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1． Introduction 

With the rapid development of computerized scientific instruments comes a 

wide variety of interesting problems for data analysis and signal processing. In fields 

ranging from extragalactic astronomy to molecular spectroscopy to medical imaging 

to computer vision, one must recover a signal, curve, image, spectrum, or density 

from incomplete, indirect, and noisy data. Wavelets have contributed to this already 

intensely developed and rapidly advancing field. 
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     Wavelet analysis consists of a versatile collection of tools for the analysis and 

manipulation of signals such as sound and images as well as more general digital data 

sets, such as speech, electrocardiograms, image. Wavelet analysis is a remarkable tool 

for analyzing function of one or several variables that appear in mathematics or in 

signal and image processing. With hindsight the wavelet transform can be viewed as 

diverse as mathematics, physics and electrical engineering .The basic idea is always to 

use a family of building blocks to represent the object at hand in an efficient and 

insightful way, the building blocks themselves come in different sizes, and are suitable 

for describing features with a resolution commensurate with their sizes. 

    There are two important aspects to wavelets, which we shall call “mathematical” 

and “algorithmic”. Numerical algorithms using wavelet bases are similar to other 

transform methods in that vectors and operators are expanded into a basis and the 

computations take place in the new system of coordinates. As with all transform 

methods such as approach hopes to achieve that the computation is faster in the new 

system of coordinates than in the original domain, wavelet based algorithms exhibit a 

number of new and important properties. Recently some persons have studied wavelet 

problems of stochastic process or stochastic system ([1]-[19]). 

 

2. Basic definitions 

Definition 1. Let   
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We call (1) as MA (1) model; for more details, see [20] and the reference therein. 

We have 

 

2 2
0 1

0 1,

0 1 0 1

2 2

0 0 1 1 0 1 1 1 1 1

,

1

2

( , ) ( ) ( )

( ( ) ( 1))( ( ) ( 1))

( )

0,

, 1

t s t s t s t s

a a s t

a a t s

t

R s t EX t X s

E a y t a y t a y s a y s

E a y y a a y y a a y y a y y

other

here letDy 

   

 

 



    

   




 



 

                         (2)                                                                                                         



SOME QUESTIONS OF A CLASS OF THE TIME SERIES MODEL        507 

Definition 2. Let ｛x(t) , t∈R｝is a stochastic processes on probability space （Ω, g, 

P）. We call  

W(s, x)＝ dt
s

tx
tx

s R
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1 
 ψ                                          (3) 

is wavelet transform of x(t), where,ψis mather wavelet; see[11] and the reference 

therein. 

Then, we have 
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Definition 3.  Let mather waveletψ(x) be the function: 

ψ(x)=
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we call ψ(x) is the Haar wavelet. 

Then, we have 
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3. Some results about density degree 

We have 
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Then, we have 
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Then, the zero density degree of W(s , y) is 
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4. Wavelet expansion  

We consider wavelet expansions of stochastic processes and show that for certain 

wavelets, the coefficients of the expansion have negligible correlation for different 

scales. We can introduce a modification of the wavelets. Certain non-stationary 

processes the wavelets may be chose to give uncorrelated coefficients. 

In order to use the idea of multiresolution, we will start by defining the scaling 

function and then define the wavelet in terms of it. 

Let real function   be standard orthogonal element of multiresolution analysis 

ZjV j }{  (see [4]), then there exists 2lhk  , have 
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In view of (8) and (10), we can obtain the value of j k

n mE d d   . 

If we let normalized scaling function to have compact support over [0,1], then a 

solution is a scaling function that is a simple rectangle function 
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Now we consider the function )(t  that exists a compact support set 
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Let J be a constant. We find that  
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And have also the self-correlation function of ( , )a j m  
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It follows from (8) and (9) that  
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It follows that   
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