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ABSTRACT: In this paper, we investigate some interesting properties among certain subclasses of analytic and p-

valent functions, which are defined by a new generalized differential operator
m

pI  ,,  and a new generalized integral 
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pJ  ,, , using the techniques of the first order differential subordination.  
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1. Introduction 

Let pA denote the class of functions of the form 

(1.1)      ...}),3,2,1{(,)(
1

 




Npzazzf
pk

k

k

p  

which are analytic and p -valent in the unit disc },1:{  zCzU and we set ,1 AA   a well-

known class of normalized analytic functions in .U  For pAf  given by (1.1) and pAg  
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defined by 





1

)(
pk

k

k

p zbzzg ,the Hadamard  (or convolution) product of f and g is given by          

).)(())((
1

zfgzbazzgf
pk

k

kk

p  




If f and g are analytic in ,U   we say that the function 

f is subordinate to g , or the function g is superordinate to f , if there exists  a Schwarz function 

,w  analytic in U , with 0)0( w  and 1)( zw , for all ,Uz such that )),(()( zwgzf  for 

.Uz  In such a case we write .gf  In particular, if the function g is univalent in U , then we  

have the following equivalence(See [8,16]:  

)()( zgzf   )( Uz  if and only if )0()0( gf    and ).()( UgUf   

For pAf  , the author [23, 24] defined a new differential operator 
m

pI  ,,  by the following  

infinite series  

(1.2)   ,,)(
1

,, Uzza
p

k
zzfI k

k

m

pk

pm
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where ,Np  }0{0 NNm  , 0 and  a real number with 0  p . 

Remark 1.1 If pAf  and the differential operator
m

pI  ,,  is given by (1.2), then 

(1.3)
   

.0,))(()()()( '

,,,,

1

,,     zfIzzfIzfIp m

p

m

p

m

p      

     We note that  

 )()( ,,,1 zfIzfI mm

  (See [22]). 

 pzfIzfI m

p

m

p   ),()()(1,, (See [1]). 

 0,),(),()(,,   plzflIzfI m

p

m

pplp (See Catas [9]). 

 )()(,0, zfDzfI m

p

m

p  (See [4]). 
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Remark 1.2 i) )()( zfI m

p   was considered in [1], for 0 and )(),( zflI m

p 
 
was defined in [9] 

for 0,0  l , ii) plzflIzflI m

p

m

p  ),(),1()()( , iii) )()0,( zfI m

p   )()( zfDm

p  , ,0 was 

mentioned in Aouf et.al. [5], iv) ,0),(1 mD was introduced by Al-Oboudi [2], v)

)()()1(1 zfDzfD mm  was defined by Salagean [20] and was considered for m 0 in [7] , vi) 

,0),()(1  zfI m was investigated in [10] and [11] and vii) )1(1

mI was due to Uralegaddi and 

Somanatha[27]. 

In [26], the author defined a new integral operator
m

pJ  ,,  and is as follows: 

Definition 1.3 For pAf  , we define an integral operator )(,, zfJ m

p  by 

                        
),()(0

,, zfzfJ p        
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                                        ← --------------------- m – times --------------------→ 

where ,Np  }0{0 NNm  , 0 and  a real number with 0  p . 

          We see that for ,)( pAzf  we have 
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(1.4)            ,,)(
1

,, Uzza
k

p
zzfJ k

k

m

pk

pm
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where ,Np  }0{0 NNm  , 0 and  a real number with 0  p .  

From (1.4), it is easy to verify that 

(1.5)            .))(()()()( '1

,,

1

,,,, zfJzzfJzfJp m

p

m

p

m

p

   
 

We also note that for ,)( Azf  we have 

                   ,,)()(
2

,,,1 Uzza
k

zzfJzfJ k

k

m

k

mm 











 



 




 

where }0{0 NNm  , 0 and  a real number with 0  . 

Remark 1.4 i) )()( ,,,1 zfJzfJ mm

  [See 25],ii)
 

0,),(),()(,,   plzflJzfJ m

p

m

pplp  

(See [6(considered for )0l ], iii) )(1,, zfJ m

p  pzfJ m

p  ),()( (See [6(considered for )0 ], 

iv) )()(,0, zfJzfJ m

p

m

p  (See[6]),v) 0),()()(,,   zfLzfJ m

p

m

ppp (See[6]),vi) )(1,1, zfJ m

p

)(zfLm

p  
(See [17, 21]), vii) )()()( 11,1,1 zfLzfLzfJ mmm   (See [12, 14]) and viii) 

)()()(,1,1 zfLzfJ mm   (See [19]). 

Remark 1.3 we observe that m

pI  ,,  and m

pJ  ,,  are linear operators and for pAf  , we have 

).())(())(( ,,,,,,,, zfzfJIzfIJ m

p

m

p

m

p

m

p    

       
 For pAzf )( , the function )(zF is defined by
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 and it is easy to verify that  
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(1.7)
           

,))(()()()( '

,,,,,, zFIzzFIzfIp m

p

m

p

m

p     

and from Remark 1.3, we have  

(1.8)
           

.))(()()()( '

,,,,,, zFJzzFJzfJp m

p

m

p

m

p      

           In this paper we will determine some subordination properties of multivalent functions 

defined using a new generalized differential operator or a new generalized integral operator
 

 

2. Preliminaries 

The following lemmas will be required in our investigation. 

Lemma 2.1[13] Let )(,0)Re(,0, zhC   be a convex (univalent) inU , with 1)0( h and 

let ...,1)( 2

21  zpzpzp  be analytic in U . If ,),(
)(

)(
'

Uzzh
zzp

zp  


then 

,),()()()(
0

1 Uzzhdttht
z

zqzp

z

 
  




and )(zq is the best dominant. 

