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Abstract. In this paper, we give a reconstruction formula for the potential q for a second order differential equation

with boundary condition which contains spectral parameter. For this as methodology, we use Prüfer substitution

that has an advantage different from other methods. Because in this method, we do not need any information of

eigenfunctions.
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1. INTRODUCTION

The spectral theory of operators is widely used in various fields of mathematics, physics, and

mechanics. The main sources of the spectral theory of linear operators are the problems of the

theory of vibration like wire vibration, membrane vibration, etc [1, 2].
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There are two types of differential operators as regular and singular. If coefficients are con-

tinuous functions in the definition region and also the interval is finite, the problem is regular;

differential operators whose definition region is infinite or whose coefficients are not a sum-

mable problem is called singular. Spectral theory for second-order regular operators is known

today as Sturm-Liouville theory. The distribution of eigenvalues of operators with a discrete

spectrum and defined throughout the space is particularly interesting for Quantum mechanics.In

later years, regular systems of two first order equations are discussed.

Inverse problems of spectral analysis have an important role in the theory of linear differential

operators. The inverse differential operator problem is defined as below.

1) According to which spectral data is the differential operator defined?

2) Is the operator defined exactly according to spectral data?

3) By which method it is possible to define operators according to data?

First result of the inverse problem was found by [3]. In this study, Ambarzumyan showed that

the potential function is identical to zero if the eigenvalues have a certain formula. In the fol-

lowing years, many results have been obtained using this first step of the inverse problem. Also,

the inverse problem the solution is very popular for the problems that contain the eigenvalue

parameter under the boundary condition[4]-[22].

A different approach to inverse problems was given by Mclaughlin in 1988 [23]. Mclaughlin

showed the uniqueness of the potential function using zeros of eigenfunctions. This theory

is known in the literature as inverse nodal problems. In the following years, the theory was

handled for different types of operators, and many results were obtained in this subject [24]-

[38]. For example; Law and colleagues have provided a formula for potential function by the

nodal points, which has been an inspiration for many people [31]. In addition to all of these,

this problem was applied to diffusion, singular Sturm-Liouville, Dirac, and other operators, and

successful results were obtained. We should note that inverse nodal problems were first studied

by Koyunbakan in Turkey . In this first study, the uniqueness of the potential function has been

created by using nodal points for the diffusion operator [39, 40, 41, 42, 43, 44]. In this way,

inverse nodal problems have been studied by many researchers from different universities.
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In this study, the solution of the inverse nodal problem for the Sturm-Liouville problem,

which contains the eigenvalue parameter in the boundary condition is examined. For this, Prüfer

transformation [2, 45, 46] is used which is more advantageous than the others.

2. PRELIMINARIES

We determine some formulas and a reconstruction for the potential q which was obtained

as a solution of an inverse problem. We are dealing with inverse problem for a second order

differential operator by taking a new type of spectral data in this boundary condition. Let us

consider the following Sturm-Liouville problem on the interval 0≤ x≤ π

(1.1) −y′′(x)+q(x)y(x) = λ
2y(x)

where q(x) is a real-valued functions which is integrable in the interval [0,π], the spectrum

of the problem uniquely determines q(x), almost everywhere then the boundary conditions are

given by

(1.2) y(0) = 0

(1.3) (a1λ +b1)y′(π)+(a2λ +b2)y(π) = 0.

We can rewrite the equation (1.3) as

y′(π)
y(π)

=
−(a2λ +b2)

a1λ +b1
(1.4)

where ai,bi are real constants (i = 1,2), and we introduce a Prüfer substitution [45, 46]for the

solution yk of (1.1) as follow

(1.5)
y(x) = s(x)sin(λθ(x)),

y′(x) = s(x)λ cos(λθ(x)),

or

y′

y
= λ cot(λθ(x))(1.6)
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where s(x) is amplitude and θ(x,λ ) is Prüfer’s variable.

Taking derivative to both sides of (1.6)(
y′

y

)′
=
−λ 2θ ′(x)

sin2(λθ(x))
(1.7)

the left hand side of (1.7) can be written as follow

y′′

y
=

(
y′

y

)′
+

(
y′

y

)2

(1.8)

Putting (1.6) and (1.7) into (1.8), we have determined

(1.9) −y′′

y
=

(
λ 2θ ′(x)

sin2(λθ(x)
−λ

2cot2(λθ(x)
)

now we plug (1.9) into the problem (1.1) produces

−(q(x)−λ
2) =

(
λ 2θ ′(x)

sin2(λθ(x)
−λ

2 cot2(λθ(x))
)

and (
q(x)−λ

2−λ
2 cos2(λθ(x))

sin2(λθ(x))

)
sin2(λθ(x)) =−θ

′(x)λ 2

therefore,

θ
′(x) =

(
−q(x)

λ 2 +1+
cos2(λθ(x))
sin2(λθ(x)

)
sin2(λθ(x)).(1.10)

By using some trigonometric identity to the equation (1.10), the corresponding Prüfer equation

that we obtain

(1.11) θ
′(x) = 1− q(x)

2λ 2 +
q(x)
2λ 2 cos(2λθ(x)).

