+1.

Then, the solution of (2.10) is D =−α
Pk
‖Pk‖

, we conclude the solution of (2.8), by:

Yk(α) = Y 0−α
Pk
‖Pk‖

.

�

In the following, at each iteration, we need to choose α so that Yk(α) is in Sn+1
++ and subse-

quently this will ensure that Xk+1 is in Sn
++.
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2.5. The step value. By definition

X = T−1
k (Y ) =

1
yn+1,n+1

(LkY [n]L
T

k ),

so that, if Yk is a positive semidefinite matrix, so is Xk+1.

We conclude that, the primal new iteration is given by

Xk+1 = T−1
k (Yk) =

1
(yk)n+1,n+1

LkYk [n]LT
k

and its dual is

Sk+1 =C−
m

∑
i=1

wiAi +Ω(Xk+1) .

Proposition 2.1. The value of α is defined as follows α ∈ (0,αk), where:

αk =

[
max

(
(n+1)(m+ s√

n)

ρ(Dk)
,
(n+1)(m− s

√
n)

ρ(Dk)
,
(n+1)(dk)n+1,n+1

ρ(Dk)

)]−1

,

and:

m =
1

n+1

n+1

∑
i=1

(Dk)i,i , s2 =
1

n+1

n+1

∑
i, j=1

(Dk)
2
i, j−m2.

Proof.

From the theorem 2.1 (see [8]), we have:

(2.16)

m− s
√

n≤ minλi(Dk)≤ m− s√
n ,

m+ s√
n ≤ maxλi(Dk)≤ m+ s

√
n,

where (λi)
n
i=1 are an eigenvalues of Dk,

and by lemma 2.3, we have:

Y ∗(α) = Y0−αDk = Y0−α
Pk

‖Pk‖
,

we obtain the following inequality:

1
n+1

−α
maxi λi(Dk)

ρ(Dk)
> 0,

where: ρ(Dk) is a the spectral radius of Dk,

so:

(2.17)
1
α

>
(n+1)maxλi(Dk)

ρ(Dk)
.



A METHOD PROJECTIVE FOR SOLUTION OF A QUADRATIC SEMIDEFINITE PROBLEM 11

We are based on (2.16) and (2.17), we have:

1
α
> (n+1)maxλi(D[n])k

ρ(Dk)
> (n+1)

ρ(Dk)
(m+ s√

n),

1
α
> (n+1)maxλi(Dk)

ρ(Dk)
> (n+1)minλi(Dk)

ρ(Dk)
> (n+1)

ρ(Dk)
(m− s

√
n),

1
α
>

(n+1)(dk)n+1,n+1
ρ(Dk)

.

Summing up, Xk+1 is a strictly feasible solution when 0 < α < αk.

�

In the following proposition, we will obtain a reduction of objective function of the problem

(P) when α ∈ (0,αk).

Proposition 2.2. For to α ∈ (0,αk), we have:

Xk+1 = Xk−
α

1
n+1 −α(dk)n+1,n+1

[
LkDkLT

k − (dk)n+1,n+1Xk
]
,

Xk+1 = Xk−
α

‖Pk‖
n+1 −α(pk)n+1,n+1

Lk [Pk− (pk)n+1,n+1In]LT
k ,

and

F(Xk+1)−F(Xk) =
1

1
n+1 −α(Dk)n+1,n+1

rk(α),

with:

rk(α) =−α

(
Ck •Dk[n]+

1
2

Dk[n]•Ωk(Xk)− zk(dk)n+1,n+1

)
< 0.

Proof. We have:

X = T−1
k (Y (α)) =

1
yn+1,n+1(α)

LkY (α)LT
k ,

and:

Y (α) =
1

n+1
In+1−αDk,

then 
Y (α)[n] = 1

n+1 In−αDk[n],

yn+1,n+1(α) = 1
n+1 −α(dk)n+1,n+1.
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Therefore:

Xk+1 = Xk−
α

1
n+1 −α(dk)n+1,n+1

[
LkDk[n]LT

k − (dk)n+1,n+1Xk
]
.

On the one hand:

C •Xk+1 =C •Xk−
α

1
n+1 −α(dk)n+1,n+1

[
C •LkDk[n]LT

k − (dk)n+1,n+1C •Xk
]

=C •Xk−
α

1
n+1 −α(dk)n+1,n+1

[Ck •Dk[n]− (dk)n+1,n+1Ck • In] ,

so:

(2.18) −α [Ck •Dk[n]− (dk)n+1,n+1Ck • In] =Ck •Y [n]− yn+1,n+1Ck • In.

