ON SUMS OF CONJUGATE SECONDARY RANGE HERMITIAN MATRICES

S. KRISHNAMOORTHY, B.K.N. MUTHUGOBAL*
Department of Mathematics, Ramanujan Research Centre, Govt. Arts College (Autonomous), Kumbakonam-612 001, Tamil Nadu, India

Abstract: Necessary and Sufficient conditions for the sum of conjugate s-EP (Con-s-EP) matrices to be Con-s-EP are discussed. As an application it is shown that sum and sum of parallel summable Con-s-EP matrices are Con-s-EP.

Keywords: Transpose, Conjugate, Moore-Penrose inverse, Conjugate s-EP matrix, Sum of conjugate s-EP.
2010 Mathematical Subject Classification: 15A57, 15A15, 15A09.

1. Introduction

Throughout we shall deal with $\mathrm{C}_{\mathrm{n} \times \mathrm{n}}$, let $\mathrm{A}^{\mathrm{T}}, \mathrm{A}^{*}$ denote the transpose, conjugate transpose of A. Let A^{-}be the generalized inverse of A satisfying $A A^{-} A=A$ and A^{\dagger} be the Moore-Penrose inverse of A. Any Matrix $A \in C_{n x n}$ is called Con-EP if $R(A)=R\left(A^{T}\right)$ or $N(A)=N\left(A^{T}\right)$ and is called Con $-E P_{r}$ if A is Con-EP and $\operatorname{rk}(A)=r[2,3]$, where $N(A)$, $R(A)$ and $r k(A)$ denote null space, range space and rank of A respectively the conjugate k-EP by matrix was introduced [6], for $A \in C_{n \times n}$, if $R(A)=R\left(K A^{T}\right)$ is called Con- k-EP. If $A \in C_{n \times n}$ said to we, $s-E P$ if $N(A)=N\left(A^{*} V\right)$ or $R(A)=R^{*}\left(V A^{*}\right)$ [5]. Throughout V is a permutation matrix with units in the secondary diagonal. A matrix $A \in C_{n \times n}$ is said to be Con-s-EP if it satisfies the condition $\operatorname{Av}(x)=0 \Leftrightarrow A^{T} v(x)=0$ or equivalently $N(A)=N\left(A^{T} V\right)$ [1].

[^0]In addition to that A is Con-s-EP $\Leftrightarrow \mathrm{VA}$ is Con-EP or $A V$ is Con-EP. Moreover A is said to be Con-s-EP P_{r} if A is Con $-s-E P_{r}$ and $r k(A)=r$. In this paper, we give necessary and sufficient conditions of sums of Con-s-EP matrices to be Con-s-EP. As an application, it is shown that sum and parallel summable Con-s-EP matrices are Con-s-EP.

Theorem 1.1

$$
\text { Let } A_{i}(i=1 \text { to } m) \text { be Con-s-EP matrices. Then } A=\sum_{i=1}^{m} A_{i} \text { is Con-s-EP if any }
$$

one of the following equivalent conditions hold:
(i) $\mathrm{N}(\mathrm{A}) \subseteq \mathrm{N}\left(\mathrm{A}_{\mathrm{i}}\right)$ for all $\mathrm{i}=1$ to m .

$$
\text { (ii) } \quad \mathrm{rk}\left[\begin{array}{c}
\mathrm{A}_{1} \\
\mathrm{~A}_{2} \\
\mathrm{~A}_{3} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{~A}_{\mathrm{m}}
\end{array}\right]=\mathrm{rk}(\mathrm{~A})
$$

Proof

(i) \Leftrightarrow (ii):

$$
\begin{aligned}
& \mathrm{N}(\mathrm{~A}) \subseteq \mathrm{N}\left(\mathrm{~A}_{\mathrm{i}}\right) \text { for each } \mathrm{i}=1 \text { to } \mathrm{m} \\
\Rightarrow & \mathrm{~N}(\mathrm{~A}) \subseteq \cap \mathrm{N}\left(\mathrm{~A}_{i}\right) .
\end{aligned}
$$

