Available online at http://scik.orgJ. Math. Comput. Sci. 3 (2013), No. 3, 863-872ISSN: 1927-5307

EQUATION OF GEODESIC FOR A (α , β) –METRIC IN A TWO-DIMENSIONAL FINSLER SPACE

V. K. CHAUBEY^{1,*}, B. N. PRASAD² AND D. D. TRIPATHI¹

¹Department of Mathematics & Statistics, D. D. U. Gorakhpur University, Gorakhpur, (U.P.)- 273009, India ²C-10, Surajkund Colony, Gorakhpur (U.P.), India

Abstract: In the present paper we have found out the equation of geodesic for a more general (α , β) –metric as compared to Randers, Kropina and Matsumoto metric under the same conditions as for the Randers, Kropina and Matsumoto metric, the geodesic of the two-dimensional space with following metrics are the same as that of Matsumoto metric

$$L = c_1 \alpha + c_2 \beta + \frac{\beta^2}{\alpha}$$
$$L = \frac{c_1 \alpha^2 + c_2 \alpha \beta + c_3 \beta^2}{\alpha + \beta}$$

We have also deal the geodesic of two-dimensional Finsler space with metric,

$$L = c_1 \alpha + c_2 \beta + \frac{\alpha^2}{\beta}$$

All the above three metrics are special form of the general metric,

$$L = \frac{k_1 \alpha^2 + k_2 \alpha \beta + k_3 \beta^2}{a_1 \alpha + a_2 \beta}$$

where *a*'s and *k*'s are constants.

Keywords: (α, β) –metric, geodesic, two-dimensional Finsler space

2000 AMS Subject Classifications: 53B20, 53B40

0. Introduction

In the year 1997 Matsumoto and Park [1] obtained the equation of geodesic in twodimensional Finsler spaces with the Randers metric $(L = \alpha + \beta)$ and the Kropina metric

^{*}Corresponding author

ReceivedJanuary27, 2013

 $(L = \alpha^2/\beta)$, whereas in 1998, they have [2] obtained the equation of geodesic in twodimensional Finsler space with the slope metrics, i.e. Matsumoto metric given by $L = \alpha^2/(\alpha - \beta)$, by considering β as an infinitesimal of degree one and neglecting infinitesimal of degree more than two they obtained the equations of geodesic of two-dimensional Finsler space in the form y'' = f(x, y, y'), where (x, y) are the co-ordinate of two-dimensional Finsler space.

In the present paper we have shown that under the same conditions as for the Matsumoto metric, the equations of geodesic of the two-dimensional space with following metrics are the same as that of Matsumoto metric

$$L = c_1 \alpha + c_2 \beta + \frac{\beta^2}{\alpha}$$
$$L = \frac{c_1 \alpha^2 + c_2 \alpha \beta + c_3 \beta^2}{\alpha + \beta}$$

We have also deal the geodesic of two-dimensional Finsler space with metric,

$$L = c_1 \alpha + c_2 \beta + \frac{\alpha^2}{\beta}$$

All the above three metrics are special form of the general metric,

$$L = \frac{k_1 \alpha^2 + k_2 \alpha \beta + k_3 \beta^2}{a_1 \alpha + a_2 \beta}$$

wherea's and k's are constants.

1. Preliminaries

We consider a two-dimensional Finsler space $F^2 = (M^2, L(x, y))$ with the (α, β) – metric ([3], [4], [5], [7]) where $\alpha = \sqrt{a_{ij}(x)\dot{x}^i\dot{x}^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a one form on M^2 . The space $R^2 = (M^2, \alpha)$ is said to be a Riemannian space associated to F^2 .

