SOME PROPERTIES OF CERTAIN SUBCLASSES OF \(p \)-VALENT FUNCTIONS DEFINED BY A LINEAR DERIVATIVE OPERATOR

N. M. MUSTAFA AND M. DARUS\(^\ast\)

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia.

Abstract. In the present paper, we introduce new classes of \(p \)-valent functions defined by using a generalized linear derivative operator with negative coefficients in the unit disk. The results presented here include coefficient estimates, extreme points and distortion properties for the aforementioned classes.

Key words. \(p \)-valent functions, starlike, convex, distortion theorems, linear derivative operator.

AMS Mathematics Subject Classification (2000): 30C45.

1. Definition and Preliminaries

Let \(A_p \) denote the class of functions of the form :

\[
 f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad (p \in \mathbb{N}).
\]

\(^\ast\)Corresponding author

E-mail addresses: nmma1975@yahoo.com (N. M. Mustafa), maslina@ukm.my (M. Darus)

Received November 27, 2011
which are analytic in the open unit disk $U = \{ z : |z| < 1 \}$. A function $f \in A_p$ is called p-valent starlike of order β and type γ, if it satisfies

$$\left| \frac{zf'(z)}{f(z)} - p \right| \left| \frac{zf''(z)}{f(z)} + p - 2\gamma \right| < \beta,$$

(1.2)

where $0 \leq \gamma < p$, $0 < \beta \leq 1$ and $p \in N$. We denote by $S^*(p, \gamma, \beta)$ the class of p-valent starlike functions of order γ and type β. A function $f \in A_p$ is called p-valent convex functions of order β and type γ, if it satisfies

$$\left| \frac{1 + zf''(z)}{f'(z)} - p \right| \left| \frac{1 + zf''(z)}{f'(z)} + p - 2\gamma \right| < \beta,$$

(1.3)

where $0 \leq \gamma < p$, $0 < \beta \leq 1$ and $p \in N$. We denote by $K(p, \gamma, \beta)$ the class of p-valent convex functions of order γ and type β.

From (1.2) and (1.3), we note that: $f(z) \in K(p, \gamma, \beta)$ if, and only if,

$$\frac{zf'}{p} \in S^*(p, \gamma, \beta).$$

The classes $S^*(p, \gamma, \beta)$ and $K(p, \gamma, \beta)$ were considered by Aouf [2] and Hossen [3]. For $\beta = 1$, reduced to the class $S^*(p, \gamma, 1) = S^*(p, \gamma)$ which was studied by Patil and Thakare [4], and the class $K(p, \gamma, 1) = K(p, \gamma)$ given by Owa [5].

Let T_p denote the subclass of A_p consisting of functions of the form

$$f(z) = z^p - \sum_{k=p+1}^{\infty} a_k z^k, \quad (p \in \mathbb{N}).$$

(1.4)

We denote by $T^*(p, \gamma, \beta)$ and $C(p, \gamma, \beta)$, the classes obtained by taking intersections, respectively, of the classes $S^*(p, \gamma, \beta)$ and $K(p, \gamma, \beta)$ with the class T_p. Thus we have

$$T^*(p, \gamma, \beta) = S^*(p, \gamma, \beta) \cap T_p,$$

and

$$C(p, \gamma, \beta) = K(p, \gamma, \beta) \cap T_p.$$
The classes $T^*(p, \gamma, \beta)$ and $C(p, \gamma, \beta)$ were studied by Aouf [2] and Hossen [3]. In particular, the classes $T^*(p, \gamma, 1) = T^*(p, \gamma)$ and $C(p, \gamma, 1) = C(p, \gamma)$ were introduced by Owa [5]. Also the classes $T^*(1, \gamma, 1) = T^*(\gamma)$ and $C(1, \gamma, 1) = C(\gamma)$ were studied by Silverman [6].