Since
$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\sum \mathrm{A}_{\mathrm{i}}\right) \subseteq \mathrm{N}\left(\mathrm{A}_{1}\right) \cap \mathrm{N}\left(\mathrm{A}_{2}\right) \cap \mathrm{N}\left(\mathrm{A}_{3}\right) \cap \ldots \cap \mathrm{N}\left(\mathrm{A}_{\mathrm{m}}\right)$,
It follows that $N(A) \subseteq \cap N\left(A_{i}\right)$ Hence,
$N(A)=\cap N\left(A_{i}\right)=N\left[\begin{array}{c}A_{1} \\ A_{2} \\ A_{3} \\ \cdot \\ \cdot \\ \cdot \\ A_{m}\end{array}\right]$

Therefore,

$$
\operatorname{rk}(A)=r k\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
\cdot \\
\cdot \\
\cdot \\
A_{m}
\end{array}\right] \text { and (ii) holds. }
$$

Conversely, Since
$\mathrm{N}\left[\begin{array}{c}A_{1} \\ A_{2} \\ A_{3} \\ \cdot \\ \cdot \\ \cdot \\ A_{m}\end{array}\right]=\cap \mathrm{N}\left(\mathrm{A}_{\mathrm{i}}\right) \subseteq \mathrm{N}(\mathrm{A})$,

$$
\operatorname{rk}\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
\cdot \\
\cdot \\
\cdot \\
A_{m}
\end{array}\right]=\operatorname{rk}(A)
$$

$\Rightarrow N(A)=\cap N\left(A_{i}\right)$.Hence $N(A) \subseteq N\left(A_{i}\right)$ for each i and (i) holds. Since each A_{i} is Con-s-EP,
$N\left(A_{i}\right) \subseteq N\left(A_{i}^{T} V\right)$ for each i.
Now $N(A) \subseteq N\left(A_{i}\right)$ for each i.

$$
\begin{aligned}
& \Rightarrow N(A) \subseteq \cap N\left(A_{i}\right)=\cap N\left(A_{i}^{T} V\right) \subseteq N\left(A^{T} V\right) \text { and } \\
& \quad r k(A)=r k\left(A^{T} V\right)
\end{aligned}
$$

Hence $N(A)=N\left(A^{T} V\right)$.
Thus A is con-s-EP.

Remark 1.2

In particular, if A is non singular then the conditions automatically hold and A is con-s-EP. Theorem (1.1) fails if we relax the conditions on A_{i} 's.

Example 1.3

$$
\begin{aligned}
\text { Consider, } & \mathrm{A}_{1}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathrm{A}_{2} & =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \\
\mathrm{V}= & {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] } \\
\mathrm{VA}_{1} & =\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right] \text { is Con-EP Therefore } \mathrm{A}_{1} \text { is Con-s-EP. } \\
\mathrm{VA}_{2} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \text { is not Con EP }
\end{aligned}
$$

Therefore A_{2} is not Con-s-EP.

$$
A_{1}+A_{2}=\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right], \mathrm{V}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
2 & 0 & 2
\end{array}\right] \text { is not Con-EP. }
$$

Therefore $A_{1}+A_{2}$ is not Con-s-EP.
However $\mathrm{N}\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) \subseteq \mathrm{N}\left[\mathrm{A}_{1}{ }^{\mathrm{T}} \mathrm{V}\right] \subseteq \mathrm{N}\left(\mathrm{A}_{1}\right)$ and $\mathrm{N}\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) \subseteq \mathrm{N}\left[\mathrm{A}_{2}{ }^{\mathrm{T}} \mathrm{V}\right] \subseteq \mathrm{N}\left(\mathrm{A}_{2}\right)$,
Moreover $r_{k}\left[\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right]\right]=r_{k}\left[A_{1}+A_{2}\right]$.

Remark 1.4

If rank is additive, that is $\operatorname{rk}(\mathrm{A})=\operatorname{rrk}\left(\mathrm{A}_{\mathrm{i}}\right)$ then by Theorem (2.8)[1],
$R\left(A_{i}\right) \cap R\left(A_{j}\right)=\{0\}, i \neq j$ which implies that
$\mathrm{N}(\mathrm{A}) \subseteq \mathrm{N}\left(\mathrm{A}_{\mathrm{i}}\right) \quad$ for each i
$\Rightarrow \mathrm{N}(\mathrm{A}) \subseteq \mathrm{N}\left(\mathrm{A}_{\mathrm{i}}{ }^{\mathrm{T}} \mathrm{V}\right)$ for each i.
Hence A is con-s-EP.
The conditions given in Theorem (1.1) are weaker than the condition of rank additivity can been seen by the following example.