3. MAIN RESULTS

Now,we are ready to construct the asymptotics for eigenvalues.

Theorem 3.1. Eigenvalues λk of the problem (1.1)-(1.3) satisfy

λk = (k− 1
2
)+

a2

a1π(k− 1
2)

+O
(

1
k

)
as k→ ∞
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Proof. Integrating both sides of (1.11) from 0 to π with respect to x∫
π

0
θ
′(x)dx =

∫
π

0

(
1− q(x)

2λ 2 +
q(x)
2λ 2 cos(2λθ(x))

)
dx

by using the properties and definition of big O [47], we have seen that∫
π

0
q(x)cos(2λθ(x))dx = O

(
1
λ

)
then,

θ(π)−θ(0) = π− 1
2λ 2

∫
π

0
q(x)dx+O

(
1

λ 3

)
.(1.12)

Now to find θ(π) and θ(0) we use (1.4), then from the boundary condition (1.2), we have the

value of θ(0) = 0 and to find the value of θ(π) from the boundary condition (1.3), we have

λ cot(λθ(π)) =
−(a2λ +b2)

a1λ +b1

after some calculation ,we obtain

λ cot(λθ(π)) =
−a2

a1
+O

(
1
λ

)
and

λθ(π) = arccot
(
−a2

a1λ
+O

(
1

λ 2

))
.(1.13)

By using Taylor expansion of arccot function for the right side of (1.13) we obtain

θ(π) =
(k− 1

2)π

λ
− a2

a1λ 2 +O
(

1
λ 3

)
.(1.14)

Substituting (1.14) into (1.12) for λ = λk we get

(k− 1
2)π

λk
− a2

a1λ 2
k
+O

(
1

λ 3
k

)
= π− 1

λ 2
k

∫
π

0
q(x)dx+O

(
1

λ 3
k

)
and

λk =
(k− 1

2)π

π + a2
a1λ 2

k
− 1

2λ 2
k

∫
π

0 q(x)dx+O
(

1
λ 2

k

)
thus,

λk = (k− 1
2
)+

a2(k− 1
2)

a1λ 2
k π
−

(k− 1
2)

2λ 2
k π

∫
π

0
q(x)dx+O

(
1

(k)2

)
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As λ → ∞⇒ λk
∼= (k− 1

2) ,then

λk = (k− 1
2
)+

a2

a1π(k− 1
2)
− 1

2π(k− 1
2)

∫
π

0
q(x)dx+O

(
1
k2

)
therefore,

λk = (k− 1
2
)+

a2

a1π(k− 1
2)

+O
(

1
k

)
(1.15)

�

Theorem 3.2. The nodal points of the problem (1.1)-(1.3) are

xk
j =

jπ
k− 1

2

+
ja2

a1(k− 1
2)

3
+

1
2k2

∫ xk
j

0
q(t)dt +O

(
1
k3

)
Proof. Integrating (1.11) from 0 to xk

j with respect to x

∫ xk
j

0
θ
′(x)dx =

∫ xk
j

0

(
1− q(x)

2λ 2 +
q(x)
2λ 2 cos(2λθ(x))

)
dx

after some calculation, we get

θ(xk
j)−θ(0) = xk

j−
1

2λ 2

∫ xk
j

0
q(t)dt +O

(
1

λ 3

)
(1.16)

By using Prüfer substitution (1.5), from boundary condition (1.2), we have

y(0) = s(0)sin(λθ(0))⇒ sin(λθ(0)) = 0,θ(0) = 0.

