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Abstract. This paper proposes a nonlinear deterministic model of mumps transmission dynamics with double-

dose vaccination, public health education campaigns, and quarantine control strategies. The stability analysis

of the equilibria is established via Routh-Hurwitz criteria and the Lyapunov function method. Also, sensitivity

analysis is conducted to assess the parameters that significantly influence the dynamics of mumps transmission.

The numerical results of the model show that the number of mumps infections decreases when at least a single

control measure is implemented effectively. Furthermore, the findings show that the most effective method of

reducing mumps transmission from the community is a combination of three control measures. Therefore, this

study recommends that there is a necessity to increase double-dose vaccination, public health education campaigns,

and quarantine so as to reduce mumps transmission.
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1. INTRODUCTION

Mumps is a viral disease caused by the mumps virus. It is an envelope, single-stranded

RNA Virus of the paramyxovirus family and mainly affects children less than 5 years [1]. It
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is commonly known as childhood viral disease [2]. Mumps virus is spread through respira-

tory droplets, close contact with sick individuals, and contaminated fomites [3, 4]. The most

susceptible individuals live close to schools, colleges, and the most populated areas.

Human being is the only natural host, where infection can be localized to the mucosa of the

respiratory tract through the nose, and mouth [4]. The unusual swelling of a person’s parotid

glands takes between 15 and 24 days to manifest. The most contagious people eventually are

those with the infection; this starts one to two days before parotitis symptoms appear and lasts

for several days afterward [2, 5].

According to [6], the infectious period is 8 days, and the afflicted person will recover from

the infection in 10 to 14 days. Bilateral enlargement of the parotid glands, a flu-like illness,

headache, body aches, loss of appetite, fatigue, low-grade fever, anorexia, and malaise, are

among the most typical signs of infection [7, 8]. But, symptoms in adults, women and men are

always more severe than in children, such as meningitis, orchitis, oophoritis, encephalitis, and

aseptic are common complications of mumps to those adults [9].

In addition, mumps caused many outbreak cases, mainly in China and the United States [1].

It was reported that more than 300,000 young people contract mumps yearly in China; through

these cases, children aged 18-24 months in China received their first dose of the Measles-

Mumps-Rubella (MMR1) vaccine free of charge [5]. On the other hand, in 2006, the United

States experienced a multi-state outbreak involving 6584 cases, with the highest attack rate

among 18 to 24 years of age. Most of the affected people had received a second MMR vaccine,

which protects against measles, mumps, and rubella [10].

In Africa, it was reported that one month to six years of children aged was found to be 9% that

affected with mumps in South Africa [11]. Doshi [12] reported that children aged one month

to six years were found to be 22% affected in the Democratic Republic of Congo (DRC). In

Tanzania, Rakiru [13] showed that 21.4% among children aged 6 to 12 years were found to be

affected in the Mwanza region. According to Minja [14] 16.7% among children in Buguruni,

Dar es salaam was found to be deaf due to mumps complication.

According to [15], multiple factors contribute to the persistence of mumps outbreaks, includ-

ing inadequate vaccination rates, inherent restrictions in mumps protective immunity, incorrect
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diagnosis of infection, failure of the primary or secondary vaccine, and elevated risk of transmis-

sion associated with college campuses. The vaccine is considered the best control for mumps,

providing two complete doses for mumps [5]. Mumps virus vaccine was approved in the United

States in 1967 [16], whereas, the approval of the measles, mumps, and rubella vaccine was in

1969 [7].

Several mathematical models have been developed to investigate the dynamics of mumps

transmission such as [5, 17, 18, 19, 20]. Most of these models target minimizing or eradicating

disease transmission among the populace.

Li et al 2018 [5] formulated a non-autonomous SVEILR (Susceptible-Vaccinated-Exposed-

severely Infectious-mild Infectious-Recovered) model with a seasonal varying transmission rate

to describe the mumps epidemic and suggested government health departments and hospitals

encourage teenagers of the appropriate age to continue receiving the mumps vaccination.

[17] proposed a non-autonomous SVEILHR (susceptible-vaccinated-exposed-mild

infectious-severe infectious-hospitalized-recovered) model with varying seasonal trans-

mission rates and suggested that the Chinese government increase vaccination rates and offer

two-doses of the MMR2 (Measles, Mumps, and Rubella) vaccine for free. Their finding

showed that vaccination was the best measure to reduce the transmission of mumps in China.

Bai et al 2021 [18] formulated a SEIAQR (susceptible-exposed-symptomatically infected-

asymptomatically infected-quarantined-recovered) model of mumps transmission with quaran-

tine measures to control mumps. It was shown that quarantine was the best measure to reduce

the transmission of mumps to the community.

Liu et al. (2017) [19] conducted a study on modeling and analysis of the global resurgence

of mumps. A novel multi-group SVEIAR (Susceptible- Vaccinated-Exposed- Symptomatic

Infected- Asymptomatic Infected- Recovered) epidemic model with infinite distributed vacci-

nation delays and latency, asymptomatic infection, and nonlinear incidence was formulated.

The study conducted by Peng et al. (2021)[20] formulated the SEIAR (Susceptible- Exposed-

Infectious- Asymptomatically Infectious- Recovered) model for estimating the transmissibility

of mumps in Wuhan city, China. The study considered that the prevention and control measures

of vaccination for children aged 5 to 10 years old should be taken before the peak transmission
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capacity each year, 2 months before the outbreak’s peak occurs, to reduce the spread of the

mumps virus. The study recommended improving mumps vaccine coverage in Wuhan, China,

especially two vaccination doses for 5 to 10 years old, to reduce the transmission of mumps in

the population.