Example 1.5

Let $A_{1}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ \mathrm{i} & 0 & 1\end{array}\right]$ and $A_{2}=\left[\begin{array}{lll}1 & 0 & \mathrm{i} \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$
For $\mathrm{V}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \mathrm{A}_{1}, \mathrm{~A}_{2}$ and $\mathrm{A}_{1}+\mathrm{A}_{2}$ Con-s-EP, Matrices, conditions (i) and (ii)
in Theorem (1.1) hold but $\operatorname{rk}\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)^{1} \mathrm{r}_{\mathrm{k}}\left(\mathrm{A}_{1}\right)+\operatorname{rk}\left(\mathrm{A}_{2}\right)$.

Theorem 1.6

Let A_{i}, ($i=1$ to m) be con-s-EP matrices such that $\sum_{i \neq j} A_{i}{ }^{T} A_{j}=0$ then $A=$ $\sum A_{i}$ is con-s-EP.

Proof

$$
\text { Since } \quad \begin{aligned}
& \sum_{i \neq j} A_{i}^{T} A_{j}=0 \\
& A^{T} A=\left(\sum A_{i}\right)^{T}\left(\sum A_{i}\right) \\
&=\left(\sum{A_{i}}^{T}\right)\left(\sum A_{i}\right) \\
&=\sum A_{i}^{T} A_{i} \\
& N(A)=N\left(A^{T} A\right)
\end{aligned}
$$

$$
=\mathrm{N}\left(\sum \mathrm{~A}_{\mathrm{i}}^{\mathrm{T}} \mathrm{~A}_{\mathrm{i}}\right)
$$

Hence $\quad N(A) \subseteq N\left(A_{i}^{T} V\right)$ for each i.

$$
=\mathrm{N}\left(\mathrm{~A}_{\mathrm{i}}\right) \text { for each } \mathrm{i}
$$

Now, A is con-s-EP follows from Theorem (1.1).

Remark 1.7

Theorem (1.6) fails if we relax the condition that A_{i} 's are Con-s-EP.
For, Let $A_{1}=\left[\begin{array}{ccc}\mathrm{i} & 0 & 0 \\ 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & 0\end{array}\right]$ and $\mathrm{A}_{2}=\left[\begin{array}{ccc}0 & \mathrm{i} & 0 \\ \mathrm{i} & 0 & 0 \\ 0 & -i & 0\end{array}\right]$

$$
\mathrm{V}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
\mathrm{VA}_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0
\end{array}\right] \text { is not Con-EP. }
$$

Therefore A_{1} is not Con-s-EP.

$$
\mathrm{VA}_{2}=\left[\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & \mathrm{i} & 0
\end{array}\right] \text { is not Con-EP. }
$$

Therefore A_{2} is not Con-s-EP.

$$
\begin{aligned}
& \mathrm{A}_{1}+\mathrm{A}_{2}=\left[\begin{array}{ccc}
\mathrm{i} & \mathrm{i} & 0 \\
\mathrm{i} & -\mathrm{i} & 0 \\
0 & -\mathrm{i} & 0
\end{array}\right] \\
& \mathrm{V}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)=\left[\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & -\mathrm{i} & 0 \\
\mathrm{i} & \mathrm{i} & 0
\end{array}\right] \text { is not Con-s-EP. }
\end{aligned}
$$

Therefore $A_{1}+A_{2}$ is not Con-s-EP.
But $\mathrm{A}_{1}{ }^{\mathrm{T}} \mathrm{A}_{2}+\mathrm{A}_{2}{ }^{\mathrm{T}} \mathrm{A}_{1} \neq 0$.

Remark 1.8

The condition given in Theorem (1.6) implies those in Theorem (1.1) but not conversely, this can been seen by the following example.

Example 1.9

Let $A_{1}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A_{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
For $\mathrm{V}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \mathrm{VA}_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$ is Con-EP. Therefore A_{1} is Con-s-EP.
$\mathrm{VA}_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$ is con-EP.
Therefore A_{2} is Con-s-EP. $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{1}\right)$ and $N\left(A_{2}\right)$.
But $\mathrm{A}_{1}{ }^{\mathrm{T}} \mathrm{A}_{2}+\mathrm{A}_{2}{ }^{\mathrm{T}} \mathrm{A}_{1} \neq 0$.

