Available online at http://scik.org J. Math. Comput. Sci. 1 (2011), No. 1, 66-76 ISSN: 1927-5307

SOME PROPERTIES OF CERTAIN SUBCLASSES OF *p*-VALENT FUNCTIONS DEFINED BY A LINEAR DERIVATIVE OPERATOR

N. M. MUSTAFA AND M. DARUS*

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia.

ABSTRACT. In the present paper, we introduce new classes of *p*-valent functions defined by using a generalized linear derivative operator with negative coefficients in the unit disk. The results presented here include coefficient estimates, extreme points and distortion properties for the aforementioned classes.

Key words. *p*-valent functions, starlike, convex, distortion theorems, linear derivative operator.

AMS Mathematics Subject Classification (2000): 30C45.

1. Definition and Preliminaries

Let A_p denote the class of functions of the form :

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \qquad (p \in \mathbb{N}).$$

$$(1.1)$$

^{*}Corresponding author

E-mail addresses: nmma1975@yahoo.com (N. M. Mustafa), maslina@ukm.my (M. Darus) Received November 27, 2011

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$. A function $f \in A_p$ is called *p*-valent starlike of order β and type γ , if it satisfies

$$\left|\frac{\frac{zf'(z)}{f(z)} - p}{\frac{zf'(z)}{f(z)} + p - 2\gamma}\right| < \beta,\tag{1.2}$$

where $0 \leq \gamma < p$, $0 < \beta \leq 1$ and $p \in N$. We denote by $S^*(p, \gamma, \beta)$ the class of *p*-valent starlike functions of order γ and type β . A function $f \in A_p$ is called *p*-valent convex functions of order β and type γ , if it satisfies

$$\left|\frac{1 + \frac{zf''(z)}{f'(z)} - p}{1 + \frac{zf''(z)}{f'(z)} + p - 2\gamma}\right| < \beta,$$
(1.3)

where $0 \leq \gamma < p$, $0 < \beta \leq 1$ and $p \in N$. We denote by $K(p, \gamma, \beta)$ the class of *p*-valent convex functions of order γ and type β .

From (1.2) and (1.3), we note that: $f(z) \in K(p, \gamma, \beta)$ if, and only if,

$$\frac{zf'}{p} \in S^*(p,\gamma,\beta).$$

The classes $S^*(p, \gamma, \beta)$ and $K(p, \gamma, \beta)$ were considered by Aouf [2] and Hossen [3]. For $\beta = 1$, reduced to the class $S^*(p, \gamma, 1) = S^*(p, \gamma)$ which was studied by Patil and Thakare [4], and the class $K(p, \gamma, 1) = K(p, \gamma)$ given by Owa [5].

Let T_p denote the subclass of A_p consisting of functions of the form

$$f(z) = z^p - \sum_{k=p+1}^{\infty} a_k z^k, \qquad (p \in \mathbb{N}).$$

$$(1.4)$$

We denote by $T^*(p, \gamma, \beta)$ and $C(p, \gamma, \beta)$, the classes obtained by taking intersections, respectively, of the classes $S^*(p, \gamma, \beta)$ and $K(p, \gamma, \beta)$ with the class T_p . Thus we have

$$T^*(p,\gamma,\beta) = S^*(p,\gamma,\beta) \cap T_p,$$

and

$$C(p,\gamma,\beta) = K(p,\gamma,\beta) \cap T_p$$

The classes $T^*(p, \gamma, \beta)$ and $C(p, \gamma, \beta)$ were studied by Aouf [2] and Hossen [3]. In particular, the classes $T^*(p, \gamma, 1) = T^*(p, \gamma)$ and $C(p, \gamma, 1) = C(p, \gamma)$ were introduced by Owa [5]. Also the classes $T^*(1, \gamma, 1) = T^*(\gamma)$ and $C(1, \gamma, 1) = C(\gamma)$ were studied by Silverman [6].