Most previous studies have not considered public health education campaigns either singly or

in a combination with other strategy as a control measure to reduce the risk of mumps transmis-

sion among people. Moreover, double vaccination has not been presented by previous studies

to control mumps. It is in this ground, therefore, that this study should be carried out to inves-

tigate the impacts of control measures that incorporate double-dose vaccination, public health

education campaign, and quarantine as control strategies to reduce the transmission dynamics

of mumps in the community.

The remaining sections of the study are structured as follows: Section 2 focuses on model

formulation, while Section 3 is based on model analysis. Numerical results are presented in

Section 4, while the concluding remarks are presented in Section 5.

2. MODEL FORMULATION

A deterministic mathematical model is formulated by extending the basic SEIR model

(susceptible- exposed- infected- recovered). An improvement of the work by [5, 18, 19] is

made by considering second-dose vaccination and public health education campaigns. Thus,

the current work will capture double-dose vaccination, public health education campaigns, car-

riers, and quarantine. The total population is divided into eight classes which are susceptible

humans (S), the first-dose of vaccinated humans (V1), the double-dose vaccinated humans (V2),

exposed humans (E), carriers (C), symptomatic infectious humans (I), quarantine humans (Q)

and recovered humans (R).

It is assumed that individuals are recruited into the population by immigration and birth at

the rate τ and Λ respectively. Moreover, it is assumed that the recruits can be either vaccinated

or non-vaccinated. If individuals are vaccinated, they can either be first-dose or second-dose

vaccinated.

It is also assumed that the proportion τ of the recruits are vaccinated with the first dose, while

the compliment (1− τ) joins the susceptible class. Susceptible individuals who missed the
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first-dose vaccination can receive the first-dose vaccination at the rate ε . According to [5], it is

known that the first-dose vaccination is inefficient, thus calling for the second dose. Therefore,

it is assumed that individuals who received the efficient first-dose vaccine at some desirable

interval can complete the second dose at the rate θ . It is also hypothesized that individuals who

received a double dose of vaccine acquire some permanent immunity at a rate of φ3.

Following effective direct contact with symptomatic infectious individuals or carriers, sus-

ceptible individuals could contact the mumps at the time-dependent infection rate λ (t) modelled

by the standard mass action principle. It is given by

(2.1) λ (t) = β1I +β2C,

where, β1, stands the transmission rate for symptomatic infectious humans whereas, β2 repre-

sents the transmission rate for carrier individuals.

Also, it is assumed that public health education campaigns have some effects for both sus-

ceptible and first-dose vaccinated individuals to reduce the number of mumps infections. So,

the direct transmission will be reduced by the rate (1−ψ), and thus, the force of infection

will be given by (1−ψ)λ (t), where ψ ∈ [0,1] measures the efficacy of the education program.

If ψ = 0, it suggests that public health education campaigns have been disregarded as an in-

tervention strategy, whereas ψ = 1 indicates that education campaigns are 100% effective in

preventing the spread of the mumps.

It is also assumed that the first-dose vaccine could reduce but not eliminate the possibility for

individuals to be infected with the mumps virus. So, the direct transmission will be reduced by

the rate (1−ω)λ (t), where ω ∈ [0,1] measures the efficacy of the first-dose vaccine. If ω = 0,

it indicates that the first-dose vaccine is the inefficiency to prevents mumps spread; as a result,

individuals are exposed and move to the exposed class (see also [5]), while ω = 1, indicates

that the first-dose vaccine is 100% efficiency in reducing the spread of the mumps.

Humans exposed could either become carriers or become symptomatic infectious at the rate

α . A fraction p of the exposed humans may progress to the symptomatic infectious class at the

rate α while the complement (1-p) of the exposed becomes carrier at the same rate α . Also,

[21] have shown that carriers who have natural body immunity recover naturally. Thus, it is

assumed that the carriers join the recovered class at the rate φ2.
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To reduce the risk of more mumps transmission to the population, the symptomatic infectious

individuals are quarantined at the rate σ . It is assumed that quarantined individuals recover due

to health care, medical treatment (especially antibiotics to reduce symptoms and pains), and

natural body immunity at the rate of φ1 see also in [18]. It is also assumed that each individual

in any of the compartment experience a natural mortality rate denoted by µ .

Table 1, and Table 2 contain a description of the variables and parameters, respectively, that

were used in the model. Also, Figure 1 presents the flow chart for the model.

Following the model description, and the flow chart 1, then, system of differential equations

is obtained as:
dS
dt

= (1− τ)Λ−
(
µ + ε +(1−ψ)(β1I +β2C)

)
S,

dV1

dt
= εS+ τΛ−

(
θ +µ +(1−ψ)(1−ω)(β1I +β2C)

)
V1,

dV2

dt
= θV1− (φ3 +µ)V2,

dE
dt

= (1−ψ)(β1I +β2C)S+(1−ψ)(1−ω)(β1I +β2C)V1− (α +µ)E,

dC
dt

= α(1− p)E− (φ2 +µ)C,

dI
dt

= α pE− (σ +µ)I,

dQ
dt

= σ I− (φ1 +µ)Q,

dR
dt

= φ3V2 +φ2C+φ1Q−µR.