Remark 1.10

The conditions given in Theorem (1.1) and Theorem (1.6) are only sufficient for sum of con-s-EP to be con-s-EP, but not necessary is illustrated by the following example.

Example 1.11

Let $\mathrm{A}_{1}=\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad \mathrm{A}_{2}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
$\mathrm{V}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right] \mathrm{A}_{1}$ and A_{2} are Con-s-EP, Neither the conditions in Theorem (1.1)
Theorem (1.6) hold $\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)$ is a Con-s-EP.

Theorem 1.12

Let $A^{T}=H_{1}$ VAV and $B^{T}=H_{2}$ VBV such that $\left(H_{1}-H_{2}\right)$ is non singular and V is permutation matrix with units in the secondary diagonal, then $\quad(A+B)$ is Con-s-EP $\Leftrightarrow N(A+B) \subseteq N(B)$.

Proof

Since $A^{T}=H_{1}$ VAV and $B^{T}=H_{2}$ VBV by Theorem (2.8) in [1], A and B are con-sEP matrices. Since $N(A+B) \subseteq N(B)$, by Theorem (1.1), $\quad(A+B)$ is Con-s-EP. Conversely, let us assume that $(A+B)$ is con-s-EP. By Theorem (2.8) in [1] there exists a non singular matrix G such that

$$
\begin{array}{rlrl}
& & (\mathrm{A}+\mathrm{B})^{\mathrm{T}} & =\mathrm{GV}(\mathrm{~A}+\mathrm{B}) \mathrm{V} \\
\mathrm{~A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}} & =\mathrm{GV}(\mathrm{~A}+\mathrm{B}) \mathrm{V} \\
\Rightarrow & & \mathrm{H}_{1} \mathrm{VAV}+\mathrm{H}_{2} \mathrm{VBV} & =\mathrm{GV}(\mathrm{~A}+\mathrm{B}) \mathrm{V} \\
\Rightarrow & \left(\mathrm{H}_{1} \mathrm{VA}+\mathrm{H}_{2} \mathrm{VB}\right) \mathrm{V} & =\mathrm{GV}(\mathrm{~A}+\mathrm{B}) \mathrm{V} \\
\Rightarrow & \left(\mathrm{H}_{1} \mathrm{VA}+\mathrm{H}_{2} \mathrm{VB}\right) & =\mathrm{GV}(\mathrm{~A}+\mathrm{B}) \\
\Rightarrow & \mathrm{H}_{1} \mathrm{VA}+\mathrm{H}_{2} \mathrm{VB} & =\mathrm{GVA}+\mathrm{GVB} \\
\Rightarrow & \left(\mathrm{H}_{1} \mathrm{~V}-\mathrm{GV}\right) \mathrm{A} & =\left(\mathrm{GV}-\mathrm{H}_{2} \mathrm{~V}\right) \mathrm{B} \\
\Rightarrow & & \left(\mathrm{H}_{1}-\mathrm{G}\right) \mathrm{VA} & =\left(\mathrm{G}-\mathrm{H}_{2}\right) \mathrm{VB} \\
\Rightarrow & \quad \mathrm{LVA} & =\mathrm{MVB},
\end{array}
$$

Where, $\quad \mathrm{L}=\mathrm{H}_{1}-\mathrm{G}, \quad \mathrm{M}=\mathrm{G}-\mathrm{H}_{2}$.
Now $(\mathrm{L}+\mathrm{M})(\mathrm{VA})=\mathrm{LVA}+\mathrm{MVA}$

$$
\begin{aligned}
& =\mathrm{MVB}+\mathrm{MVA} \\
& =\mathrm{MV}(\mathrm{~A}+\mathrm{B})
\end{aligned}
$$

and similarly $(\mathrm{L}+\mathrm{M})(\mathrm{VB})=\mathrm{LV}(\mathrm{A}+\mathrm{B})$.
By hypothesis,

$$
\begin{aligned}
\mathrm{L}+\mathrm{M} & =\mathrm{H}_{1}-\mathrm{G}+\mathrm{G}-\mathrm{H}_{2} \\
= & \mathrm{H}_{1}-\mathrm{H}_{2} \text { is non singular. }
\end{aligned}
$$