And on the other hand:

Xk+1 •Ω(Xk+1)) = Xk •Ω(Xk)−
α

1
n+1 −α(dk)n+1,n+1

[
LkDk[n]LT

k − (dk)n+1,n+1Xk
]
•Ω(Xk)

= Xk •Ω(Xk)−
α

1
n+1 −α(dk)n+1,n+1

[Dk[n]− (dk)n+1,n+1In]•Ωk(Xk).

Then:

(2.19) −α(Dk[n]− (dk)n+1,n+1In)•Ωk(Xk) = (Y [n]− yn+1,n+1In)•Ωk(Xk).

From (2.6), (2.18) and (2.19), we obtain the result. �

2.6. The initial feasible solution.

We have noticed since the beginning that the initial strictly feasible solution is unknown in

the problem (P), so in what follows our objective is to find an n×n matrix X so that:

(2.20)
{

X ∈ Sn
++,Ai •X = bi, i = 1, ...,n

}
.

To treat the problem, we present the following linear semidefinite program:

(2.21)


minλ ,

Ai •X +λ (bi−Ai •F0) = bi for i = 1, ...,m ,

X ∈ Sn
++, λ ≥ 0,

where:

(1) F0 is a fixed arbitrary symmetric semidefinite matrix,
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(2)

F0 0

0 λ

 ∈ R(n+1)×(n+1) is a strictly feasible solution of problem (2.21).

We can be re-written as follows:

(2.22)


minC′ •X ′+ 1

2X ′ •Ω′(X ′),

A′i •X ′ = b′i for i = 1, ...,m ,

X ′ � 0,

with:

(1) C′[i, j] =


n+1

2 if i = j = n+1

0 otherwise

,

(2) Ω′(X ′)[i, j] =


n+1 if i = j = n+1

0 otherwise

,

(3) A′i =

Ai 0

0 (n+1)(bi−Ai •F0)

 ∈ Sn
++, for i = 1, ...,m .

Theorem 2.1. (See [2]) X∗ is a solution of the problem (2.20) if and only if (X∗,λ ∗) is an

optimal solution of the problem (2.21) and X∗ ∈ Sn
++.

According to remark 2.2, we conclude that

 F0 0n

0T
n

1
n+1

 is a strictly feasible solution of

(2.22), so it is enough to take F0 = 1
n+1 In.

3. STATEMENT OF ALGORITHM AND ITS CONVERGENCE

Now, we summarize the primal-dual algorithm for solving the problems (P) and (D).

3.1. Primal-dual algorithm.
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Algorithm 1 Solving a positive semidefinite quadratic problem

1: Initialize X0 =
1

n+1 In is a strictly feasible solution of (P) and Y0 =
1

n+1 In+1 is a strictly feasible solution of (2.5)

2: Choose ε > 0

3: while (|rk| ≥ ε) or (Xk+1 •Sk+1 ≥ ε) do

4: Define:

5: Ck = LT
k CLk

6: Ωk(Xk) = LT
k Ω(Xk)Lk

7: zk =Ck • In +
1
2 In •Ωk(Xk)

8: Ck(zk) =



Ck 0n

0T
n −zk


9: Ωk(Y0) =

Ωk(Xk) 0n

0T
n 0


10: ∇H(Y0,zk) =Ck(zk)+Ωk(Y0)

11: Ak
i = LT

k AiLk i = 1, ...,m

12: Bk
i =

−Ak
i 0n

0T
n bi

 i = 1, ...,m

13: B
′k
i =

Bk
i if i = 1, ...,m

In+1 if i = m+1

14: Solve the linear system Mw = d

15: Calculate the matrix M and the vector d as follows:

16: di =−∇H(Y0,zk)•B
′k
i i = 1, ...,m+1,

17: Mi, j = B
′k
i •B

′k
j , i, j = 1, ...,m+1

18: Compute:

19: rk =−αk
(
Ck •Dk[n]+ 1

2 Dk[n]•Ωk(Xk)− zk(dk)n+1,n+1
)

20: Pk = ∇H(Y0,zk)+∑
m+1
i=1 wiB

′k
i

21: Dk =
Pk
‖Pk‖

22: m = 1
n+1 ∑

n+1
i=1 (Dk)i,i

23: s2 = 1
n+1 ∑

n+1
i, j=1(Dk)

2
i, j−m2

24: Calculate the primal-dual solutions:

25: Xk+1 = Xk− αk
‖Pk‖
n+1 −αk(pk)n+1,n+1

Lk
[
Pk− (pk)n+1,n+1In

]
LT

k

26: wk← wk+1

27: Sk+1 =C−∑
m
i=1(wi)k+1Ai +Ω(Xk+1)

28: Let k← k+1

29: end while
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3.2. Theoretical convergence of the algorithm.