    For any complex numbers ,...}),2,1,0{(,, 0  Zccba  the Gauss hypergeometric function is 

defined by  

                   ...
!2)1(

)1()1(

!1
1);;,(

2

12 





z

cc

bbaaz

c

ab
zcbaF  . 

The above series converges absolutely for all ,Uz and hence represents an analytic function in 

the unit disc U (See, for details, [28]). 

    The each of the identities asserted by lemma below is well-known 

Lemma 2.2[28] For any complex parameters ba,  and c  ),( 0

Zc  0)Re()Re(  bc , we have  

(2.1)            );;;,(
)(
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dttztt abcb
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(2.2)            );;;,();;,( 1212 zcabFzcbaF   

(2.3)            ).
1

;;,()1();;,( 1212


 

z

z
cbcbFzzcbaF a

 

 

3. Main Results    

    Unless otherwise mentioned, we shall assume in the remainder of this paper that ,Uz  the 

powers are understood as principle values and the parameters ,,,,,,,, BAmp and  are 

constrained as follows: 

          RpABNmNp   ,0,0,0,,11,, 0 such that .0  p  

Theorem 3.1 If the function pAf  , satisfy the following subordination condition 
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1
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and )(zq is the best dominant. Furthermore, 
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where 

(3.3)  
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This result is sharp. 

Proof. Let 

(3.4)  




















p

m

p

z
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)(
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then )(zp  is analytic in U with 1)0( p . Using (1.3), (3.1) and (3.4), we obtain 
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Thus, by Lemma 2.1 for





)( p
 , we deduce that  
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where )(zq  is  given by (3.2) and is obtained by change of  variables followed by the use of 

identities (2.1),(2.2) and (2.3) from Lemma 2.2.Following the same lines as in Theorem 4[18], 

we can prove that   ).1()(Re(inf 


qzq
Uz

The proof of Theorem 3.1 is thus completed. 

In a manner similar to that of Theorem 3.1, we can easily prove the following theorem, 

using the identity (1.5). 

Theorem 3.2 Let pAf  , satisfies  
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then 
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where )(zq is given by (3.2) and )(zq is the best dominant. Furthermore, 
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, 

where ),,,,,,( BApM is given by (3.3) and this result is sharp. 

Remark 3.3 For ,1,1  p  and ,1   Theorem 3.1 and Theorem 3.2 agree with Theorem 

3.1 and Theorem 3.2, respectively, of Al-Oboudi and Al-Qahtani [3]. For 1 in Theorem 3.1 

and Theorem 3.2, our results for operators )(m

pI and )(m

pJ hold true for .p Similarly, 

results obtained for operators ),( lI m

p  and ),( lJ m

p  from Theorem 3.1 and Theorem 3.2, by 

putting , ppl  hold true for .pl   

 

 Now we prove the following.  

Theorem 3.4 If the function pAf  , satisfy the following subordination condition 
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where )(zF is defined by (1.6) and )(zq is given by 
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(3.5)  
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and )(zq is the best dominant. Furthermore 
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This result is sharp. 

Proof. Setting 
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we note that )(zp is analytic in U and ...1)( 2

21  zpzpzp  .Carrying out logarithmic  

differentiation of (3.7) and using the identity (1.7) , one obtains 
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where )(zq is given by (3.5) and the remaining part of the proof is similar to Theorem 3.1. 

In the following theorem we prove the corresponding result, using the identity (1.8), for 

the defined new integral operator, the proof of which is similar to that of Theorem 3.4. 

Theorem 3.5 Let pAf  , satisfies 

  ,
1

1)()()(
)1(

,,

1

,,,,

Bz

Az

z

zfJ

z

zFJ

z

zFJ
p

m

p

p

m

p

p

m

p




























































   

then 

,
1

1
)(

)(,,

Bz

Az
zq

z

zFJ
p

m

p























 

where )(zF is defined by (1.6) , )(zq is given by (3.5) and )(zq is the best dominant. Furthermore 
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where ),,,,,(1 BApM is given by (3.6) and this result is sharp.  

Remark 3.6 For ,1,1,1  p  and ,1   Theorem 3.4 and Theorem 3.5 agree with 

Theorem 3.3 and Theorem 3.4, respectively, of Al-Oboudi and Al-Qahtani [3]. For 1 in 

Theorem 3.4 and Theorem 3.5, our results for operators )(m

pI and )(m

pJ hold true for .p

Similarly, results obtained for operators ),( lI m

p  and ),( lJ m

p  from Theorem 3.4 and Theorem 

3.5, by putting , ppl  hold true for .pl   

Now we prove the partial converse of Theorem 3.4 and Theorem 3.5, for ,21 A  

10   and .1B  
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Theorem 3.7 Let pAf  , satisfies  
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The bound 1R is the best possible.
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By making use of the well-known estimate (See [15]), ),1(,
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 which is positive if ,1Rr  where 1R is given by (3.9).  

     To show that the bound 1R is the best possible, we consider the function pAf  defined by
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for 1Rz  , we conclude that the bound is best possible. Theorem 3.7 is thus proved.

 
 

By applying the technique of proof of Theorem 3.7, we easily get the following result. 
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where 1R is given by (3.9). The bound 1R is the best possible.  

Remark 3.9 For ,1,1  p  and ,1   Theorem 3.7 and Theorem 3.8 agree with Theorem 

3.5 and Theorem 3.6, respectively, of Al-Oboudi and Al-Qahtani [3]. For 1 in Theorem 3.7 

and Theorem 3.8, our results for operators )(m

pI and )(m

pJ hold true for .p Likewise, 

results obtained for operators ),( lI m

p  and ),( lJ m

p  from Theorem 3.7 and Theorem 3.8, by 

putting , ppl  hold true for .pl   
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