

ON SUMS OF CONJUGATE SECONDARY RANGE HERMITIAN MATRICES

S. KRISHNAMOORTHY, B.K.N. MUTHUGOBAL^{*}

Department of Mathematics, Ramanujan Research Centre, Govt. Arts College (Autonomous), Kumbakonam-612 001, Tamil Nadu, India

Abstract: Necessary and Sufficient conditions for the sum of conjugate s-EP (Con-s-EP) matrices to be Con-s-EP are discussed. As an application it is shown that sum and sum of parallel summable Con-s-EP matrices are Con-s-EP.

Keywords: Transpose, Conjugate, Moore-Penrose inverse, Conjugate s-EP matrix, Sum of conjugate s-EP. **2010 Mathematical Subject Classification:** 15A57, 15A15, 15A09.

1. Introduction

Throughout we shall deal with $C_{n\times n}$, let A^T , A^* denote the transpose, conjugate transpose of A. Let A^- be the generalized inverse of A satisfying $AA^-A=A$ and A^{\dagger} be the Moore-Penrose inverse of A. Any Matrix $A \in C_{nxn}$ is called Con-EP if $R(A)=R(A^T)$ or $N(A)=N(A^T)$ and is called Con-EP_r if A is Con-EP and rk(A)=r [2,3], where N(A), R(A) and rk(A) denote null space, range space and rank of A respectively the conjugate k-EP by matrix was introduced [6], for $A \in C_{nxn}$, if $R(A)=R(KA^T)$ is called Con-k-EP. If $A \in C_{nxn}$ said to we, s-EP if $N(A)=N(A^*V)$ or $R(A)=R^*$ (VA^{*}) [5]. Throughout V is a permutation matrix with units in the secondary diagonal. A matrix $A \in C_{nxn}$ is said to be Con-s-EP if it satisfies the condition $Av(x)=0 \Leftrightarrow A^Tv(x)=0$ or equivalently $N(A)=N(A^TV)$ [1].

^{*}Corresponding author

Received February 2, 2013

In addition to that A is Con-s-EP \Leftrightarrow VA is Con-EP or AV is Con-EP. Moreover A is said to be Con-s-EP_r if A is Con-s-EP_r and rk(A)=r. In this paper, we give necessary and sufficient conditions of sums of Con-s-EP matrices to be Con-s-EP. As an application, it is shown that sum and parallel summable Con-s-EP matrices are Con-s-EP.

Theorem 1.1

Let
$$A_i$$
 ($i = 1$ to m) be Con-s-EP matrices. Then $A = \sum_{i=1}^{m} A_i$ is Con-s-EP if any

one of the following equivalent conditions hold:

(i)
$$N(A) \subseteq N(A_i)$$
 for all $i = 1$ to m.
(ii) $rk \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ . \\ . \\ . \\ A_m \end{bmatrix} = rk(A)$

Proof

 $(i) \Leftrightarrow (ii):$

 $N(A) \subseteq N(A_i)$ for each i = 1 to m

$$\Rightarrow$$
 N(A) \subseteq \cap N(A_i).

Since

$$N(A) = N(\sum A_i) \subseteq N(A_1) \cap N(A_2) \cap N(A_3) \cap \ldots \cap N(A_m),$$

It follows that $N(A) \subseteq \cap \ N(\ A_i \)$ Hence ,

$$N(A) = \cap N(A_i) = N \begin{vmatrix} A_1 \\ A_2 \\ A_3 \\ . \\ . \\ . \\ A_m \end{vmatrix}$$

Therefore,

$$rk(A) = rk \begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \\ . \\ . \\ . \\ A_{m} \end{bmatrix} and (ii) holds.$$

Conversely, Since

$$N \begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \\ . \\ . \\ A_{m} \end{bmatrix} = \cap N(A_{i}) \subseteq N(A),$$
$$rk \begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \\ . \\ . \\ A_{m} \end{bmatrix} = rk(A)$$

 $\Rightarrow N(A) = \cap N(A_i).Hence N(A) \subseteq N(A_i) \text{ for each } i \text{ and } (i) \text{ holds. Since each } A_i$ is Con-s-EP,

 $N(A_i) \subseteq N(A_i^T V)$ for each i.

Now $N(A) \subseteq N(A_i)$ for each i. $\Rightarrow N(A) \subseteq \cap N(A_i) = \cap N(A_i^T V) \subseteq N(A^T V) \text{ and }$ $rk(A) = rk(A^T V).$ Hence $N(A) = N(A^T V).$

Thus A is con-s-EP.