M. Matsumoto constructed the problem in his paper [2] as follows:

(I). The underlying manifold M^2 is thought of as a surface S of the ordinary 3-space with an orthonormal co-ordinate system (X^{α}) , $\alpha = 1,2,3$, which by the parametric equation $(X^{\alpha}) = X^{\alpha}(x^1, x^2)$. Then S is equipped with the induced Riemannian metric α . Thus two tangent

vector field B_i , i = 1,2, are given with the components $B_i^{\alpha} = \frac{\partial X^{\alpha}}{\partial x^i}$ and then $a_{ij} = \sum_{\alpha} B_i^{\alpha} B_j^{\alpha}$. Let $N = (N^{\alpha})$ be the unit normal vector to S.

In S an isothermal co-ordinate system $x^i = (x, y)$ may be referred in which α is of the form $\alpha = aE$, where a = a(x, y) is a positive-valued function and $E = \sqrt{\dot{x}^2 + \dot{y}^2}$. Then the Christoffel symbols $\gamma_{jk}^i(x, y)$ of S in (x^i) are given by $(\gamma_{11}^1, \gamma_{12}^1, \gamma_{22}^1; \gamma_{11}^2, \gamma_{12}^2, \gamma_{22}^2) =$ $(a_x, a_y, -a_x, -a_y, a_x, a_y)/a$. We shall denote by (;) the covariant differentiation with respect to Christoffel symbols in R^2 .

(II). Let $B = (B^{\alpha})$ be a constant vector field in the ambient 3-space, and put,

$$(1.1) B = b^i B_i + b^0 N$$

along S. Then the tangential component of B gives to the linear form,

(1.2)
$$\beta = b_i \dot{x}^i, \qquad b_i = a_{ij} b^j$$

The Gauss-Weingarten derivation formulae lead from (1.1) to,

$$B_{;j} = \left(b_{;j}^{i}B_{i} + b^{i}H_{ij}N\right) + \left(b_{;j}^{0}N - b^{0}H_{j}^{i}B_{i}\right)$$

where, H_{ij} is the second fundamental tensor of S and $H_{ij} = a_{ik}H_j^k$. From, $B_{ji} = 0$, we get $b_{ji}^i = b^0H_j^i$, i.e.,

(1.3)
$$b_{i;j} = b^0 H_{ij}.$$

Consequently, we have, $b_{i;j} = b_{j;i}$ i.e. $b_{1y} = b_{2x}$ and hence b_i is a gradient vector field in S.

(III). The linear form β was originally to be induced one in S by the earth's gravity [4]. Hence it is here assumed that the constant vector field B is parallel to the X^3 –axis, i.e. $B^{\alpha} = (0, 0, -G), G = \text{const.} > 0$. Then from (1.1) we have $G^2 = a_{ij}b^ib^j + (b^0)^2$. Since $(a_{11}, a_{12}, a_{22}) = (a^2, 0, a^2)$, then

$$\left(\frac{G}{a}\right)^2 = (b^1)^2 + (b^2)^2 + \left(\frac{b^0}{a}\right)^2.$$

We shall regard the quantity $\frac{G}{a}$ as an infinitesimal of degree one, and neglect the infinitesimal of degree more than two. Then it is natural from the above that b^1 , b^2 and $\frac{b^0}{a}$ are

also those of degree one. Further (1.3) shows that $\beta_{j0}/a = (b_{i,j}\dot{x}^i\dot{x}^j)/a$ may be regarded as an infinitesimal of degree one. Consequently,

(1.4)
$$\lambda = \beta/a^2$$
, $\mu = \gamma/a^2$, $\nu = \beta_{;0}/a$

are infinitesimals of degree one, whereas $\gamma = b_1 \dot{y} - b_2 \dot{x}$. Thus,

- (I) α is the induced Riemannian metric in a surface S and, in particular $\alpha = \alpha E$.
- (II) β is the linear form in (\dot{x}^i) induced from a constant vector field (0, 0, -G) by (1.1) and (1.2).
- (III) λ , μ , and ν of (1.4) are regarded as infinitesimals of degree one, and infinitesimals of degree more than two are neglected.