For functions $f \in A_p$, given by (1.1), and g given by

$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k, \qquad (p \in \mathbb{N}),$$

the Hadamard product (or convolution) of functions f and g is defined by

$$(f * g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g * f)(z), \qquad (p \in \mathbb{N}).$$

Now, $(x)_k$ denotes the Pochhammer symbol (or the shifted factorial) defined by $(x)_k =$

$$\begin{cases} 1 & for \quad k = 0, \\ x(x+1)(x+2)...(x+k-1) & for \quad k \in \mathbb{N} = \{1, 2, 3, ...\}. \end{cases}$$

The authors in [1] have recently introduced a new generalized linear derivative operator $D_p^{\alpha,\delta}(\mu,q,\gamma)$, as the following:

Definition 1.1. For $f \in A_p$, the linear operator $D_p^{\alpha,\delta}(\mu,q,\gamma)$ is defined by $D_p^{\alpha,\delta}(\mu,q,\gamma)$: $A_p \to A_p$ as:

$$D_{p}^{\alpha,\delta}(\mu,q,\gamma)f(z) = z^{p} + \sum_{k=p+1}^{\infty} (\frac{k}{p})^{\alpha} (1 + \frac{k-p}{p+q}\lambda)^{\mu} c(\delta,k) a_{k} z^{k},$$
(1.5)

where $\lambda, \mu, q \ge 0, k, \delta, \alpha \in \mathbb{N}_0 = \{0, 1, 2...\},\$

and $c(\delta, k) = z^p + \sum_{k=1}^{\infty} \frac{\Gamma(k+\delta)}{(k)!\Gamma(p+\delta)} z^k$.

Next we define the following new subclasses of *p*-valent functions as follows:

Definition 1.2. Let $f \in T_p$ be given by (1.4). Then f is said to be in the class $T_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$ if, and only if,

$$\left|\frac{\frac{z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z)}{D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)}-p}{\frac{z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z)}{D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)}+p-2\gamma}\right|<\beta,$$

where $D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)$ is given by (1.5) and $\lambda, \mu, q \ge 0, k, \delta, \alpha \in \mathbb{N}_0 = \{0,1,2...\}, 0 \le \gamma < p, 0 < \beta \le 1$ and $p \in N$.

Further, a function $f \in T_p$ is said to be in the class $C_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$ if, and only if,

$$\frac{zf'}{p} \in T_p^{\alpha,\delta}(\mu, q, \gamma, \beta).$$

We note that, by specializing the parameters $\alpha, \delta, \mu, \lambda, \beta$ and p, we shall obtain the following subclasses which were studied by various authors:

1. For $\alpha = \delta = \mu = 0$ we get $T_p^{0,0}(0, q, \gamma, \beta) = T^*(p, \gamma, \beta)$, is the class of *p*-valent starlike function of order γ and type β which was studied by Aouf [2] and Hossen [3].

2. For $\alpha = \delta = \mu = 0$ and p = 1, we have $T_1^{0,0}(0, q, \gamma, \beta) = S^*(\gamma, \beta)$, is the class of starlike function of order γ and type β which was studied by Gupta and Jain [7].

3. For $\alpha = \delta = \mu = 0$ and $\beta = 1$, we obtain the class $T_p^{0,0}(0, q, \gamma, 1) = T^*(p, \gamma)$, which was introduced by Owa [5].

4. For $\alpha = \delta = \mu = 0$, p = 1 and $\beta = 1$ we obtain the class $T_1^{0,0}(0, q, \gamma, 1) = T^*(\gamma)$, which was studied by Silverman [6].

5. For $\alpha = \delta = q = 0, \mu = 1$ and p = 1, we have the class $C_1^{0,0}(1, 0, \gamma, \beta) = C^*(\gamma, \beta)$, which was studied by Gupta and Jain [7].

6. For $\alpha = \delta = q = 0, \mu = 1$, we have the class $C_p^{0,0}(1,0,\gamma,\beta) = C(p,\gamma,\beta)$, is the class of p-valent convex function of order γ and type β , studied by Aouf [2] and Hossen [3].

7. For $\alpha = \delta = q = 0, \mu = 1, \text{and } \beta = 1$, we have the class $C_p^{0,0}(1, 0, \gamma, 1) = C(p, \gamma)$, studied by Owa [5].

8. For $\alpha = \delta = q = 0, \mu = 1, \beta = 1$, and p = 1, we obtain the class $C_1^{0,0}(1, 0, \gamma, 1) = C(\gamma)$, studied by Silverman [6].