Remark 1.2

In particular, if A is non singular then the conditions automatically hold and A is con-s-EP. Theorem (1.1) fails if we relax the conditions on A_i 's.

Example 1.3

Consider,
$$A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $A_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 $V = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
 $VA_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is Con-EP Therefore A₁ is Con-s-EP.
 $VA_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ is not Con EP

Therefore A₂ is not Con-s-EP.

$$A_1 + A_2 = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad V(A_1 + A_2) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
 is not Con-EP.

Therefore A_1+A_2 is not Con-s-EP.

However
$$N(A_1 + A_2) \subseteq N[A_1^T V] \subseteq N(A_1)$$
 and $N(A_1 + A_2) \subseteq N[A_2^T V] \subseteq N(A_2)$,
Moreover $r_k \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = r_k [A_1 + A_2].$

Remark 1.4

If rank is additive, that is $rk(A) = \sum rk(A_i)$ then by Theorem (2.8)[1],

$$R(A_i) \cap R(A_j) = \{0\}, i \neq j$$
 which implies that

 $N(A) \subseteq N(A_i)$ for each i

 \Rightarrow N(A) \subseteq N(A_i^TV) for each i.

Hence A is con-s-EP.

The conditions given in Theorem (1.1) are weaker than the condition of rank additivity can been seen by the following example.

Example 1.5

Let
$$A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ i & 0 & 1 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 1 & 0 & i \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
For $V = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, A_1 , A_2 and $A_1 + A_2$ Con-s-EP, Matrices, conditions (i) and (ii)

in Theorem (1.1) hold but $rk(A_1 + A_2)^1 r_k(A_1) + rk(A_2)$.

Theorem 1.6

Let A_i, (i = 1 to m) be con-s-EP matrices such that $\sum_{i \neq j} A_i^T A_j = 0$ then $A = i \neq j$

 $\sum A_i$ is con-s-EP.

Proof

Since
$$\sum_{i \neq j} A_i^T A_j = 0$$

 $A^T A = (\sum A_i)^T (\sum A_i)$
 $= (\sum A_i^T) (\sum A_i)$
 $= \sum A_i^T A_i$
 $N(A) = N(A^T A)$

$$= N \begin{pmatrix} A_{i} \\ A_{2} \\ A_{3} \\ \vdots \\ \vdots \\ A_{m} \end{pmatrix}^{T} \begin{bmatrix} A_{i} \\ A_{2} \\ A_{3} \\ \vdots \\ \vdots \\ A_{m} \end{pmatrix}$$

$$= N \begin{pmatrix} A_{i} \\ A_{2} \\ A_{3} \\ \vdots \\ \vdots \\ A_{m} \end{pmatrix}$$

$$= N \begin{pmatrix} A_{i} \\ A_{2} \\ A_{3} \\ \vdots \\ \vdots \\ A_{m} \end{pmatrix}$$

$$= N(A_{1}) \cap N(A_{2}) \cap N(A_{3}) \cap \dots \cap N(A_{m})$$

$$= N(A_{1}) \cap N(A_{2}) \cap N(A_{3}) \cap \dots \cap N(A_{m})$$

$$= N(A_{1}^{T}V) \cap N(A_{2}^{T}V) \cap N(A_{3}^{T}V) \cap \dots \cap N(A_{m}^{T}V)$$
Hence $N(A) \subseteq N(A_{i}^{T}V)$ for each i.
$$= N(A_{i})$$
 for each i

 $= N(\sum A_i^T A_i)$

Now, A is con-s-EP follows from Theorem (1.1).

Remark 1.7

Theorem (1.6) fails if we relax the condition that A_i's are Con-s-EP.

For, Let
$$A_1 = \begin{bmatrix} i & 0 & 0 \\ 0 & -i & 0 \\ i & 0 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & -i & 0 \end{bmatrix}$
 $V = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

$$VA_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -i & 0 \\ i & 0 & 0 \end{bmatrix}$$
 is not Con-EP.

Therefore A_1 is not Con-s-EP.

$$VA_{2} = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & i & 0 \end{bmatrix}$$
 is not Con-EP.

Therefore A₂ is not Con-s-EP.

$$A_{1} + A_{2} = \begin{bmatrix} i & i & 0 \\ i & -i & 0 \\ 0 & -i & 0 \end{bmatrix}$$
$$V(A_{1} + A_{2}) = \begin{bmatrix} 0 & -i & 0 \\ i & -i & 0 \\ i & i & 0 \end{bmatrix} \text{ is not Con-s-EP.}$$

Therefore $A_1 + A_2$ is not Con-s-EP.

But $A_1^T A_2 + A_2^T A_1 \neq 0$.