2. Special (α, β) –metric

Here we shall consider the special (α, β) –metric

(2.1)
$$L = \frac{k_1 \alpha^2 + k_2 \alpha \beta + k_3 \beta^2}{a_1 \alpha + a_2 \beta},$$

where *a*'s and *k*'s are constants. It is obvious that by homothetic change of α and β . This kind of metric may be classified as follows:

(I) $a_1 \neq 0$, $a_2 = 0$, we have the Randers metric $L = \alpha + \beta$,

(2.2)
$$L = c_1 \alpha + c_2 \beta + \frac{\beta^2}{\alpha}$$

(II) $a_1 = 0$, $a_2 \neq 0$, we have the Randers metric $L = \alpha + \beta$,

(2.3)
$$L = c_1 \alpha + c_2 \beta + \frac{\alpha^2}{\beta}$$

(III) $a_1, a_2 \neq 0$, we have,

(2.4)
$$L = \frac{c_1 \alpha^2 + c_2 \alpha \beta + c_3 \beta^2}{\alpha + \beta}$$

Remark: If, $c_1 = 1$, $c_2 = 1$, then (2.2) reduced to $L = \alpha + \beta + \frac{\beta^2}{\alpha}$ which is the Matsumoto metric of second kind. If, $c_1 = 1$ and $c_2 = 0$, then (2.2) reduced to $L = \alpha + \frac{\beta^2}{\alpha}$. This metric is also a very special metric introduced by Matsumoto [6]. If $k_1 = 1$, $k_2 = k_3 = 0$ and $a_1 = 1 = -a_2$, then the metric (2.1) is reduced to Matsumoto metric, $L = \frac{\alpha^2}{(\alpha - \beta)}$.

Now, we study the geodesic in two-dimensional Finsler space with above metrics.

3. Geodesics of the special (α, β) –metric

M. Matsumoto in his paper [1] found out the differential equation of the geodesic in an isothermal co-ordinate system $(x^i) = (x, y)$ for the (α, β) –metric is

(3.1)
$$(L_{\alpha} + aEw\gamma^2)Ri(C) - \beta_{;0}a^2w\gamma - L_{\beta}(b_{1y} - b_{2x}) = 0$$

where we put, $w = \frac{L_{\alpha\alpha}}{\beta^2} = -\frac{L_{\alpha\beta}}{\alpha\beta} = \frac{L_{\beta\beta}}{\alpha^2}$

$$Ri(C) = a(\dot{x}\ddot{y} - \dot{y}\ddot{x})/E^3 + (a_x\dot{y} - a_y\dot{x})/E$$

It is remarked that the equation Ri(C) = 0 gives the geodesic of the associated Riemannian space.

Now according to the above contribution (3.1) may be written for the metric (2.2) in the form

$$\left(1 - \frac{a^2 \lambda^2}{c_1 E^2} + \frac{2a^2 \mu^2}{c_1 E^3}\right) Ri(C) = \frac{2a^2 \mu \nu}{c_1 E^3}$$

Let us neglect the infinitesimals of degree more than two. Then we have

(3.2)
$$Ri(C) = \frac{2a^2\mu\nu}{c_1E^3}$$

Remark: If we take $c_1 = 1$ then equation (3.2) reduced to $Ri(C) = \frac{2a^2\mu\nu}{E^3}$ that is the result is reduced as for the Matsumoto metric [2].

Therefore on our construction, we obtain the approximate equation of geodesics in the form

(3.3)
$$\mathbf{y}^{\prime\prime} = \frac{2}{c_1 a^2} \boldsymbol{\beta}_{;0}^* \boldsymbol{\gamma}^* - \frac{1}{a} (\boldsymbol{E}^*)^2 (\boldsymbol{a}_x \boldsymbol{y}^\prime - \boldsymbol{a}_y)$$

where,

(3.3)'
$$\begin{cases} y' = dy/dx, \quad E^* = \sqrt{1 + (y')^2}, \quad \gamma^* = b_1 y' - b_2 \\ \beta^*_{;0} = b_{1;1} + (b_{1;2} + b_{2;1})y' + b_{2;2}(y')^2 \end{cases}$$