(2.2)

The initial conditions for the model system (2.2) are S(0)> 0, V1(0)> 0, V2(0)> 0, E(0)≥ 0,

C(0)≥ 0, I(0)≥ 0, Q(0)≥ 0, R(0)≥ 0.
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TABLE 1. State variables and their description.

Variable Description

S Number of the susceptible humans at time t.

V1 Number of the first-dose vaccinated humans at time t.

V2 Number of the second-dose vaccinated humans at time t.

E Number of the exposed human population at time t.

C Number of carrier human population at time t.

I Number of symptomatic infectious humans at time t.

Q Number of the quarantined human population at time t.

R Number of the recovered human population at time t.

FIGURE 1. A flow diagram for mumps transmission dynamics with control measures.
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TABLE 2. Parameters and their description.

Parameter Description Value Source

Λ Per capita birth rate. 0.02755 Humans/ year [22]

τ A proportion of immigrants who are vacci-

nated with first-dose.

0.6 [23]

ε Rate at which first-dose vaccine coverage of

the susceptible.

0.7/year [24]

ω Efficacy of first-dose vaccine. 0.9 Assumed

µ Per capita natural mortality rate. 0.01428/year [25]

β1 Transmission rate for symptomatic infec-

tious individuals.

0.4580/year [5]

β2 Transmission rate for carriers. 0.1250/year [20]

ψ Efficacy of the education program. 0.2 Assumed

θ Second-dose of vaccine rate. 0.8/year [23]

φ3 Rate of acquiring permanent immunity by

the second-dose vaccinated humans.

0.8/year [26]

α Rate at which exposed individuals move to

either symptomatic infectious class or car-

rier class.

19.2105/year [5, 27]

p A fraction of exposed individuals who

progress to symptomatic infectious class.

0.7 Assumed

σ Rate of quarantine for symptomatic infected

individuals.

0.3/year Assumed

φ2 Recovery rate of carrier humans. 30.4166/year [5]

φ1 Recovery rate of quarantine humans. 0.5/year Assumed
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3. ANALYSIS OF THE MODEL

3.1. Boundedness of model. The dynamical system of the model in equation (2.2) is con-

sidered to be well-posed and have meaning in its implication if its global solution is contained

within a positive invariant region with all non-negative variables and parameters for all t ≥ 0

[28]. Thus, the following theorem is stated:

Theorem 1. The solution set S,V1,V2,E,C, I,Q,R ∈ R8
+ of the model system (2.2) is confined

in the positive invariant region Ω, for all t ≥ 0.

Proof. Let the feasible invariant region be

Ω= S,V1,V2,E,C, I,Q,R ∈ R8
+ : for all t ≥ 0.

From a model system (2.2) total human population N(t) at any time t is given by

(3.1) N(t) = S(t)+V1(t)+V2(t)+E(t)+C(t)+ I(t)+Q(t)+R(t)

Differentiating equation (3.1) with respect to time t obtains

(3.2)
dN(t)

dt
=

dS
dt

+
dV1

dt
+

dV2

dt
+

dE
dt

+
dC
dt

+
dI
dt

+
dQ
dt

+
dR
dt

,

Substituting equation (2.2) into the equation (3.2) and simplifying gives

(3.3)
dN(t)

dt
= Λ−µN(t).

On solving equation (3.3) gives

(3.4) N(t) =
Λ

µ
+Ae−µt ,

where A is a constant. At t = 0, N(t) = N(0) = N0, thus equation (3.4) becomes

(3.5) N(t) =
Λ

µ
+(N0−

Λ

µ
)e−µt ,

Now as t→ ∞ equation (3.5) gives

(3.6) N(t)≤ Λ

µ
.

Therefore, the region Ω contains all solutions of model system equation in (2.2) in R8
+ such that

Ω =
{
(S(t),V1(t),V2(t),E(t),C(t), I(t),Q(t),R(t)) ∈ R8

+ : 0≤ N(t)≤ Λ

µ

}
. �
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3.2. Positivity of model solutions. Biologically, the population is said to be meaningful and

well-behaved if its model equation solutions are positive for all t ≥ 0. Using the approach as

applied by [29] and [30], we test the positivity solution of the model by using the following

theorem.

Theorem 2. Let the initial condition of model system (2.2) be

S(0) > 0, V1(0) > 0,V2(0) > 0, E(0) ≥ 0, C(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 ∈ Ω , then

the solution for S(t);V1(t);V2(t);E(t);C(t); I(t);Q(t);R(t) of the system in equation (2.2) are

positive for all t ≥ 0.

Proof. To prove theorem 2, all systems of equation (2.2) must be taken into consideration, hence

by starting with the equation of the susceptible human population:

(3.7)
dS
dt

= (1− τ)Λ−
(
µ + ε +(1−ψ)(β1I +β2C)

)
S,

Equation (3.7) can be written as,

(3.8)
dS
dt

>−
(
µ + ε +(1−ψ)(β1I +β2C)

)
S,

Solving equation (3.8) we get:

(3.9) S(t)> S(0)e−
(

µ+ε+(1−ψ)(β1I+β2C)
)

t ,

Therefore, as t→ ∞, equation (3.9) becomes:

S(t)> 0,

Thus, for all t ≥ 0, S(t)> 0.