Remark 1.8

The condition given in Theorem (1.6) implies those in Theorem (1.1) but not conversely, this can been seen by the following example.

Example 1.9

Let
$$A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
For $V = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $VA_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is Con-EP. Therefore A₁ is Con-s-EP.

$$\mathbf{VA}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ is con-EP.}$$

Therefore A₂ is Con-s-EP. $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_2)$.

But
$$A_1^T A_2 + A_2^T A_1 \neq 0$$
.

Remark 1.10

The conditions given in Theorem (1.1) and Theorem (1.6) are only sufficient for sum of con-s-EP to be con-s-EP, but not necessary is illustrated by the following example.

Example 1.11

Let
$$A_1 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} A_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

 $V = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} A_1$ and A_2 are Con-s-EP, Neither the conditions in Theorem (1.1)

Theorem (1.6) hold (A_1+A_2) is a Con-s-EP.

Theorem 1.12

Let $A^T = H_1 VAV$ and $B^T = H_2 VBV$ such that (H_1-H_2) is non singular and V is permutation matrix with units in the secondary diagonal, then (A + B) is Con-s-EP $\Leftrightarrow N(A + B) \subseteq N(B)$.

Proof

Since $A^T = H_1 VAV$ and $B^T = H_2 VBV$ by Theorem (2.8) in [1], A and B are cons-EP matrices. Since N (A + B) \subseteq N (B), by Theorem (1.1), (A + B) is Con-s-EP. Conversely, let us assume that (A + B) is con-s-EP. By Theorem (2.8) in [1] there exists a non singular matrix G such that

$$(A + B)^{T} = GV(A + B)V$$

$$A^{T} + B^{T} = GV(A + B)V$$

$$\Rightarrow H_{1}VAV + H_{2}VBV = GV(A + B)V$$

$$\Rightarrow (H_{1}VA + H_{2}VB)V = GV(A + B)V$$

$$\Rightarrow (H_{1}VA + H_{2}VB) = GV(A + B)$$

$$\Rightarrow H_{1}VA + H_{2}VB = GVA + GVB$$

$$\Rightarrow (H_{1}V - GV)A = (GV - H_{2}V)B$$

$$\Rightarrow (H_{1} - G)VA = (G - H_{2})VB$$

$$\Rightarrow LVA = MVB,$$
Where, $L = H_{1} - G, M = G - H_{2}.$
Now $(L + M)(VA) = LVA + MVA$

$$= MVB + MVA$$

$$= MV(A + B)$$
and similarly $(L + M)(VB) = LV(A + B).$
By hypothesis,

$$\label{eq:L+M} \begin{split} L+M &= H_1-G+G-H_2\\ &= H_1-H_2 \text{ is non singular.} \end{split}$$
 Therefore , N(A + B) \subseteq N(MV(A + B))
$$&= N(\ (\ L+M\)VA\)\\ &= N(\ VA\) \end{split}$$

= N(A).

Therefore,

$$N(A+B) \subseteq N(A).$$

Also,

$$N (A + B) \subseteq N(LV (A + B))$$

= N((L + M) VB)
= N(VB)
= N(B)

Therefore, $N(A + B) \subseteq N(B)$ Thus (A + B) is Con-s-EP. $\Rightarrow \qquad N(A+B) \subseteq N(A) \text{ and } N(A+B) \subseteq N(B).$

Remark 1.13

The condition $(H_1 - H_2)$ to be non singular is essential in Theorem (1.12) is illustrated in the following example.

Example 1.14

Let
$$V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $A_1 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & 0 \\ -i & 0 \end{bmatrix}$ are both Con-s-EP Matrices
Here, $H_1 = H_2$. $A_1 + A_2 = \begin{bmatrix} 0 & i \\ 0 & 0 \end{bmatrix}$ is Con-s-EP.

But, $N(A_1 + A_2) \not\subseteq N(A_1)$ or $N(A_2)$. Thus Theorem (1.12) fails.

PARALLEL SUMMABLE CONJUGATE s-EP MATRICES

Here, it is shown that sum and parallel sum of parallel summable Con-s-EP matrices are Con-s-EP.

Lemma 1.15

Let A_1 and A_2 be Con-s-EP matrices. Then A_1 and A_2 are p.s. if and only if $N(A_1 + A_2) \subseteq N(A_i)$ for some (and hence both) $i \in \{1, 2\}$.