Next if we take the metric (2.3) then the differential equation (3.1) of geodesic is written as

$$(c_1 a \lambda^3 + 2E \lambda^2 + 2E \mu^2) Ri(C) = 2\mu\nu$$

Let us neglect the infinitesimals of degree more than two. Then we have

(3.4)
$$Ri(C) = \frac{\mu\nu}{E(\lambda^2 + \mu^2)}$$

Therefore on our construction, we obtain the approximate equation of geodesics in the form

(3.5)
$$\mathbf{y}^{\prime\prime} = \frac{1}{b_1^2 + b_2^2} \boldsymbol{\beta}_{;0}^* \boldsymbol{\gamma}^* - \frac{1}{a} (\boldsymbol{E}^*)^2 (\boldsymbol{a}_x \boldsymbol{y}^\prime - \boldsymbol{a}_y)$$

where $\beta_{0,0}^{*}$, γ^{*} , E^{*} and γ' are given in (3.3)'.

Again if we take the metric (2.4) then the differential equation of (3.1) of geodesic is written as

$$\left(c_{1}E + 2c_{1}a\lambda + \frac{a^{2}\lambda^{2}(c_{2}-c_{3})}{E} + \frac{2a^{2}\mu^{2}(c_{1}-c_{2}+c_{3})}{(E+a\lambda)}\right)Ri(C) = \frac{2a^{2}\mu\nu(c_{1}-c_{2}+c_{3})}{E(E+a\lambda)}$$

Let us neglect the infinitesimals of degree more than two. Then we have

$$\frac{\mu^2}{(E+a\lambda)} = \frac{\mu^2}{E}, \qquad \qquad \frac{\mu\nu}{E(E+a\lambda)} = \frac{\mu\nu}{E^2}$$

Thus the equation is reduced to

(3.6)
$$Ri(C) = \frac{2a^2\mu\nu(c_1 - c_2 + c_3)}{E^3}$$

Remark: If we take $c_1 = 0$ and $c_2 = c_3 = 0$, then equation (3.6) is reduced to, $Ri(C) = \frac{2a^2\mu\nu}{E^3}$ that is the result for Matsumoto metric [2].

Therefore on our construction, we obtain the approximate equation of geodesics in the form

(3.7)
$$\mathbf{y}^{\prime\prime} = \frac{2(c_1 - c_2 + c_3)}{c_1 a^2} \boldsymbol{\beta}_{;0}^* \boldsymbol{\gamma}^* - \frac{1}{a} (\boldsymbol{E}^*)^2 (\boldsymbol{a}_x \boldsymbol{y}^\prime - \boldsymbol{a}_y)$$

where $\beta_{:0}^*$, γ^* , E^* and γ' are given in (3.3)'.

4. Some Examples

In the following we shall use the notation as follows:

$$(X^{\alpha}) = (X, Y, Z),$$
 $(x^{i}) = (x, y)$

Example 1 We consider the circular cylinder S: $X^2 + Z^2 = 1$, Y = y, which is also written as

S:
$$X = \cos x$$
, $Y = y$, $Z = \sin x$

Then we get

$$B_1 = (-\sin x, 0, \cos x), \qquad B_2 = (0, 1, 0), \qquad N = (\cos x 0, \sin x)$$
$$(a_{11}, a_{12}, a_{22}) = (1, 0, 1), \qquad (b^1, b^2, b^0) = (G \cos x, 0, -G \sin x)$$
Consequently we have