Therefore, $\mathrm{N}(\mathrm{A}+\mathrm{B}) \subseteq \mathrm{N}(\mathrm{MV}(\mathrm{A}+\mathrm{B}))$

$$
\begin{aligned}
= & N((L+M) V A) \\
& =N(V A) \\
& =N(A) .
\end{aligned}
$$

Therefore,

$$
N(A+B) \subseteq N(A)
$$

Also ,

$$
\begin{aligned}
\mathrm{N}(A+B) \subseteq & \mathrm{N}(\mathrm{LV}(A+B)) \\
& =\mathrm{N}((L+M) V B) \\
& =N(V B) \\
= & N(B)
\end{aligned}
$$

Therefore, $\mathrm{N}(\mathrm{A}+\mathrm{B}) \subseteq \mathrm{N}(\mathrm{B})$
Thus (A + B) is Con-s-EP.
$\Rightarrow \quad \mathrm{N}(\mathrm{A}+\mathrm{B}) \subseteq \mathrm{N}(\mathrm{A})$ and $\mathrm{N}(\mathrm{A}+\mathrm{B}) \subseteq \mathrm{N}(\mathrm{B})$.

Remark 1.13

The condition $\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)$ to be non singular is essential in Theorem (1.12) is illustrated in the following example.

Example 1.14

Let $V=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$A_{1}=\left[\begin{array}{ll}0 & \mathrm{i} \\ \mathrm{i} & 0\end{array}\right]$ and $\mathrm{A}_{2}=\left[\begin{array}{cc}0 & 0 \\ -\mathrm{i} & 0\end{array}\right]$ are both Con-s-EP Matrices.
Here, $H_{1}=H_{2} . A_{1}+A_{2}=\left[\begin{array}{ll}0 & i \\ 0 & 0\end{array}\right]$ is Con-s-EP.
But, $N\left(A_{1}+A_{2}\right) \nsubseteq N\left(A_{1}\right)$ or $N\left(A_{2}\right)$. Thus Theorem (1.12) fails.

PARALLEL SUMMABLE CONJUGATE s-EP MATRICES

Here, it is shown that sum and parallel sum of parallel summable Con-s-EP matrices are Con-s-EP.

Lemma 1.15

Let A_{1} and A_{2} be Con-s-EP matrices. Then A_{1} and A_{2} are p.s. if and only if $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{i}\right)$ for some (and hence both) $i \in\{1,2\}$.

Proof

A_{1} and A_{2} are parallel summable implies $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{1}\right)$ follows from the Definition in [7].

Conversely, if $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{1}\right)$ then $N\left(V A_{1}+V A_{2}\right) \subseteq N\left(V A_{1}\right)$. Also, $N\left(V A_{1}+V A_{2}\right) \subseteq N\left(V A_{2}\right)$. Since A_{1} and A_{2} are Con-s-EP matrices, by Theorem (2.8) in [1] VA_{1} and VA_{2} are Con-EP matrices.

Since VA_{1} and VA_{2} are Con-EP matrices, by Theorem in [4], $\mathrm{VA}_{1}+\mathrm{VA}_{1}$ is ConEP.

$$
\text { Hence } \begin{aligned}
N\left(V A_{1}+V A_{2}\right)^{T} & =N\left(V A_{1}+V A_{2}\right) \\
& =N\left(V A_{1}\right) \cap\left(V A_{2}\right) \\
& =N\left(V A_{1}\right)^{T} \cap\left(V A_{2}\right)^{T}
\end{aligned}
$$

This implies, $N\left(V A_{1}+V A_{2}\right)^{*}=N\left(V A_{1}\right)^{*} \cap N\left(V A_{2}\right)^{*}$.
Therefore $N\left(V A_{1}+V A_{2}\right)^{*} \subseteq N\left(V A_{1}\right)^{*}$ and $N\left(V A_{1}+V A_{2}\right)^{*} \subseteq N\left(V A_{2}\right)^{*}$. Also, by hypothesis, $N\left(V A_{1}+V A_{2}\right) \subseteq N\left(V A_{1}\right)$. Hence by Definition in [7] VA_{1} and VA_{2} are p.s.

$$
\begin{aligned}
& N\left(V A_{1}+V A_{2}\right) \subseteq N\left(V A_{1}\right) \\
& \Rightarrow N\left(V\left(A_{1}+A_{2}\right)\right) \subseteq N\left(V A_{1}\right) \\
& \Rightarrow N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{1}\right)
\end{aligned}
$$

Similarly, $N\left(A_{1}+A_{2}\right)^{*} \subseteq N\left(A_{1}\right)^{*}$. Therefore A_{1} and A_{2} are p.s.