2. Coefficient Estimates

Theorem 2.1. A function f belongs to the class $T_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$ if, and only if,

$$\sum_{k=p+1}^{\infty} \left(\left((k-p) + \beta(k+p-2\gamma) \right) \left(\frac{k}{p} \right)^{\alpha} \left(1 + \frac{k-p}{p+q} \lambda \right)^{\mu} \frac{\Gamma(k+\delta)}{k! \Gamma(p+\delta)} a_k z^k \right) \le 2\beta(p-\gamma).$$
(2.1)

Proof: Let the function f be in the class $T_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$. Then we have

$$\left|\frac{\frac{z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z)}{D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)}-p}{\frac{z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z)}{D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)}+p-2\gamma}\right| = \left|\frac{\frac{pz^p - \sum_{k=p+1}^{\infty}(k)(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}a_kz^k}{z^p - \sum_{k=p+1}^{\infty}(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}a_kz^k}-p}{\frac{pz^p - \sum_{k=p+1}^{\infty}(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}a_kz^k}}{z^p - \sum_{k=p+1}^{\infty}(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}a_kz^k}+p-2\gamma}\right| \leq \beta.$$

Since $|Re(z)| \leq |z|$ for all z, we have

$$\Re\left\{\frac{\sum_{k=p+1}^{\infty}(k-p)\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q}\lambda\right)^{\mu}\frac{\Gamma\left(k+\delta\right)}{k!\Gamma\left(p+\delta\right)}a_{k}z^{k}}{-\sum_{k=p+1}^{\infty}(k+p-2\gamma)\left(\frac{k}{p}\right)^{\alpha}\left(1+\frac{k-p}{p+q}\lambda\right)^{\mu}\frac{\Gamma\left(k+\delta\right)}{k!\Gamma\left(p+\delta\right)}a_{k}z^{k}+\left(2p-2\gamma\right)}\right\}\leq\beta.$$

Choosing values of z on the real axis, so that $\frac{z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z)}{D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)}$ is real, and letting $z \to 1^-$, through real axis, we get

$$\sum_{k=p+1}^{\infty} (k-p) \left(\frac{k}{p}\right)^{\alpha} \left(1 + \frac{k-p}{p+q}\lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{(k)!\Gamma(p+\delta)} a_k z^k \leq -\beta \left(\sum_{k=p+1}^{\infty} (k+p-2\gamma) \left(\frac{k}{p}\right)^{\alpha} \left(1 + \frac{k-p}{p+q}\lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)} a_k z^k + \beta(2p-2\gamma)\right),$$

which implies the assertion (2.1). Conversely, let the inequality (2.1) holds true, then

$$\begin{aligned} \left| z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z) - p(D_p^{\alpha,\delta}(\mu,q,\gamma)f(z)) \right| &-\beta \\ \left| z(D_p^{\alpha,\delta}(\mu,q,\gamma)f)'(z) + (p-2\gamma)D_p^{\alpha,\delta}(\mu,q,\gamma)f(z) \right|, \\ \sum_{k=p+1}^{\infty} \left(((k-p) + \beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1 + \frac{k-p}{p+q}\lambda)^{\mu} \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)} \right) &-\beta(2p-2\gamma) \le 0, \end{aligned}$$

by the assumption. This implies that $f \in T_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$.

Corollary 2.1. Let the function f be in the class $T_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$, then

$$a_k \le \frac{2\beta(p-\gamma)}{((k-p)+\beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}.$$
(2.2)

The result (2.2) is sharp for the function f of the form

$$f(z) = z^p - \frac{2\beta(p-\gamma)}{((k-p)+\beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}z^k.$$
 (2.3)

By using the same arguments as in the proof of Theorem 2.1, we can establish the next theorem.

Theorem 2.2. A function f belongs to the subclass $C_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$, if, and only if,

$$\sum_{k=p+1}^{\infty} \left(k[(k-p) + \beta(k+p-2\gamma)](\frac{k}{p})^{\alpha} (1 + \frac{k-p}{p+q}\lambda)^{\mu} \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)} a_k z^k \right) \le 2\beta p(p-\gamma),$$

Corollary 2.2. Let the function f be in the class $C_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$. Then

$$a_k \le \frac{2\beta p(p-\gamma)}{k[(k-p)+\beta(k+p-2\gamma)](\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}},$$

with equality only for functions of the form

$$f(z) = z^p - \frac{2\beta p(p-\gamma)}{k[(k-p) + \beta(k+p-2\gamma)](\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}z^k.$$

N. M. MUSTAFA AND M. DARUS*

3. DISTORTION PROPERTIES

In this section, we obtain distortion bounds for the classes $T_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$ and $C_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$.