 $\alpha^2 = dx^2 + dy^2, \qquad \beta = -G\cos x \ dx$

Therefore (3.3) gives the approximate differential equation of geodesic is

(4.1)
$$y'' + \frac{a^2}{c_1}(\sin 2x)y' = 0$$

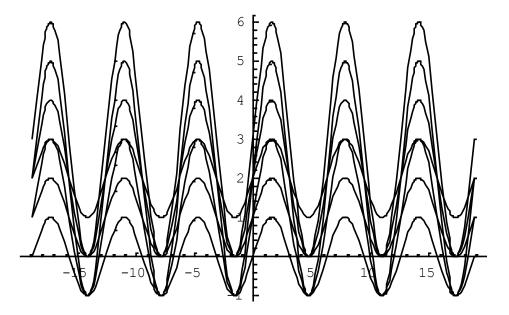
Next (3.5) gives the differential equation of geodesic is as

$$y^{\prime\prime} + (\tan x) y^{\prime} = 0$$

which has the solution

$(4.2) y = a' \sin x + b'$

where a' and b' are constants. The above equation shows sine curve which shown for different values of a' and b' are given below:



<u>Fig. 1</u> The solution of equation of geodesic for the circular cylinder S: $X^2 + Z^2 =$ 1, Y = y, behaves like Sine curves

Again (3.7) gives the approximate differential equation of geodesic is

(4.3)
$$y'' + (c_1 - c_2 + c_3)G^2(\sin 2x)y' = 0.$$

Next we are interested in revolution surfaces the axis of which is parallel to the constant vector field B. Such a surface S is given by

$$X = g(u) \cos y$$
, $Y = g(u) \sin y$, $Z = f(u)$

Denoting (u, y) by (x^i) we have

$$B_{1} = (g' \cos y, g' \sin y, f'), \qquad B_{2} = (-g \sin y, g \cos y, 0)$$

$$N = (-f' \cos y, -f' \sin y, g')/F, \qquad F = \sqrt{(f')^{2} + (g')^{2}}$$

$$(a_{11}, a_{12}, a_{22}) = (F^{2}, 0, g^{2}), \qquad (b^{1}, b^{2}, b^{0}) = \left(-\frac{Gf'}{F}, 0, -\frac{Gg'}{F}\right),$$

$$(b_{1}, b_{2}) = (Gf', 0)$$

Consequently we get

$$\alpha^2 = F^2 du^2 + g^2 dy^2, \qquad \beta = -Gf' du.$$

We need an isothermal co-ordinate system if we take

(4.4)
$$x = \int \frac{F}{g} du$$

Then we obtain

(4.5)
$$\alpha^2 = g(u)^2 (dx^2 + dy^2), \qquad \beta = -G \frac{f'g}{F} dx$$

Example 2 We shall deal with the sphere, surface of constant curvature +1: $g(u) = \cos u$ and $f(u) = \sin u$. Then F = 1 and (4.4) gives,

$$x = \int \frac{1}{\cos u} du = \frac{1}{2} \log \frac{1 + \sin u}{1 - \sin u}$$

Then $\frac{1 + \sin u}{1 - \sin u} = e^{2x}$ implies, $\frac{1}{\cos u} = \cosh u$, and hence $du = \frac{dx}{\cosh x}$. Consequently (4.5)

leads to

$$\alpha^2 = \frac{1}{\cosh^2 x} (dx^2 + dy^2), \quad \beta = -\frac{G}{\cosh^2 x} dx$$

Therefore (3.3) gives the approximate differential equation of geodesics in the form

(4.6)
$$\mathbf{y}'' = \tanh x \left(1 - \frac{2G^2}{c_1 \cosh^2 x} \right) \{ \mathbf{y}' + (\mathbf{y}')^3 \}$$

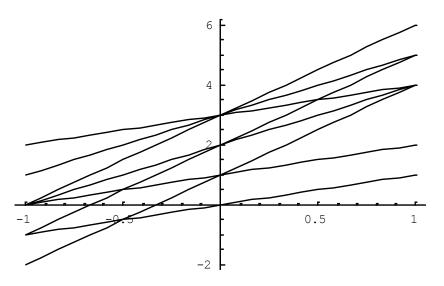
Again (3.5) gives the approximate differential equation of geodesics in the form

y'' = 0

which has the solution

(4.7)
$$y = a' x + b'$$

where a' and b' are constants. The above equation shows sin curve which shown for different values of a' and b' are given below



