THE STUDY OF RAY-KNIGHT COMPACTIFICATION ON TRANSFER FUNCTION

CHEN- LI*, FAN- ZHONG-GUANG

School of Mathematics and Statistics Zhengzhou Normal University, Zhengzhou City, Henan Province, 450044, China

Abstract: In order to construct a Markov chain of strong Markov, we need the state space of the compactification. The paper uses the properties of the resolvent operator to study some properties of Ray-Knight compactifications from a given transfer function on state space E.

Key words: transfer function; Ray resolvent; Ray-Knight Compactifications

2010 Mathematical Subject Classification: 60J10

1 Introduction

Construction of the transfer function of the given E is an important part of research of Markov chain. The state space in the canonical chain on \(E \cup \infty \) is very simple, but its orbit has only lower semicontinuity, which just keep part of the strong Markov. In order to construct a Markov chain of strong Markov, the State space of the compactification is needed. We will study the properties of Ray-Knight Compactifications from a given transfer function on state space E.

2 Preliminary knowledge

Let \(E = \{1, 2, \cdots\} \), and the topology on E is discrete topology, then E is

*Corresponding author

Received February 8, 2013
L.C.C.B (Locally compact and has a countable topological group). The elements of E are called state. \mathcal{E} is a Borel algebra on E, (E, \mathcal{E}) is a topological space, and $C_b(E)$ represents all bounded continuous functions. If E is a compact metric space, $C_b(E)$ abbreviated $C(E)$. Remove the dense subset $\{g_m\}_{m=1}^\infty$ of \mathcal{R}, set $d(x, y) = \sum_{m=1}^\infty \frac{1}{2^m} \Lambda |g_m(x) - g_m(y)|$, $\forall x, y \in E$, $d(\cdot, \cdot)$ is the metric on E, completion of E under $d(\cdot, \cdot)$ written \overline{E}. It is obvious that \overline{E} is a compact metric space. The metric on \overline{E} still denoted as $d(\cdot, \cdot)$. $(U^\alpha)_{\alpha > 0}$ is the Ray resolvent operator on \overline{E}, D is a no branch point set.

Definition 1: (\overline{E}, d) is called Ray-Knight compactification on E.

Definition 2: If $p_{ij}(t) \geq 0; \sum_{k=1}^\infty p_{ik}(t) \leq 1; p_{ij}(t+s) = \sum_{k=1}^\infty p_{ik}(t)p_{kj}(s)$ establish, then the function $P(t) = (p_{ij}(t))_{i, j \in E}$ on $[0, \infty)$ is called the transfer function on E.

If $\lim_{t \to 0} p_{ij}(t) = p_{ij}(0) = \delta_{ij}$, then $P(t)(t \geq 0)$ is called the standard. If $\forall i \in E, \sum_{k=1}^\infty p_{ik}(t) = 1$, Then $P(t)(t \geq 0)$ is said to be honest.

Definition 3: If $0 \leq q_{ij} < \infty, 0 \leq q_i \equiv -q_{ii} \leq \infty, \sum_{k \neq i} q_{ik} \leq q_i, \forall i, j \in E$, then $Q = (q_{ij})_{i, j \in E}$ is called density matrix of $P(t)(t \geq 0)$. If $q_i < \infty$, then i is called stable state of $P(t)$. Otherwise i is called instantaneous state of $P(t)$. If $\sum_{k \neq i} q_{ik} = q_i$, then i is called conservative state of $P(t)$. If all States are stable, then $P(t)$ is said to be fully stabilized. If all States are conservative, then $P(t)$ is
said to be fully conservative.

Definition 4: Let $P(t)(t \geq 0)$ is the transfer function on E, $R_{ij}(\lambda)$ is called resolvent of $P(t)(t \geq 0)$. Among then $R_{ij}(\lambda) = \int_0^\infty e^{-\lambda t} p_{ij}(t)dt, i, j \in E, \lambda > 0$.