Theorem 3.1. If $f \in T_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$, then

$$|f(z)| \ge r^p - \frac{2\beta(p-\gamma)}{(1+\beta(1+2p-2\gamma))(\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p+1}$$
(3.1)

$$\leq r^{p} + \frac{2\beta(p-\gamma)}{(1+\beta(1+2p-2\gamma))(\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p+1},$$
(3.2)

and

$$|f'(z)| \ge pr^{p-1} - \frac{2\beta(p-\gamma)(p+1)}{(1+\beta(1+2p-2\gamma))(\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p}$$
(3.3)

$$\leq p|z|^{p-1} + \frac{2\beta(p-\gamma)(p+1)}{(1+\beta(1+2p-2\gamma))(\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p},$$
(3.4)

for $z \in \mathbb{U}$. The estimates for |f(z)| and |f'(z)| are sharp.

Proof: Since $f \in T_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$, and in view of inequality (2.1) of Theorem 2.1, we have

$$(1+\beta(1+2p-2\gamma))(\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}\sum_{k=p+1}^{\infty}a_{k}\leq \sum_{k=p+1}^{\infty}\left(((k-p)+\beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1+\frac{k-p}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}a_{k}z^{k}\right)\leq 2\beta(p-\gamma),$$

or

$$\sum_{k=p+1}^{\infty} a_k \le \frac{2\beta(p-\gamma)}{(1+\beta(1+2p-2\gamma))(\frac{p+11}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}.$$
(3.5)

Since

$$r^{p} - r^{p+1} \sum_{k=p+1}^{\infty} a_{k} \le |f(z)| \le r^{p} + r^{p+1} \sum_{k=p+1}^{\infty} a_{k},$$
(3.6)

on using (3.5) and (3.6), we easily arrive at the desired results of (3.2) and (3.1). Furthermore, we observe that

SOME PROPERTIES OF CERTAIN SUBCLASSES OF p-VALENT FUNCTIONS

$$pr^{p-1} - (p+1)r^p \sum_{k=p+1}^{\infty} a_k \le |f'(z)| \le pr^{p-1} + (p+1)r^p \sum_{k=p+1}^{\infty} a_k,$$
(3.7)

On using (3.5) and (3.7), we easily arrive at the desired results of (3.3) and (3.4). Finally, we can see that the estimates for |f(z)| and |f'(z)| are sharp for the function,

$$f(z) = z^p - \frac{2\beta(p-\gamma)}{(1 + (1 + 2p - 2\gamma))(1 + \frac{\lambda}{p+q})^{\mu} \frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}.$$

Similarly, we can prove the following theorem.

Theorem 3.2. If $f \in C_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$, then

$$|f(z)| \ge r^p - \frac{2\beta p(p-\gamma)}{(p+1)[1+\beta(1+2p-2\gamma)](\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p+1}$$

$$\leq r^{p} + \frac{2\beta p(p-\gamma)}{(p+1)[1+\beta(1+2p-2\gamma)](\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p+1},$$

and

$$|f'(z)| \ge pr^{p-1} - \frac{2\beta p(p-\gamma)(p+1)}{[1+\beta(1+2p-2\gamma)](\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p}$$
$$\le pr^{p-1} + \frac{2\beta p(p-\gamma)(p+1)}{(p+1)[1+\beta(1+2p-2\gamma)](\frac{p+1}{p})^{\alpha}(1+\frac{\lambda}{p+q})^{\mu}\frac{\Gamma(p+1+\delta)}{(p+1)!\Gamma(p+\delta)}}r^{p},$$

for $z \in \mathbb{U}$. The estimates for |f(z)| and |f'(z)| are sharp.