In order to establish the convergence of our algorithm, we introduce a potential function

similar to the one in [7] associated with the problem (P) defined by:

(3.1) Φ(X ,zk) =
[F(X)− zk]

(detX)
1

n+1
.

Lemma 3.1. For each iteration, we get a reduction of H i.e:

H(Y,zk)−H(Y0,zk)≤ 0.

Proof. From lemma 2.3:

Y = Y0−α
Pk

‖Pk‖
,

then:

∇H(Y0,zk)• (Y −Y0) = −α
∇H(Y0,zk)◦Pk

‖Pk‖
= −α ‖Pk‖< 0.

�

Lemma 3.2. H(Yk)≤ (1− α

n+1)H(Y0) where Yk is the optimal solution of (2.10).

Proof. See [4]. �

Lemma 3.3. For all Y

a symmetric matrix, with 0≺ Y ≺ 1
n+1 In+1, we have:

lndet(Y )≥−n− α2

2(1−α)
.

Proof. See [1]. �

The reduction of Φ(X) brings us to the reduction F(X)− zk.

Lemma 3.4. Let us X is a feasible solution of the problem (P) if we have:

Φ(Xk,zk)

Φ(X0,zk)
≤ γ,

then:
F(Xk)− zk

F(X0)− zk
≤ γ v(Xk).
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such as:

v(Xk) =

(
n

∏
i=1

λi(Xk)

λi(X0)

) 1
n+1

.

Proof. We have:
Φ(Xk,zk)

Φ(X0,zk)
=

(F(Xk)− zk)

F(X0)− zk

(detX0)
1

n+1

(detXk)
1

n+1
.

We obtain:
F(Xk)− zk

F(X0)− zk
= v(Xk)

Φ(Xk,zk)

Φ(X0,zk)
,

with: v(Xk) =
(

∏
n
i=1

λi(Xk)
λi(X0)

) 1
n+1 . �

In the next theorem, we will show the reduction value of potential function Φ on any iteration.

Theorem 3.1. The potential function is reduced by a constant value γ where:

Φ(Xk,zk)

Φ(X0,zk)
≤ γ

k with γ = exp
[
(k+1)

(
1− 1

n+1
+

α2

2(1−α)(n+1)

)]
.

Proof. We have:

Φ(Xk+1,zk)

Φ(Xk,zk)
=

[F(Xk+1)− zk]

(detXk+1)
1

n+1

(detXk)
1

n+1

[F(Xk)− zk]

=
H(Yk,zk)

H(Y0,zk)

1

(n+1)(det(Yk))
1

n+1
.

From lemma 3.2 and lemma 3.3 we obtain:

Φ(Xk+1,zk)

Φ(Xk,zk)
≤ exp

(
1− 1

n+1
+

α2

2(1−α)(n+1)

)
,

by reccurence, we have:

Φ(Xk+1,zk)

Φ(X0,zk)
=

Φ(Xk+1,zk)

Φ(Xk,zk)

Φ(Xk,zk)

Φ(Xk−1,zk)
...

Φ(X1,zk)

Φ(X0,zk)
≤ exp

[
(k+1)

(
1− 1

n+1
+

α2

2(1−α)(n+1)

)]
.

�

Theorem 3.2. If we are satisfied with the following hypotheses:

(1) The initial feasible solution X0 verifies: X0 ≥ 2−2LIn, where L is considered as the

number of bits.

(2) The optimal solution X∗ verifies: X∗ ≤ 2−2LIn, for any solution X we have: −23L ≤

F(X∗)≤ zk ≤ 23L.
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Then, the number of iterations for each of the iterations to find the optimal solution is O((n+

1)L).

Proof. We have:

Φ(Xk,zk)

Φ(X0,zk)
≤ exp

[
k
(

1− 1
n+1

+
α2

2(1−α)(n+1)

)]
,

from lemma 3.4, theorem 3.1 and under hypotheses 1, 2, we will obtain:

F(Xk)− zk

F(X0)− zk
≤

(
n

∏
i=1

λi(Xk)

λi(X0)

) 1
n+1

exp
[

k
(

1− 1
n+1

+
α2

2(1−α)(n+1)

)]
.

Then: K ≥ hL(n+1), where h ∈ R∗+. �

4. CONCLUSIONS

In this paper, we have extended the results of [1, 4, 5, 9] to obtain a dual primal type algorithm

for the solution of the positive semidefinite quadratic problem and for the convergence we have

used a potential function with characteristics similar to the one in [7] where the polynomial

complexity of the algorithm has been proved.
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