In the same way, the remaining variables of the model system in equation (2.2) can be positive

for all t ≥ 0. �

3.3. Disease-free Equilibrium Point (DFE). The Disease-Free Equilibrium (DFE) is the

point at which no disease is present in the population. Let E0 be a disease-free equilibrium

point, and then from the system (2.2), we solve for variables by setting the right-hand side

equal to zero. After solving the following DFE is obtained,

E0 =
(

S0,V 0
1 ,V

0
2 ,E

0,C0, I0,Q0,R0
)
,
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is given by

(3.10)

E0 =
((1− τ)Λ

ε +µ
,

Λ(ε + τµ)

(ε +µ)(θ +µ)
,

θΛ(ε + τµ)

(ε +µ)(θ +µ)(φ3 +µ)
0,0,0,0,

φ3θΛ(ε + τµ)

µ(φ3 +µ)(ε +µ)(θ +µ)

)
.

3.4. Effective Reproduction Number (Re). Effective reproduction number (Re) refers to an

expected average number of secondarily infected individuals produced from a single primarily

infected individual in its lifetime duration when all population is entirely susceptible at the time

of its infectious period [31].

The reproduction number is significant to determine whether the disease exists or clears out

in the population. To obtain the effective reproduction number, the next-generation matrix

method is employed [32]. Hence, the spectral radius of the next-generation matrix is the

effective reproduction number [33]. From the system (2.2), the effective reproduction number

Re is computed by re-arranging the first four infective classes, giving:

dE
dt

= (1−ψ)(β1I +β2C)S+(1−ψ)(1−ω)(β1I +β2C)V1− (α +µ)E,

dC
dt

= α(1− p)E− (φ2 +µ)C,

dI
dt

= α pE− (σ +µ)I,

dQ
dt

= σ I− (φ1 +µ)Q.

(3.11)

Then, from the system (3.11), we obtain:

(3.12) Fi =



(1−ψ)(β1I +β2C)S+(1−ψ)(1−ω)(β1I +β2C)V1

0

0

0


,
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and

(3.13) Vi =



(α +µ)E

(φ2 +µ)C−α(1− p)E

(σ +µ) I−α pE

(φ1 +µ)Q−σ I


.

From equation equations in (3.12) and (3.13), by taking partial derivatives with respect to E, C,

I, and Q at DFE gives:

(3.14)

F =


0 (1−ψ)β2S0 +(1−ψ)(1−ω)β2V 0

1 (1−ψ)β1S0 +(1−ψ)(1−ω)β1V 0
1 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

and

(3.15) V =



m11 0 0 0

−m31 m33 0 0

−m21 0 m22 0

0 0 −σ φ1 +µ


.

Taking the inverse matrix in equation (3.15) gives

(3.16) V−1 =



m11
−1 0 0 0

m31
m11m33

m33
−1 0 0

m21
m11m22

0 m22
−1 0

− σ m31
m11m33(φ1+µ) −

σ

m33(φ1+µ) 0 −(φ1 +µ)−1


.



MODELLING THE TRANSMISSION DYNAMICS OF MUMPS WITH CONTROL MEASURES 13

The product of the matrices F and V−1 can be calculated as:

(3.17) FV−1 =



m13m31
m11m33

+ m12m21
m11m22

m13
m33

m12
m22

0

0 0 0 0

0 0 0 0

0 0 0 0

 .

where

m11 = µ +α,m12 = (1−ψ)β2S0 +(1−ψ)(1−ω)β2V 0
1 ,

m13 = (1−ψ)β1S0 +(1−ψ)(1−ω)β1V 0
1 ,

m21 = α(1− p),m22 = µ +φ2,m31 = α p,m33 = µ +σ ,

(3.18)

The effective reproduction number is therefore given by

(3.19) Re = ρ(FV−1) =
m13m31

m11m33
+

m12m21

m11m22

which can also be written as

(3.20) Re = R01 +R02,

where

R01 =
m13m31

m11m33
=

α p
(
(1−ψ)β1S0 +(1−ψ)(1−ω)β1V 0

1
)

(µ +α)(µ +σ)
,

R02 =
m12m21

m11m22
=

α(1− p)
(
(1−ψ)β2S0 +(1−ψ)(1−ω)β2V 0

1
)

(µ +α)(µ +φ2)
.

(3.21)

Additionally, R0i (i = 1,2) are partial effective reproduction number induced by susceptible-

to-symptomatic infectious, susceptible-to-carriers transmission respectively. In a more compact

form, the effective reproduction is written as

(3.22) Re =
α p(1−ψ)

(
β1S0 +(1−ω)β1V 0

1
)

(µ +α)(µ +σ)
+

α(1− p)(1−ψ)
(
β2S0 +(1−ω)β2V 0

1
)

(µ +α)(µ +φ2)
,

where S0 and V 0
1 have been defined in equation (3.10). Epidemiologically, if Re > 1, it implies

that mumps-infected individuals can transmit the disease to more than one individual, thus

spreading the disease in the entire community. However, if Re < 1, then it implies that the

single infected individual, on average, can transmit the disease to less than one individual in the

human population; hence the disease dies out.
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3.4.1. Sensitivity analysis of Re. Sensitivity analysis is carried out to identify parameters that

highly impact the disease’s transmission dynamics. The normalized forward sensitivity method,

which employs the effective reproduction number (Re), is used to attain this goal. The same

approach was also carried out by [28, 34, 35]. If Re is differentiated with respect to parameter

k, then the sensitivity index of k is given by

(3.23) Y Re
k =

∂Re

∂k
× k

Re
.

For example, the sensitivity index of Re with respect to parameter Λ is given by

(3.24) Y Re
Λ

=
∂Re

∂Λ
× Λ

Re
=+1.