For functions $f \in A_p$, given by (1.1), and g given by

$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k, \quad (p \in \mathbb{N}),$$

the Hadamard product (or convolution) of functions f and g is defined by

$$(f \ast g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g \ast f)(z), \quad (p \in \mathbb{N}).$$

Now, $(x)_k$ denotes the Pochhammer symbol (or the shifted factorial) defined by $(x)_k =

$$\begin{cases}
1 & \text{for } k = 0, \\
(x+1)(x+2)\ldots(x+k-1) & \text{for } k \in \mathbb{N} = \{1, 2, 3, \ldots\}.
\end{cases}$$

The authors in [1] have recently introduced a new generalized linear derivative operator $D_p^{\alpha,\delta}(\mu, q, \gamma)$, as the following:

Definition 1.1. For $f \in A_p$, the linear operator $D_p^{\alpha,\delta}(\mu, q, \gamma)$ is defined by $D_p^{\alpha,\delta}(\mu, q, \gamma) : A_p \to A_p$ as:

$$D_p^{\alpha,\delta}(\mu, q, \gamma)f(z) = z^p + \sum_{k=p+1}^{\infty} \binom{k}{p}^{\alpha} \left(1 + \frac{k - p}{p + q} \lambda\right)^\mu c(\delta, k)a_k z^k, \quad (1.5)$$

where $\lambda, \mu, q \geq 0$, $k, \delta, \alpha \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$,

$$c(\delta, k) = z^p + \sum_{k=1}^{\infty} \frac{\Gamma(k+\delta)}{(k)!\Gamma(p+\delta)} z^k.$$

Next we define the following new subclasses of p-valent functions as follows:
Definition 1.2. Let $f \in T_p$ be given by (1.4). Then f is said to be in the class $T_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$ if, and only if,

$$\left| \frac{z(D_p^{\alpha,\delta}(\mu, q, \gamma)f'(z))'}{D_p^{\alpha,\delta}(\mu, q, \gamma)f(z)} - p \right| + \frac{z(D_p^{\alpha,\delta}(\mu, q, \gamma)f'(z))'}{D_p^{\alpha,\delta}(\mu, q, \gamma)f(z)} + p - 2\gamma < \beta,$$

where $D_p^{\alpha,\delta}(\mu, q, \gamma)f(z)$ is given by (1.5) and $\lambda, \mu, q \geq 0, k, \delta, \alpha \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$, $0 \leq \gamma < p$, $0 < \beta \leq 1$ and $p \in \mathbb{N}$.

Further, a function $f \in T_p$ is said to be in the class $C_p^{\alpha,\delta}(\mu, q, \gamma, \beta)$ if, and only if,

$$\frac{zf'}{p} \in T_p^{\alpha,\delta}(\mu, q, \gamma, \beta).$$

We note that, by specializing the parameters $\alpha, \delta, \mu, \lambda, \beta$ and p, we shall obtain the following subclasses which were studied by various authors:

1. For $\alpha = \delta = \mu = 0$ we get $T_p^{0,0}(0, q, \gamma, \beta) = T^*(p, \gamma, \beta)$, is the class of p-valent starlike function of order γ and type β which was studied by Aouf [2] and Hossen [3].

2. For $\alpha = \delta = \mu = 0$ and $p = 1$, we have $T_1^{0,0}(0, q, \gamma, \beta) = S^*(\gamma, \beta)$, is the class of starlike function of order γ and type β which was studied by Gupta and Jain [7].

3. For $\alpha = \delta = \mu = 0$ and $\beta = 1$, we obtain the class $T_p^{0,0}(0, q, \gamma, 1) = T^*(p, \gamma)$, which was introduced by Owa [5].

4. For $\alpha = \delta = \mu = 0$, $p = 1$ and $\beta = 1$ we obtain the class $T_1^{0,0}(0, q, \gamma, 1) = T^*(\gamma)$, which was studied by Silverman [6].

5. For $\alpha = \delta = q = 0, \mu = 1$ and $p = 1$, we have the class $C_1^{0,0}(1, 0, \gamma, \beta) = C^*(\gamma, \beta)$, which was studied by Gupta and Jain [7].

6. For $\alpha = \delta = q = 0, \mu = 1$, we have the class $C_p^{0,0}(1, 0, \gamma, \beta) = C(p, \gamma, \beta)$, is the class of p-valent convex function of order γ and type β, studied by Aouf [2] and Hossen [3].

7. For $\alpha = \delta = q = 0, \mu = 1$, and $\beta = 1$, we have the class $C_p^{0,0}(1, 0, \gamma, 1) = C(p, \gamma)$, studied by Owa [5].
8. For $\alpha = \delta = q = 0, \mu = 1, \beta = 1$, and $p = 1$, we obtain the class $C^{0,0}_1(1, 0, \gamma, 1) = C(\gamma)$, studied by Silverman [6].