<u>Fig. 2</u> The solution of equation of geodesic for the sphere, surface of constant curvature $+1: g(u) = \cos u$ and $f(u) = \sin u$, behaves like Straight line

Again (3.7) gives the approximate differential equation of geodesics in the form

(4.8)
$$\mathbf{y}'' = \tanh x \left(1 - \frac{2(c_1 - c_2 + c_3)G^2}{\cosh^2 x} \right) \{ \mathbf{y}' + (\mathbf{y}')^3 \}$$

Example 3 We shall treat of the pseudo-sphere, surface of constant curvature -1: $g(u) = \cos u$ and $f(u) = \log \tan \left(\frac{u}{2} + \frac{\pi}{4}\right) - \sin u$. We have, $f' = \frac{\sin^2 u}{\cos u}$, $F = \frac{\sin u}{\cos u}$, and (4.4) gives $x = \frac{1}{\cos u}$. Therefore (4.5) leads to

$$\alpha^2 = \frac{1}{x^2}(dx^2 + dy^2), \quad \beta = -G\frac{\sqrt{x^2-1}}{x^2}dx$$

We shall exchange x and y as usual:

$$\alpha^2 = \frac{1}{y^2} (dx^2 + dy^2), \quad \beta = -G \frac{\sqrt{y^2 - 1}}{y^2} dy.$$

Then (3.3) yields the approximate differential equation of geodesic as

(4.9)
$$\mathbf{y}^{\prime\prime} = -\frac{(\mathbf{y}^{\prime})^2 + 1}{\mathbf{y}} - \frac{2G^2}{c_1 \mathbf{y}^3} \{\mathbf{1} - \mathbf{y}^2 + (\mathbf{y}^{\prime})^2\}$$

Again (3.5) gives the approximate differential equation of geodesics in the form

$$y'' + \frac{y(y')^2}{y^2 - 1} = 0$$

which, has the solution

(4.10)
$$\frac{1}{2}y\sqrt{y^2-1} - \frac{1}{2}\log\left(y+\sqrt{y^2-1}\right) = a'x+b'$$

where, a' and b' are constants.

Again (3.7) gives the approximate differential equation of geodesics in the form,

(4.11)
$$\mathbf{y}'' = -\frac{(\mathbf{y}')^2 + 1}{\mathbf{y}} - \frac{2(c_1 - c_2 + c_3)G^2}{\mathbf{y}^3} \{\mathbf{1} - \mathbf{y}^2 + (\mathbf{y}')^2\}.$$

Acknowledgment: First author is very much thankful to NBHM-DAE of Government of INDIA for their financial assistance as a Postdoctoral Fellowship.

REFERENCE

[1] M. Matsumoto and H. S. Park: Equations of geodesics in two-dimensionalFinsler spaces with (α, β) –metric, Rev. Roum. Pures. Appl., 42(1997),787-793.

[2] M. Matsumoto and H. S. Park: Equations of geodesics in two-dimensionalFinsler spaces with (α , β) –metric-II, Tensor, N. S., 60(1998), 89-93.

[3] P. L. Antonelli, R. S. Ingarden and M. Matsumoto: The theory of spraysand Finsler spaces with applications in physics and biology, KluwerAcademic Publishers, Dordrecht, Bostan, London, 1993.

[4] M. Matsumoto: A slope of mountain is a Finsler surface with respect to atime measure, J. Math. Kyoto Univ., 29(1989), 17-25.

[5] M. Matsumoto: Foundation of Finsler geometry and special Finsler spaces, Kaisesisha Press, Otsu, Japan, 1986.

[6] M. Matsumoto: Finsler spaces with (α, β) –metric of Douglas type, Tensor, N. S., 60(1998), 123-134.

[7] V. K. Chaubey: Differential geometry of special Finsler spaces of specialmetric,LAP LAMBERT Academic Publishing, Deutsehland/Germany, 2013.