Lemma 1: $R_{ij}(\lambda)$ is the resolvent of transfer function $P(t)(t \geq 0)$, if and only if $\lambda \sum_{k \in E} R_{ik}(\lambda) \leq 1; R_{ij}(\lambda) - R_{ij}(\mu) + (\lambda - \mu) \sum_{k \in E} R_{ik}(\lambda)R_{kj}(\mu) = 0$;

$$\lim_{\lambda \to \infty} \lambda R_{ij}(\lambda) = \delta_{ij}, \lim_{\lambda \to \infty} \lambda [\lambda R_{ij}(\lambda) - \delta_{ij}] = q_{ij}.$$

Proof: Reference[2]

Lemma 2 If $Q = (q_{ij})_{i,j \in E}$ is density matrix of $P(t)(t \geq 0)$, and $P(t)$ is fully stabilized, then

$$p_{ij}^{(1)} \geq -q_{ij} p_{ij}(t) + \sum_{k \neq i} q_{ik} p_{kj}(t)$$
$$p_{ij}^{(1)} \geq -p_{ij}(t) q_{ij} + \sum_{k \neq j} p_{ik}(t) q_{kj}$$

Proof: From the definition of density matrix and the whole stability can be directly obtained the conclusion.

Note1 If the two formulas in lemma 2 an equality, we get two group of linear differential equation group, Are called backward equations and the forward equations.

Lemma 3 Let $Q = (q_{ij})_{i,j \in E}$ is the whole stability density matrix of $P(t)(t \geq 0)$, set

$$f_{ij}^{(0)}(t) = \delta_{ij} e^{-q_{ij} t}, f_{ij}^{(n)}(t) = \sum_{k \neq i} \int_0^t e^{-q_{ik}s} q_{ik} f_{kj}^{(n-1)}(t-s)ds, n = 1, 2, \cdots$$

$$f_{ij}^{(0)}(t) = \delta_{ij} e^{-q_{ij} t}, f_{ij}^{(n)}(t) = \sum_{k \neq j} \int_0^t f_{ik}^{(n-1)}(s)q_{kj} e^{-q_{ij}(t-s)}ds, n = 1, 2, \cdots$$

$$p_{ij}^{(n)}(t) = \sum_{n=0}^{\infty} f_{ij}^{(n)}(t)$$
Then (1) \(P_{\min}(t) = (p_{ij\min}(t)) \) is transfer function on \(E \), its density matrix is \(Q \).

(2) \(P_{\min}(t) \) is minimum, that is \(p_{ij}(t) \geq p_{ij\min}(t), \forall i, j \in E, t \geq 0 \).

(3) \(P_{\min}(t) \) satisfy the forward equations and backward equations.

Proof: Reference[1]

Note2: \(P_{\min}(t) \) is called the minimum transfer function.

3 Main results

If the transfer function \(P(t) \) is not honest, set \(\Delta \notin E \), and

\[
E_\Delta = E \cup \{ \Delta \}, p_{\Delta \Delta}(t) = 1, p_{\Delta i}(t) = 0, p_{i\Delta} = 1 - \sum_{k \in E} p_{ik}(t), \forall i \in E
\]

Then \(P(t) = (p_{ij}(t))_{i,j \in E_\Delta} \) is the honest transfer function on \(E_\Delta \), so the \(P(t) \) can be transformed into \(P(t) \) to discuss.

Let \(P(t) = (p_{ij}(t))_{i,j \in E} \) is the honest transfer function on \(E \). \(\forall f \in M \), the function \(i \mapsto \sum_{k \in E} R_{ik}(\lambda) f(k) \) on \(E \) is noted \(R_\lambda f \).

Theorem 1: \(\{R_\lambda\}_{\lambda > 0} \) is the Markov resolvent on \(E \), and have:

1. \(E \) is L.C.C.B topological space.
2. \(\{R_\lambda\}_{\lambda > 0} \) is Markov, and \(R_\lambda C_b(E) \subset C_b(E), \forall \lambda > 0 \).
3. For any \(f \in C_b(E) \), and \(x \in E \), \(\lim_{\lambda \to \infty} \lambda R_\lambda f(x) = f(x) \)

Proof: (1) and (2) is obvious. We proof (3):

\[
\lambda R_\lambda f(i) = \lambda \sum_{k \in E} R_{ik}(\lambda) f(k) = \lambda \int_0^\infty e^{-\lambda t} \sum_{k \in E} p_{ik}(t) f(k) dt
\]

\[
= \lambda \int_0^\infty e^{-\lambda t} p_{ii}(t) f(i) dt + \lambda \int_0^\infty e^{-\lambda t} \sum_{k \neq i} p_{ik}(t) f(k) dt
\]