2. COEFFICIENT ESTIMATES

Theorem 2.1. A function f belongs to the class $T^{\alpha,\delta}_p(\mu, q, \gamma, \beta)$ if, and only if,

$$
\sum_{k=p+1}^{\infty} \left(((k - p) + \beta(k + p - 2\gamma)) \left(\frac{k}{p} \right)^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} a_k z^k \right) \leq 2\beta(p - \gamma). \quad (2.1)
$$

Proof: Let the function f be in the class $T^{\alpha,\delta}_p(\mu, q, \gamma, \beta)$. Then we have

$$
\left| \frac{z(D^\alpha_p(\mu, q, \gamma)f)'(z)}{D^\alpha_p(\mu, q, \gamma)f(z)} + p - 2\gamma \right| = \left| \frac{p^2 - \sum_{k=p+1}^{\infty} (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} a_k z^k}{z^p - \sum_{k=p+1}^{\infty} (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} a_k z^k} - p \right| \leq \beta.
$$

Since $|Re(z)| \leq |z|$ for all z, we have

$$
\mathcal{R} \left\{ \frac{\sum_{k=p+1}^{\infty} (k - p) (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} a_k z^k}{\sum_{k=p+1}^{\infty} (k + p - 2\gamma) (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} a_k z^k + (2p - 2\gamma)} \right\} \leq \beta.
$$

Choosing values of z on the real axis, so that $\frac{z(D^\alpha_p(\mu, q, \gamma)f)'(z)}{D^\alpha_p(\mu, q, \gamma)f(z)}$ is real, and letting $z \to 1^-$, through real axis, we get

$$
\sum_{k=p+1}^{\infty} (k - p) (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{(k)!\Gamma(p + \delta)} a_k z^k \leq -\beta \left(\sum_{k=p+1}^{\infty} (k + p - 2\gamma) (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} a_k z^k + \beta(2p - 2\gamma) \right),
$$

which implies the assertion (2.1). Conversely, let the inequality (2.1) holds true, then

$$
\left| z(D^\alpha_p(\mu, q, \gamma)f)'(z) - p(D^\alpha_p(\mu, q, \gamma)f(z)) \right| - \beta
$$

$$
\left| z(D^\alpha_p(\mu, q, \gamma)f)'(z) + (p - 2\gamma) D^\alpha_p(\mu, q, \gamma)f(z) \right|,
$$

$$
\sum_{k=p+1}^{\infty} \left(((k - p) + \beta(k + p - 2\gamma)) (\frac{k}{p})^\alpha (1 + \frac{k - p}{p + q})^\mu \frac{\Gamma(k + \delta)}{k!\Gamma(p + \delta)} \right) - \beta(2p - 2\gamma) \leq 0,
$$

by the assumption. This implies that $f \in T^{\alpha,\delta}_p(\mu, q, \gamma, \beta)$.
Corollary 2.1. Let the function \(f \) be in the class \(T_{\alpha,\delta}^{\alpha,\beta}(\mu, q, \gamma, \beta) \), then

\[
a_k \leq \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(\frac{k}{p})^\alpha(1 + \frac{k-p}{p+q}\lambda)^\mu \frac{\Gamma(k+\delta)}{k!(p+\delta)}}.
\]

(2.2)

The result (2.2) is sharp for the function \(f \) of the form

\[
f(z) = z^p - \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(\frac{k}{p})^\alpha(1 + \frac{k-p}{p+q}\lambda)^\mu \frac{\Gamma(k+\delta)}{k!(p+\delta)}} z^k.
\]

(2.3)

By using the same arguments as in the proof of Theorem 2.1, we can establish the next theorem.