Remark 1.16 :

Lemma (1.15) fails if we relax the condition that A_{1} and A_{2} are Con-s-EP. Let $A_{1}=\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$ and $A_{2}=\left(\begin{array}{cc}1 & i \\ i & -1\end{array}\right)$. Let the associated permutation matrix be $V=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) . \quad \mathrm{A}_{1}$ is Con-s-EP and A_{2} is not Con-s-EP. $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{1}\right)$ and $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{2}\right), \quad$ but $\quad N\left(A_{1}+A_{2}\right)^{*} \nsubseteq N\left(A_{1}^{*}\right), \quad N\left(A_{1}+A_{2}\right)^{*} \nsubseteq N\left(A_{2}^{*}\right)$.

Hence A_{1} and A_{2} are not parallel summable.

Theorem 1.17

Let A_{1} and A_{2} be p.s. Con-s-EP matrices. Then $\mathrm{A}_{1}: \mathrm{A}_{2}$ and $\mathrm{A}_{1}+\mathrm{A}_{2}$ are Con-s-EP.

Proof

Since A_{1} and A_{2} are p. s. Con-s-EP matrices, by Lemma (1.15), $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{1}\right)$ and $N\left(A_{1}+A_{2}\right) \subseteq N\left(A_{2}\right)$. Now the fact that $\mathrm{A}_{1}+\mathrm{A}_{2}$ is Con-sEP follows from Theorem (1.1).

Since A_{1} and A_{2} are p.s. Con-s-EP matrices, VA_{1} and VA_{2} are p.s. Con-EP matrices. Therefore $R\left(V A_{1}\right)^{T}=R\left(V A_{1}\right)$ and $R\left(V A_{2}\right)^{T}=R\left(V A_{2}\right)$.

$$
\begin{array}{rlr}
R\left(V A_{1}: V A_{2}\right)^{T} & =R\left(\left(V A_{1}\right)^{T}:\left(V A_{2}\right)^{T}\right) & \text { (by Theorem in [7]) } \\
& =R\left(\left(V A_{1}\right)^{T}\right) \cap R\left(\left(V A_{2}\right)^{T}\right) & \quad \text { (by Theorem in [7]) } \\
& =R\left(V A_{1}\right) \cap R\left(V A_{2}\right) \quad \text { (since } \mathrm{VA}_{1} \text { and } V A_{2} \text { are Con-EP) } \\
& =R\left(V A_{1}: V A_{2}\right) & \\
& \text { Thus } V A_{1}: V A_{2} \text { is Con-EP Theorem in [7]) } \\
& \Rightarrow K\left(A_{1}: A_{2}\right) \text { is Con-EP } & \\
& \Rightarrow A_{1}: A_{2} \text { is Con-s-EP } & \text { (by Theorem in [1]) }
\end{array}
$$

Thus $\mathrm{A}_{1}: \mathrm{A}_{2}$ is Con-s-EP matrix whenever A_{1} and A_{2} are Con-s-EP.

REFERENCE:

[1] Krishnamoorthy. S, Gunasekaran. K and Muthugobal. BKN: On Conjugate secondary-EP matrices; JP journal of Algebra Number Theory and Applications. communicated on 06/11/2012.
[2] Marsaglia. G and Styan. G. P. H: Equalities and Inequalities for ranks of Matrices; Lin. Alg. Appl., 2, 269-292 (1974).
[3] Meenakshi. A.R and Indira. R: On Conjugate EP matrices; kyungpook, Math. J 37, 67-72 (1997).
[4] Meenakshi. A.R and Indira. R: On sums of conjugate EP matrices; Indian J. Pure appl. Math 23 (2) March (1992), 179-184.
[5] Meenakshi. A.R, Krishnamoorthy. S and Gunasekaran. K: On s-EP matrices; Ultra Sci., vol. 21(2)M, 371-376 (2009).
[6] Meenakshi. A.R, Krishnamoorthy. S and Vasudevan. B: On Conjugate k-EP matrices; Ultra Sci., vol. 21(2)M, 309-404 (2009).
[7] Rao. C.R and Mitra. S.K: Generalized Inverse of Matrices and its Applications; New York: Wiley and Sons (1971).

[^0]: * Corresponding author

 Received February 2, 2013