4. Extreme Points

Theorem 4.1. Let $f_p(z) = z^p$ and,

$$f_k(z) = z^p - \frac{2\beta(p-\gamma)}{((k-p) + \beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1 + \frac{(k-p)}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}z^k.$$

Then f is in the class $T_p^{\alpha,\delta}(\mu,q,\gamma,\beta)$, if ,and only if, it can be expressed in the form

$$f(z) = \sum_{k=0}^{\infty} \omega_k f_k(z),$$

where

$$\omega_k \ge 0, \sum_{k=0}^{\infty} \omega_k = 1.$$
(4.1)

Proof: Let $f(z) = \sum_{k=0}^{\infty} \omega_k f_k(z)$

$$f(z) = z^p - \frac{2\beta(p-\gamma)}{((k-p) + \beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1 + \frac{(k-p)}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}\omega_k z^k.$$

Then, in view of (4.1), it follows that

$$\sum_{k=p+1}^{\infty} \frac{\left((k-p) + \beta(k+p-2\gamma)\right)\left(\frac{k}{p}\right)^{\alpha}\left(1 + \frac{(k-p)}{p+q}\lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}{2\beta(p-\gamma)} \times \left\{\frac{2\beta(p-\gamma)}{\left((k-p) + \beta(k+p-2\gamma)\right)\left(\frac{k}{p}\right)^{\alpha}\left(1 + \frac{(k-p)}{p+q}\lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}{\omega_{k}} \right\} = \sum_{k=1}^{\infty} \omega_{k} = 1 - \omega_{1} \le 1.$$

Thus $f \in T_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$.

Conversely, assume that a function f defined by (1.4) belongs to class $T_p^{\alpha,\delta}(\mu,q,\gamma,\beta).$ Then

$$a_k \le \frac{2\beta(p-\gamma)}{((k-p)+\beta(k+p-2\gamma))(\frac{k}{p})^{\alpha}(1+\frac{(k-p)}{p+q}\lambda)^{\mu}\frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}.$$

We set

$$\omega_k = \frac{\left((k-p) + \beta(k+p-2\gamma)\right)\left(\frac{k}{p}\right)^{\alpha} \left(1 + \frac{(k-p)}{p+q}\lambda\right)^{\mu} \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}{2\beta(p-\gamma)},$$

and $\omega_k = 1 - \sum_{k=1}^{\infty} \omega_k$. Then we have $f(z) = \sum_{k=1}^{\infty} \omega_k f_k(z)$, and hence completes the proof.

Similarly, we can prove the following result:

Theorem 4.2. Let $f_p(z) = z^p$ and,

$$f_k(z) = z^p - \frac{2\beta p(p-\gamma)}{k[(k-p) + \beta(k+p-2\gamma)](\frac{k}{p})^{\alpha} (1 + \frac{(k-p)}{p+q}\lambda)^{\mu} \frac{\Gamma(k+\delta)}{(k)!\Gamma(p+\delta)}} z^k.$$

74

Then f is in the class $C_p^{\alpha,\delta}(\mu,q,\gamma,\beta_{\cdot})$, if, and only if, it can be expressed in the form

$$f(z) = \sum_{k=0}^{\infty} \omega_k f_k(z),$$

where

$$\omega_k \ge 0, \sum_{k=0}^{\infty} \omega_k = 1.$$

Many other work on *p*-valent functions related to derivative operator and integral operator can be read in [8]-[10] and [11], respectively.

Acknowledgement The work here is supported by MOHE: UKM-ST-06-FRGS0244-2010.

References

- N.Mustafa and M. Darus, Differential subordination and superordination for new linear derivative operator. Int. J. Pure and Appl. Math.70(6) (2011), 825-835.
- M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25(1)(1988), 53-66.
- [3] H. M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstration Math. 33(2)(2000), 277-281.
- [4] D. A. Partil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 27(75)(1983), 145-160.
- [5] S. Owa, On certain classes of p-valent functions with negative coefficients, Bull. Belg. Math. Soc. Simon Stevin, 59(1985), 385-402.
- [6] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.
- [7] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc.14(1976), 409-416.
- [8] F. Ghanim and M. Darus, On certain subclasses of multivalent starlike functions.
 Int. J. Pure Appl. Math. 60(3) (2010), 299-310.

- [9] F. Ghanim and M. Darus, New subclass of multivalent hypergeometric meromorphic functions. Int. J. Pure Appl. Math. 61(3)(2010), 269-280.
- [10] F. Ghanim and M. Darus, Some results of p-valent meromorphic functions defined by a linear operator, Far East J. Math. Sci. (FJMS), 44(2) (2010), 155-165.
- [11] A. Mohammed, M. Darus, D. Breaz, B.A. Frasin, A note on integral operators of p-valent functions, Proc. Pakistan Academy of Sciences, 47(4) (2010), 227-235.