Theorem 2.2. A function \(f \) belongs to the subclass \(C_{\alpha,\delta}^{\alpha,\beta}(\mu, q, \gamma, \beta) \), if, and only if,

\[
\sum_{k=p+1}^{\infty} \left(k[(k - p) + \beta(k + p - 2\gamma)](\frac{k}{p})^\alpha(1 + \frac{k-p}{p+q}\lambda)^\mu \frac{\Gamma(k+\delta)}{k!(p+\delta)} a_k z^k \right) \leq 2\beta p(p - \gamma),
\]

Corollary 2.2. Let the function \(f \) be in the class \(C_{\alpha,\delta}^{\alpha,\beta}(\mu, q, \gamma, \beta) \). Then

\[
a_k \leq \frac{2\beta p(p - \gamma)}{k[(k - p) + \beta(k + p - 2\gamma)](\frac{k}{p})^\alpha(1 + \frac{k-p}{p+q}\lambda)^\mu \frac{\Gamma(k+\delta)}{k!(p+\delta)}},
\]

with equality only for functions of the form

\[
f(z) = z^p - \frac{2\beta p(p - \gamma)}{k[(k - p) + \beta(k + p - 2\gamma)](\frac{k}{p})^\alpha(1 + \frac{k-p}{p+q}\lambda)^\mu \frac{\Gamma(k+\delta)}{k!(p+\delta)}} z^k.
\]
3. Distortion Properties

In this section, we obtain distortion bounds for the classes $T_{\alpha,\delta}^{\alpha,\delta}(\mu, q, \gamma, \beta)$ and $C_{\alpha,\delta}^{\alpha,\delta}(\mu, q, \gamma, \beta)$.

Theorem 3.1. If $f \in T_{\alpha,\delta}^{\alpha,\delta}(\mu, q, \gamma, \beta)$, then

$$|f(z)| \geq r^p - \frac{2\beta(p-\gamma)}{(1 + \beta(1 + 2p - 2\gamma))(p+1)^{\alpha}(1 + \frac{\lambda}{p+q})^\mu \Gamma(p+1+\delta)(p+1)!\Gamma(p+\delta)} r^{p+1}$$

(3.1)

and

$$|f'(z)| \geq pr^{p-1} - \frac{2\beta(p-\gamma)(p+1)}{(1 + \beta(1 + 2p - 2\gamma))(p+1)^{\alpha}(1 + \frac{\lambda}{p+q})^\mu \Gamma(p+1+\delta)(p+1)!\Gamma(p+\delta)} r^p$$

(3.3)

for $z \in \mathcal{U}$. The estimates for $|f(z)|$ and $|f'(z)|$ are sharp.

Proof: Since $f \in T_{\alpha,\delta}^{\alpha,\delta}(\mu, q, \gamma, \beta)$, and in view of inequality (2.1) of Theorem 2.1, we have

$$(1 + \beta(1 + 2p - 2\gamma))(p+1)^{\alpha}(1 + \frac{\lambda}{p+q})^\mu \Gamma(p+1+\delta)(p+1)!\Gamma(p+\delta) \sum_{k=p+1}^{\infty} a_k \leq \sum_{k=p+1}^{\infty} \left((k-p) + \beta(k+p-2\gamma) \frac{k}{p}(1 + \frac{k-p}{p+q}) \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)} a_k z^k \right) \leq 2\beta(p-\gamma),$$

or

$$\sum_{k=p+1}^{\infty} a_k \leq \frac{2\beta(p-\gamma)}{(1 + \beta(1 + 2p - 2\gamma))(p+1)^{\alpha}(1 + \frac{\lambda}{p+q})^\mu \Gamma(p+1+\delta)(p+1)!\Gamma(p+\delta)}.$$

(3.5)

Since

$$r^p - r^{p+1} \sum_{k=p+1}^{\infty} a_k \leq |f(z)| \leq r^p + r^{p+1} \sum_{k=p+1}^{\infty} a_k,$$

(3.6)

on using (3.5) and (3.6), we easily arrive at the desired results of (3.2) and (3.1). Furthermore, we observe that
\[pr^{p-1} - (p + 1)r^p \sum_{k=p+1}^{\infty} a_k \leq |f'(z)| \leq pr^{p-1} + (p + 1)r^p \sum_{k=p+1}^{\infty} a_k, \quad (3.7) \]

On using (3.5) and (3.7), we easily arrive at the desired results of (3.3) and (3.4). Finally, we can see that the estimates for \(|f(z)|\) and \(|f'(z)|\) are sharp for the function,

\[f(z) = z^p - \frac{2\beta(p - \gamma)}{(1 + (1 + 2p - 2\gamma))(1 + \frac{\lambda}{p+q})}(\frac{2^p(p + 1)}{(p+1)!}\Gamma(p+\delta)). \]

Similarly, we can prove the following theorem.