The rest of the sensitivity indices for all parameters used in Re can be computed similarly and

given in Table 3. From Table 3, a positive index value implies that an increase in the particular

parameter will increase Re and hence mumps transmission. In contrast, the negative index

indicates that an increase in the specific parameter value will increase will decrease Re and

therefore reduce mumps transmission.

TABLE 3. Sensitivity of Numerical Scale for Re

Parameter Symbol Sensitivity Index value

Λ +1.0000

τ −1.2298

ε −0.8035

µ −0.0664

ψ −0.2500

α +0.0007

p +0.9468

σ −0.9393

φ2 −0.0160

β1 +0.9840

β2 +0.0160

θ −0.1755

ω −1.6081
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Similarly, Figure 2 shows the parameters with their respective sensitivity index values. It

can be observed that the most sensitive parameters are: ω,τ,Λ, p,σ ,β1, and ε since they have

large values of sensitivity index (> 0.5); this implies that they have very high contribution to

the transmission of mumps. Conversely, the parameters ψ,θ ,β2,φ2,µ , and α contribute less to

the mumps transmission as their sensitivity indices are less than 0.5.

FIGURE 2. Parameters with their sensitivity indices.

3.5. Stability Analysis of the Model.

3.5.1. Local Stability of the Disease-Free Equilibrium Point. The local stability of the

disease-free equilibrium point is determined by linearizing the model system (2.2) by using

a technique of Jacobian matrix [28, 29].

Theorem 3. The disease-free equilibrium point (DFE) of the model system (2.2) is locally

asymptotically stable if Re < 1 and is unstable if Re > 1.
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Proof. The partial differentiation of system (2.2) with respect to (S,V1,V2,E,C, I,Q,R) at the

DFE gives the Jacobian Matrix J as

(3.25)

J(E0)=



−µ− ε 0 0 0 −(1−ψ)β2S0 −(1−ψ)β1S0 0 0

ε −µ−θ 0 0 (1−ψ)aβ2V 0
1 (1−ψ)aβ1V 0

1 0 0

0 θ −µ−φ3 0 0 0 0 0

0 0 0 −µ−α m12 m13 0 0

0 0 0 α (1− p) −µ−φ2 0 0 0

0 0 0 α p 0 −µ−σ 0 0

0 0 0 0 0 σ −µ−φ1 0

0 0 φ3 0 φ2 0 φ1 −µ


where a = (1−ω) from matrix (3.25).

The matrix (3.25) has the following eigenvalues

λ1 =−(ε +µ),

λ2 =−(θ +µ),

λ3 =−(φ3 +µ),

λ7 =−(φ1 +µ),

λ8 =−µ,

(3.26)

The rest eigenvalues can be found in the sub-matrix

(3.27) J1(E0) =


−m11 m12 m13

m21 −m22 0

m31 0 −m33


where m11,m12,m13,m21,m22,m31, and m33 have been defined in equation (3.18). The re-

maining eigenvalues are the polynomial’s roots: |J1(E0)−λ |= 0, which is given by
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λ
3 + c2λ

2 + c1λ + c0 = 0,(3.28)

where

c2 = m33 +m22 +m11,

c1 = m33m22 +m22m11(1−R01)+m33m11(1−R02),

c0 = m33m22m11(1−Re),

Equivalently, Re can be split into parts

Re = R01 +R02,(3.29)

where R01 and R02 have been defined in equation (3.21).

To ensure that all roots of equation (3.28) have negative real parts, the Routh-Hurwitz stability

criterion requires that

(3.30) c2 > 0,c1 > 0,c0 > 0,

and

D1 = c2 > 0,

D2 =

∣∣∣∣∣∣∣∣
c2 1

c0 c1

∣∣∣∣∣∣∣∣= c2c1− c0 > 0,
(3.31)

It is clear that D1 = c2 > 0. In addition, if Re < 1, it implies that R01,R02 < 1 and hence

c0,c1,c2 > 0.

D2 can also be demonstrated to hold as follows:

D2 = c2c1− c0 = m33
(
m22m33 +m22m11 +m33m11(1−R02)

+m22m22 +m11m22 +m11m11(1−R02)
)
+m22m11m22(2−R01),

hence D2 is positive. Therefore, whenever Re < 1, the disease-free equilibrium E0 is locally

asymptotically stable if all Routh-Hurwitz requirements are met. �
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3.5.2. Global Stability of the Disease-Free Equilibrium Point.

Theorem 4. The disease-free equilibrium E0 of system (2.2)is globally asymptotically stable on

Ω, if Re ≤ 1, and is unstable if Re > 1.

Proof. To prove theorem (4), consider the system (2.2), the Lypunov function L(t) with non-

negative coefficients M1,M2,M3 and M4 in the trivial equilibrium points then

(3.32)
L = (S−S0−S0ln

S
S0 )+(V1−V 0

1 −V 0
1 ln

V1

V 0
1
)+(V2−V 0

2 −V 0
2 ln

V2

V 0
2
)+

M1E +M2C+M3I +M4Q+(R−R0−R0ln
R
R0 )

Differentiating equation (3.32) with respect to time t gives:

(3.33)

dL
dt

= (1− S0

S
)
dS
dt

+(1−
V 0

1
V1

)
dV1

dt
+(1−

V 0
2

V2
)
dV2

dt
+

M1
dE
dt

+M2
dC
dt

+M3
dI
dt

+M4
dQ
dt

+(1− R0

R
)
dR
dt

.