Now we are going to find θ(xk
j), since xk

j are nodal points so y(xk
j) = 0, therefore

y(xk
j) = s(xk

j)sin(λθ(xk
j)) = 0

while s(xk
j) 6= 0,then

sin(λθ(xk
j)) = 0,

so

λθ(xk
j) = jπ ⇒ θ(xk

j) =
jπ
λ
.
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Now, we obtain that θ(0) = 0 and θ(xk
j) =

jπ
λ

plugging them into (1.16), for λ = λk we

determine

xk
j =

jπ
λk

+
1

2λ 2
k

∫ xk
j

0
q(t)dt +O

(
1

λ 3
k

)
(1.17)

By inserting (1.15) into (1.17), we get

xk
j =

jπ(
k− 1

2

)(
1+ a2

a1π(k− 1
2 )

2 +O
(

1
k2

)) +
1

2k2

∫ xk
j

0
q(t)dt +O

(
1
k3

)

by using the properties and definition of big O [47], we obtain

xk
j =

jπ
k− 1

2

+
ja2

a1(k− 1
2)

3
+

1
2k2

∫ xk
j

0
q(t)dt +O

(
1
k3

)
This completes the proof. �

Theorem 3.3. The nodal lengths of problem (1.1)-(1.3) are

`k
j =

π

k− 1
2

+
a2

a1(k− 1
2)

3
+

1
2λ 2

k

∫ xk
j+1

xk
j

q(t)dt +O
(

1
k3

)
Proof. By integrating (1.11) from xk

j to xk
j+1 with respect to x

∫ xk
j+1

xk
j

θ
′(x)dx =

∫ xk
j+1

xk
j

(
1− q(x)

2λ 2
k
+

q(x)
2λ 2

k
cos(2λθ(x))

)
dx

θ(xk
j+1)−θ(xk

j) =
∫ xk

j+1

xk
j

dx− 1
2λ 2

k

∫ xk
j+1

xk
j

q(x)cos(2λθ(x))dx(1.18)

− 1
2λ 2

k

∫ xk
j+1

xk
j

q(t)dt

Since `k
j = xk

j+1− xk
j, and in the same way in Theorem(2.2), we can find that

θ(xk
j+1) =

( j+1)π
λk

, θ(xk
j) =

jπ
λk

. Then insert them in (1.18), we obtain

( j+1)π
λk

− jπ
λk

= xk
j+1− xk

j−
1

2λ 2
k

∫ xk
j+1

xk
j

q(t)dt +O

(
1

λ 3
k

)
,

π

λk
= `k

j−
1

2λ 2
k

∫ xk
j+1

xk
j

q(x)dx+O

(
1

λ 3
k

)
.(1.19)
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Now we use λk from (1.15) and plug it into (1.19)

π

(k− 1
2)+

a2
a1π(k− 1

2 )
2 +O

(1
k

) = `k
j−

1
2λ 2

k

∫ xk
j+1

xk
j

q(x)dx+O

(
1

λ 3
k

)
.(1.20)

By using the property of big O , we get

π

k− 1
2

+
πa2

a1(k− 1
2)

3
+O

(
1
k3

)
= `k

j−
1

2λ 2
k

∫ xk
j+1

xk
j

q(x)dx+O
(

1
k3

)
therefore,

`k
j =

π

k− 1
2

+
a2

a1(k− 1
2)

3
+

1
2λ 2

k

∫ xk
j+1

xk
j

q(x)dx+O
(

1
k3

)
This completes the proof. �

Theorem 3.4. For the problem (1.1)-(1.3) the potential function satisfies

q(z) = lim
k→∞

2kπ

(
(k− 1

2)

π
− a2

a1(k− 1
2)

2π`k
j
− 1

`k
j

)
for almost every x ∈ (0,π) with j = jn(x).

Proof. By using nodal lengths

`k
j =

π

k− 1
2

+
a2

a1(k− 1
2)

3
+

1
2λ 2

k

∫ xk
j+1

xk
j

q(t)dt +O
(

1
k3

)

`k
j−

π

k− 1
2

− a2

a1(k− 1
2)

3
+O

(
1
k3

)
=

1
2λ 2

k

∫ xk
j+1

xk
j

q(t)dt

(1.21)
(k− 1

2)

π
`k

j−
a2

a1(k− 1
2)

2π
−1+O

(
1
k2

)
=

1
2kπ

∫ xk
j+1

xk
j

q(t)dt.

Applying mean value theorem for integrals to (1.21), we obtain

where there exists z ∈ [xk
j,x

k
j+1] then⇒

∫ xk
j+1

xk
j

q(t)dt = q(z)`k
j

we have

q(z)`k
j = 2kπ

(
`k

j−
π

k− 1
2

− πa2

a1(k− 1
2)

3

)
+O

(
1
k3

)
.

Hence

q(z) = lim
k→∞

2kπ

(
(k− 1

2)

π
− a2

a1(k− 1
2)

2π`k
j
− 1

`k
j

)
.
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This completes the proof. �
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