Proof

A₁ and A₂ are parallel summable implies $N(A_1 + A_2) \subseteq N(A_1)$ follows from the **Definition in [7].**

Conversely, if $N(A_1 + A_2) \subseteq N(A_1)$ then $N(VA_1 + VA_2) \subseteq N(VA_1)$. Also, $N(VA_1 + VA_2) \subseteq N(VA_2)$. Since A_1 and A_2 are Con-s-EP matrices, by Theorem (2.8) in [1] VA₁ and VA₂ are Con-EP matrices.

629

Since VA_1 and VA_2 are Con-EP matrices, by Theorem in [4], VA_1+VA_1 is Con-EP.

Hence
$$N(VA_1 + VA_2)^T = N(VA_1 + VA_2)$$

= $N(VA_1) \cap (VA_2)$
= $N(VA_1)^T \cap (VA_2)^T$

This implies, $N(VA_1 + VA_2)^* = N(VA_1)^* \cap N(VA_2)^*$.

Therefore $N(VA_1 + VA_2)^* \subseteq N(VA_1)^*$ and $N(VA_1 + VA_2)^* \subseteq N(VA_2)^*$. Also, by hypothesis, $N(VA_1 + VA_2) \subseteq N(VA_1)$. Hence by Definition in [7] VA₁ and VA₂ are p.s.

$$N(VA_1 + VA_2) \subseteq N(VA_1)$$
$$\Rightarrow N(V(A_1 + A_2)) \subseteq N(VA_1)$$
$$\Rightarrow N(A_1 + A_2) \subseteq N(A_1)$$

Similarly, $N(A_1 + A_2)^* \subseteq N(A_1)^*$. Therefore A₁ and A₂ are p.s.

Remark 1.16 :

Lemma (1.15) fails if we relax the condition that A_1 and A_2 are Con-s-EP. Let $A_1 = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$. Let the associated permutation matrix be $V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A_1 is Con-s-EP and A_2 is not Con-s-EP. $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$, but $N(A_1 + A_2)^* \not\subseteq N(A_1^*)$, $N(A_1 + A_2)^* \not\subseteq N(A_2^*)$. Hence A_1 and A_2 are not parallel summable.

Theorem 1.17

Let A_1 and A_2 be p.s. Con-s-EP matrices. Then A_1 : A_2 and A_1+A_2 are Con-s-EP. **Proof** Since A_1 and A_2 are p. s. Con-s-EP matrices, by Lemma (1.15), $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$. Now the fact that $A_1 + A_2$ is Con-s-EP follows from Theorem (1.1).

Since A₁ and A₂ are p.s. Con-s-EP matrices, VA₁ and VA₂ are p.s. Con-EP matrices. Therefore $R(VA_1)^T = R(VA_1)$ and $R(VA_2)^T = R(VA_2)$.

$$R(VA_1 : VA_2)^T = R((VA_1)^T : (VA_2)^T)$$
 (by Theorem in [7])

$$= R((VA_1)^T) \cap R((VA_2)^T)$$
 (by Theorem in [7])

$$= R(VA_1) \cap R(VA_2)$$
 (since VA_1 and VA_2 are Con-EP)

$$= R(VA_1 : VA_2)$$
 (by Theorem in [7])
Thus VA_1 : VA_2 is Con-EP

$$\Rightarrow K(A_1 : A_2)$$
 is Con-EP

$$\Rightarrow A_1 : A_2$$
 is Con-s-EP (by Theorem in [1])

Thus $A_1:A_2$ is Con-s-EP matrix whenever A_1 and A_2 are Con-s-EP.

REFERENCE:

- Krishnamoorthy. S, Gunasekaran. K and Muthugobal. BKN: On Conjugate secondary-EP matrices; JP journal of Algebra Number Theory and Applications. communicated on 06/11/2012.
- [2] Marsaglia. G and Styan. G. P. H: Equalities and Inequalities for ranks of Matrices; Lin. Alg. Appl., 2, 269-292 (1974).
- [3] Meenakshi. A.R and Indira. R: On Conjugate EP matrices; kyungpook, Math. J 37, 67-72 (1997).
- [4] Meenakshi. A.R and Indira. R: On sums of conjugate EP matrices; Indian J. Pure appl. Math 23 (2) March (1992), 179-184.
- [5] Meenakshi. A.R, Krishnamoorthy. S and Gunasekaran. K: On s-EP matrices; Ultra Sci., vol. 21(2)M, 371-376 (2009).
- [6] Meenakshi. A.R, Krishnamoorthy. S and Vasudevan. B: On Conjugate k-EP matrices; Ultra Sci., vol. 21(2)M, 309-404 (2009).
- [7] Rao. C.R and Mitra. S.K: Generalized Inverse of Matrices and its Applications; New York: Wiley and Sons (1971).