Now we substitute respective equations from the model system equation (2.2) into equation

(3.33) results give:

(3.34)

dL
dt

= (1− S0

S
)
(
(1− τ)Λ−

(
µ + ε +(1−ψ)(β1I +β2C))S

)
+(1−

V 0
1

V1
)
(

εS+ τΛ−
(
θ +µ +(1−ψ)(1−ω)(β1I +β2C)

)
V1

)
+(1−

V 0
2

V2
)
(

θV1− (φ3 +µ)V2

)
+M1

(
(1−ψ)(β1I +β2C)S+(1−ψ)(1−ω)(β1I +β2C)V1− (α +µ)E

)
+M2

(
α(1− p)E− (φ2 +µ)C

)
+M3

(
α pE− (σ +µ)I

)
+M4

(
σ I− (φ1 +µ)Q

)
+(1− R0

R
)
(

φ3V2 +φ2C+φ1Q−µR
)
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Suppose S≤ S0, V1≤V 0
1 , V2≤V 0

2 , and R≤R0 then by substituting these expressions in equation

(3.34) and simplifying gives:

(3.35)

dL
dt
≤M1

(
(1−ψ)(β1I +β2C)S+(1−ψ)(1−ω)(β1I +β2C)V1− (α +µ)E

)
+M2

(
α(1− p)E− (φ2 +µ)C

)
+M3

(
α pE− (σ +µ)I

)
+M4

(
σ I− (φ1 +µ)Q

)
,

where S0,V 0
1 are defined in (3.10), by collecting similar terms E,C, I and Q and keeping in

mind that at disease-free equilibrium point (E0): E0=C0= I0= Q0= 0, so by solving for coeffi-

cients M1, M2, M3, and M4 and further simplification (see also [28]) gives dL
dt ≤ 0. Hence, the

largest compact invariant set in {(S(t),V1(t),V2(t),E(t),C(t), I(t),Q(t),R(t)) ∈ Ω : dV
dt < 0} is

the singleton set E0. Therefore, using Lasalle’s invariant principle [36], it can be concluded that

E0 is globally asymptotically stable in Ω whenever Re < 1 and unstable for Re > 1 (see also

[37, 38]). �

3.5.3. Endemic Equilibrium Point. Endemic equilibrium point (E∗1 ) is a situation whereby the

disease exists in the population. For this particular case, the endemic is obtained when

S∗,V ∗1 ,V
∗
2 ,E

∗,C∗, I∗,Q∗,R∗ > 0.

Setting the right side of each equation in the model system (2.2) to zero and solving the resulting

system yields the endemic equilibrium point in terms of symptomatic humans I∗; thus, we have

(3.36) E∗1 = (S∗,V ∗1 ,V
∗
2 ,E

∗,C∗, I∗,Q∗,R∗),

where

S∗ =
(1− τ)Λ

µ + ε +(1−ψ)(β1 +β2h2)I∗
,

V ∗1 =
ε(1− τ)Λ+ τΛ

(
µ + ε +(1−ψ)(β1 +β2h2)I∗

)(
µ +θ +(1−ψ)(1−ω)(β1 +β2h2)I∗

)(
µ + ε +(1−ψ)(β1 +β2h2)I∗

) ,
V ∗2 =

θ

(
ε(1− τ)Λ+ τΛ

(
µ + ε +(1−ψ)(β1 +β2h2)I∗

))
(φ3 +µ)

(
µ +θ +(1−ψ)(1−ω)(β1 +β2h2)I∗

)(
µ + ε +(1−ψ)(β1 +β2h2)I∗

) ,
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E∗ =
(σ +µ)

α p
I∗,

C∗ =
(1− p)(σ +µ)

p(φ2 +µ)
I∗,

Q∗ =
σ

µ +φ1
I∗,

R∗ =
φ3V ∗2 +φ2C∗+φ1Q∗

µ
.

with I∗ being the positive root of the polynomial (3.37).

(3.37) c2(I∗)2 + c1(I∗)+ c0 = 0,

where

c2 =−(1−ω)h1(ψ−1)2(α +µ)(β1 +β2h2)
2,

c1 = (ψ−1)(β1 +β2h2)(h1(α +µ)((1−ω)(µ + ε)+θ +µ)+(1−ω)Λ(ψ−1)(β1 +β2h2)) ,

c0 = h1(−(α +µ))(θ +µ)(µ + ε)− (ψ−1)(β1 +β2h2)((1−ω)Λ(µτ + ε)+(θ +µ)(Λ− τΛ)),

(3.38)

Additionally,

(3.39) h1 =
(σ +µ)

α p
,h2 =

(1− p)(σ +µ)

p(φ2 +µ)
.

3.5.4. Global Stability Analysis of Endemic Equilibrium Point.

Theorem 5. The endemic equilibrium point E∗1 of system (2.2) is globally asymptotically stable

if Re > 1.

Proof. Suppose Re > 1; then E∗1 exists. As in Vargas [39], to determine the global stability, we

define and derive the Lyapunov function V as follows.

(3.40) V (x1,x2,x3, ..,x8) =
8

∑
i=1

ci

2
(xi− x∗i )

2,

where

xi= Human population classes (S,V1,V2,E,C, I,Q,R),
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x∗i = Human population at endemic equilibrium point (S∗,V ∗1 ,V
∗
2 ,E

∗,C∗, I∗,Q∗,R∗).

Thus from equation (3.40): Choosing ci = 1 we have

(3.41)
V (S,V1,V2,E,C, I,Q,R) =

1
2

(
(S−S∗)+(V1−V ∗1 )+(V2−V ∗2 )+(E−E∗)

+(C−C∗)+(I− I∗)+(Q−Q∗)+(R−R∗)
)2

.