Theorem 3.2. If \(f \in C^\alpha_\delta(p, q, \gamma, \beta) \), then

\[|f(z)| \geq r^p - \frac{2\beta p(p - \gamma)}{(p + 1)[1 + \beta(1 + 2p - 2\gamma)](\frac{p+1}{p})^\alpha(1 + \frac{\lambda}{p+q})\frac{\Gamma(p+1+\delta)}{(p+1)!}\Gamma(p+\delta)}r^{p+1}, \]

and

\[|f'(z)| \geq pr^{p-1} - \frac{2\beta p(p - \gamma)(p + 1)}{[1 + \beta(1 + 2p - 2\gamma)](\frac{p+1}{p})^\alpha(1 + \frac{\lambda}{p+q})\frac{\Gamma(p+1+\delta)}{(p+1)!}\Gamma(p+\delta)}r^p, \]

for \(z \in U. \) The estimates for \(|f(z)|\) and \(|f'(z)|\) are sharp.

4. **Extreme Points**

Theorem 4.1. Let \(f_p(z) = z^p \) and,

\[f_k(z) = z^p - \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(\frac{k}{p})^\alpha(1 + \frac{(k-p)}{p+q})\frac{\Gamma(k+\delta)}{k!}\Gamma(p+\delta)}z^k. \]

Then \(f \) is in the class \(T^\alpha_\delta(p, q, \gamma, \beta) \), if, and only if, it can be expressed in the form

\[f(z) = \sum_{k=0}^{\infty} \omega_k f_k(z), \]
where
\[\omega_k \geq 0, \sum_{k=0}^{\infty} \omega_k = 1.\] (4.1)

Proof: Let \(f(z) = \sum_{k=0}^{\infty} \omega_k f_k(z) \)
\[f(z) = z^p - \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(k)^{\alpha}(1 + \frac{(k-p)}{p+q} \lambda)^\mu \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}} \omega_k z^k.\]

Then, in view of (4.1), it follows that
\[\sum_{k=p+1}^{\infty} \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(k)^{\alpha}(1 + \frac{(k-p)}{p+q} \lambda)^\mu \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}} \omega_k = \sum_{k=1}^{\infty} \omega_k = 1 - \omega_1 \leq 1.\]

Thus \(f \in T_{\alpha,\delta}^{(\mu, q, \gamma, \beta)}. \)

Conversely, assume that a function \(f \) defined by (1.4) belongs to class \(T_{\alpha,\delta}^{(\mu, q, \gamma, \beta)}. \) Then
\[a_k \leq \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(k)^{\alpha}(1 + \frac{(k-p)}{p+q} \lambda)^\mu \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}}.\]

We set
\[\omega_k = \frac{2\beta(p - \gamma)}{((k - p) + \beta(k + p - 2\gamma))(k)^{\alpha}(1 + \frac{(k-p)}{p+q} \lambda)^\mu \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}} \omega_k\]
and \(\omega_k = 1 - \sum_{k=1}^{\infty} \omega_k. \) Then we have \(f(z) = \sum_{k=1}^{\infty} \omega_k f_k(z) \), and hence completes the proof.

Similarly, we can prove the following result:

Theorem 4.2. Let \(f_p(z) = z^p \) and,
\[f_k(z) = z^p - \frac{2\beta p(p - \gamma)}{k[(k - p) + \beta(k + p - 2\gamma)](k)^{\alpha}(1 + \frac{(k-p)}{p+q} \lambda)^\mu \frac{\Gamma(k+\delta)}{k!\Gamma(p+\delta)}} z^k.\]
Then f is in the class $\mathcal{C}_p^{\alpha,\beta}(\mu, q, \gamma, \beta)$, if, and only if, it can be expressed in the form

$$f(z) = \sum_{k=0}^{\infty} \omega_k f_k(z),$$

where

$$\omega_k \geq 0, \sum_{k=0}^{\infty} \omega_k = 1.$$

Many other work on p-valent functions related to derivative operator and integral operator can be read in [8]-[10] and [11], respectively.

Acknowledgement The work here is supported by MOHE: UKM-ST-06-FRGS0244-2010.

References