Differentiating equation (3.41) with respect to t gives;

(3.42)

dV
dt

=
(
(S−S∗)+(V1−V ∗1 )+(V2−V ∗2 )+(E−E∗)+(C−C∗)

+(I− I∗)+(Q−Q∗)+(R−R∗)
) d

dt

(
S+V1 +V2 +E +C+ I +Q+R

)
Using equation (3.2), it follows that,

(3.43)
d
dt

(
S+V1 +V2 +E +C+ I +Q+R

)
=

dN(t)
dt

From equation (3.3)

(3.44)
dN(t)

dt
= Λ−µN(t)

From (3.6), we obtain;

(3.45) S∗+V ∗1 +V ∗2 +E∗+C∗+ I∗+Q∗+R∗ ≤ Λ

µ

Then, substituting equation (3.44) and (3.45) into equation (3.42) gives

(3.46)
dV
dt

=
(

N(t)− Λ

µ

)(
Λ−µN(t)

)
Simplifying equation (3.46) becomes

(3.47)
dV
dt

=− 1
µ

(
Λ−µN(t)

)2

From equation (3.47), it is clear that dV
dt is always negative, and is zero if and only if S = S∗,V1 =

V ∗1 ,V2 =V ∗2 ,E = E∗,C =C∗, I = I∗,Q = Q∗,R = R∗. Moreover, every solution of system (2.2)

with the initial conditions approaches E∗1 as t→ ∞ (see [37, 38]); hence, the largest compact

invariant set in {(S(t),V1(t),V2(t),E(t),C(t), I(t),Q(t),R(t)) ∈Ω : dV
dt < 0} is the singleton set

E∗1 . Therefore, from Lasalle’s invariant principle [36], it implies that the endemic equilibrium

E∗1 is globally asymptotically stable in Ω whenever Re > 1. �
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4. NUMERICAL RESULTS

In this section, a model system (2.2) is solved numerically via the Rungekutta fourth-order

method and is implemented in MATLAB software. The goal is to showcase the analytical re-

sults presented in the previous sections. The solutions are presented in the form of graphs.

Parameters used for numerical simulations are presented in Table 2 together with the follow-

ing initial conditions: S(0) = 0.25,V1(0) = 0.15,V2(0) = 0.1,E(0) = 0.1,C(0) = 0.15, I(0) =

0.1,Q(0) = 0.1,R(0) = 0.05.

4.1. Effects of first-dose vaccination only. From Figure 3 (a), it can be seen that with an

increase of first-dose vaccination coverage from 0.3 to 0.9, there is a reduction in the proportion

of susceptible from 25% to 0.2% respectively in 50 years’ time. This is because as more people

are vaccinated, they become immune to the diseases leaving a small proportion of susceptible

individuals. Similarly, Figure 3 (b) shows that as first-dose vaccination increases, the number of

exposed individuals decreases sharply, implying as more people become immune, they are less

exposed to infection. Also, Figure 3 (c) shows that the number of symptomatic infectious people

has decreased with an increase in first-dose vaccination coverage. However, such a decrease can

not approach a disease-free situation because of the inefficiency of this vaccine [5]. First-dose

vaccinated individuals might lose immunity in the long run and be easily re-exposed to this

disease. On the other hand, Figure 3(d) shows that as the first-dose vaccine coverage increases,

the recovered population initially indicates a sharp rise but later decreases. The fall in the

recovered population might have been caused by the fall of symptomatic infectious individuals

experienced Figure 3 (c) or carriers who are the influx of the recovered population.
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FIGURE 3. (a)-(d) show the impacts of first-dose vaccination on susceptible,

exposed, symptomatic infectious, and recovered populations.

4.2. Effects of double-vaccination only. Figure 4(a) depicts that the proportion of suscep-

tible population decreases from 0.25 to 0.002 in 50 years as a result of double-vaccination

coverage variation from 0.3 to 0.9; this is because more susceptibles move into the first-dose

vaccination population (V1) and the second-dose vaccination (V2). Also, Figure 4(b) demon-

strates that with an increase in double-vaccination coverage, there is a significant drop in the
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proportion of symptomatic infectious individuals. On the other hand, it is illustrated in Figure

4(c) that as double-vaccination coverage increases, the proportion of the recovered population

increases. Our findings align with the results by Qu [17].
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FIGURE 4. (a)-(c) show the impacts of second-dose vaccination on susceptible,

symptomatic infectious, and recovered populations.
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4.3. Effects of education campaign only. Figure 5(a) shows that with an increase in public

health education campaigns, more people continue to be susceptible since they tend to avoid

getting new infections or infecting others. Also, from Figures 5(b,c), an increased education

campaign leads to a decrease in the number of carriers and symptomatic infectious individuals,

respectively. Further, Figure 5(d) shows that with an increase in education campaigns, there is

a drop in the proportion of the recovered individuals since fewer and fewer individuals become

infectious or carriers, thus affecting influx into the recovered compartment.
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FIGURE 5. (a)-(d) show the impacts of public health education campaigns on

the susceptible, carrier, symptomatic infectious, and recovered populations.
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4.4. Effects of quarantine only. Figure 6 reveals that, as the quarantine rate (σ ) increase,

the number of symptomatic infectious population decrease. This is because the contagious

individuals are being bounded where they receive medical care, and quarantined individuals are

not allowed to interact with healthy people until they are cured. In this way, the transmission of

mumps is easily controlled, as suggested by Bai [18].
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FIGURE 6. Show the impacts of quarantine on symptomatic infectious population.

4.5. Effects of a combination of two control strategies. Figure 7(a) reveals that a strategy

that combines double-vaccination and education campaigns has similar effects as the one that

combines double-vaccination and quarantine on decreasing the proportion of the susceptible

population, and this is because more susceptible individuals move into the first-dose vacci-

nation population (V1) and the second-dose vaccination (V2). However, combining education

campaigns and quarantine has no direct effect on decreasing the number of susceptible indi-

viduals. This is because as more people obtain education about mumps disease, it reduces the

risk of disease transmission, so more people continue to be susceptible since they tend to avoid
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getting new infections or infecting others. Also, Figure 7(b) shows that the strategy that com-

bines education and quarantine has the same effect as the one combining double vaccination and

quarantine, whereas the strategy that combines double vaccination and education has less im-

pact on minimizing the proportion of the symptomatic infectious population. From Figure 7(c),

one can see that to attain a maximum number of recovered proportions. The strategy combining

double-vaccination and quarantine should be adopted, else one can adopt a strategy combining

double-vaccination and education campaigns.
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FIGURE 7. (a)-(c) show the impacts of two control strategies on susceptible,

symptomatic infectious, and recovered populations.
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4.6. Effects of a combination of three versus two control strategies. Figure 8(a) reveals

that combining three strategies: double vaccination, education campaigns, and quarantine, has

similar effects as the one that combines double vaccination and quarantine to decrease the pro-

portion of the susceptible population. However, combining education campaigns and quarantine

has no direct effect on decreasing the number of susceptible individuals. Figure 8(b) shows that

as double-vaccination, education campaigns, and quarantine coverage increase, the proportion

of exposed individuals decreases, which has the same impact as a combination of education

and quarantine, so one can adopt one among these two combination control strategies to reduce

the same number of exposed individuals. Also, Figure 8(c) demonstrates that the approach that

three controls have the same effect as the one combining education and quarantine on mini-

mizing the number of symptomatic infectious. In contrast, the strategy that combines double

vaccination and education has less impact on minimizing the proportion of the symptomatic

infectious population. Figure 8(d)shows that a maximum number of recovered proportions is

attained when the strategy combines double-vaccination, education campaigns, quarantine, or

the one that combines double-vaccination and quarantine is opted for.
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FIGURE 8. (a)-(d) show the impacts of three control strategies on susceptible,

exposed, symptomatic infectious, and recovered populations.
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5. CONCLUSIONS

This paper formulated a deterministic mathematical model for the transmission dynamics of

mumps that incorporates three control measures: double vaccination, public health education

campaign, and quarantine. The effective reproduction number was computed through the next-

generation matrix method and was used to establish the stability of the equilibrium points. It was

found that the model system has two equilibrium points, namely, the disease-free equilibrium

and endemic equilibrium points. It was also proved that the disease-free equilibrium is locally

asymptotically stable when Re < 1 and unstable otherwise. The endemic equilibrium point was

globally asymptotically stable when Re > 1.

The findings from sensitivity analysis imply that to minimize mumps infection: vaccine ef-

ficacy for the first dose (ω) should be kept high, ensure that a large proportion of immigrants

are vaccinated (τ), the general public should avoid traveling to regions where the mumps is en-

demic (Λ), symptomatic infectious individuals should be quarantined (σ ) to limit further spread

of infection, individuals should determine unnecessarily close contact with symptomatic infec-

tious or carriers to lower the risk of the mumps transmission rate (β1,β2), education campaign

(ψ) about mumps disease should be increased among the population, this will help people to

understand details about the disease and thus avoid its risks. Also, individuals who missed the

first-dose vaccine (ε) should be encouraged to receive the first-dose vaccine (MMR1) at any

time. This will help to reduce risks associated with mumps. Furthermore, it has been reported

by some scholars that the first dose of vaccine alone is not sufficient to eliminate mumps [5].

Thus, there is a need to receive a double-dose vaccine (θ ), which guarantees permanent body

immunity.

On the other hand, numerical simulations of the model indicate that whenever the single con-

trol strategies are implemented, then double-vaccination is the best strategy to reduce mumps

transmission for the community (see Figure 4(c)). Also, when consideration is for the combi-

nations of two controls, then the best combination is double-vaccination and quarantine (see

Figure 7(c)). However, when consideration is for the combinations of three controls, then the

best combination is double-vaccination, education campaign, and quarantine (see Figure 8(d)).

Therefore, it can be concluded that vaccination is an essential option for controlling mumps
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transmission, whether implemented singly, in two combinations, or in three combinations with

other controls. The study might be helpful for policymakers and public health practitioners since

it has proposed double-dose vaccination, public health awareness, and quarantine as possible

measures to control mumps in the community.
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	1. Introduction
	2. Model Formulation
	3. Analysis of the Model
	3.1. Boundedness of model
	3.2.  Positivity of model solutions
	3.3.  Disease-free Equilibrium Point (DFE)
	3.4. Effective Reproduction Number (R e )
	3.5. Stability Analysis of the Model

	4. Numerical Results
	4.1. Effects of first-dose vaccination only
	4.2. Effects of double-vaccination only
	4.3. Effects of education campaign only
	4.4. Effects of quarantine only
	4.5. Effects of a combination of two control strategies
	4.6. Effects of a combination of three versus two control strategies

	5. Conclusions 
	Conflict of Interests
	References