Because \(\lim_{t \to 0} p_{ii}(t) = 1 \), when \(\lambda \to \infty \), \(\int_0^\infty e^{-\lambda t} p_{ii}(t) f(i) dt \to f(i) \);

\[
\int_0^\infty e^{-\lambda t} \sum_{k \neq i} p_{ik}(t) f(k) dt \leq \|f\| \int_0^\infty e^{-\lambda t} (1 - p_{ii}(t)) dt = 0
\]
Theorem 2: Let \((
\bar{E}, d(\cdot, \cdot))\) is Ray-Knight compactifications on \(E\), then:

1. \(E \subseteq D\)

2. For any \(i \in E, \alpha > 0, U^\alpha(i, \bar{E} \setminus E) = 0\), and for any \(k \in E,\)

\[
U^\alpha(i, \{k\}) = R_{ik}(\alpha)
\]

3. For any \(i \in E, t > 0, P_t(i, \bar{E} \setminus E) = 0\), and for any \(k \in E,\)

\[
P_t(i, \{k\}) = p_{ik}(t)
\]

Proof: (1) For any \(i \in E, \alpha > 0, f, g \in \mathcal{R}\), because \(U^\alpha f, U^\alpha g\) are \(R_\alpha f, R_\alpha g\) expansion in the \(E\), so

\[
U^\alpha(f - g)(i) = R_\alpha f(i) - R_\alpha g(i) = \sum_{k \in E} R_{ik}(\alpha)[f(k) - g(k)]
\]

For any \(f \in C(\bar{E})\), \(U^\alpha f(i) = \sum_{k \in E} R_{ik}(\alpha)f(k) = R_\alpha f(i)\), because \(R_\alpha\) meet three conclusions of the theorem 1, so we have \(\lim_{\alpha \to \infty} \alpha U^\alpha f(i) = f(i)\), so that \(i \in D\). For \(i\) is optional nature, we have \(E \subseteq D\).

(2) For bounded measurable function \(f\) on any \(\bar{E}\), it is obvious:

\[
U^\alpha f(i) = R_\alpha f(i) = \sum_{k \in E} R_{ik}(\alpha)f(k)
\]

For any \(k \in E\), Use the characteristic function \(I_k(\cdot)\) of \(\{k\}\) instead of \(f\), we get \(U^\alpha(i, \{k\}) = R_{ik}(\alpha)\). Both ends of the sum of \(k\), we get

\[
U^\alpha(i, E) = \sum_{k \in E} U^\alpha(i, \{k\}) = \sum_{k \in E} R_{ik}(\alpha) = \frac{1}{\alpha} U^\alpha(i, \bar{E})
\]
So that $U^\alpha(i, \overline{E} \setminus E) = 0$.

(3) Because $(U^\alpha)_{\alpha > 0}$ is Ray resolvent on \overline{E}, so for any $i, k \in E, f \in C(\overline{E}), \alpha > 0$,
\[
\int_0^\infty e^{-\alpha t} P(t) f(i) dt = U^\alpha f(i) = \sum_{k \in E} R_k(\alpha) f(k) = \int_0^\infty e^{-\alpha t} \sum_{k \in E} p_k(t) f(k) dt
\]

For any $t_0 > 0, t > 0, h > 0$,
\[
\left| \sum_{k \in E} p_k(t_0 + t + h) f(k) - \sum_{k \in E} p_k(t_0 + t) f(k) \right| \\
\leq \| f \| \sum_{k \in E} \left| p_k(t_0 + t + h) - p_k(t_0 + t) \right| \\
= \| f \| \left| \sum_{k \in E} \left(\sum_{m \in E} p_m(t_0) \left(\sum_{l \in E} p_m(h) p_k(t) - p_k(t) \right) \right) \right| \\
\leq \| f \| \left| \sum_{k \in E, m \in E} p_m(t_0) \left(\sum_{l \in E} p_m(h) - 1 \right) p_k(t) \right| + \| f \| \left| \sum_{k \in E, m \in E} \sum_{l \in E} p_m(t_0) p_m(h) p_k(t) \right| \\
= 2 \| f \| \left| \sum_{m \in E} p_m(t_0) [1 - p_m(h)] \right|
\]

By the $p_y(t)$ standard and control convergence theorem\(^5\) to:

\[
\lim_{h \to 0} \sum_{k \in E} p_k(t_0 + t + h) f(k) - \sum_{k \in E} p_k(t_0 + t) f(k) = 0
\]

That is $t \mapsto \sum_{k \in E} p_k(t) f(k)$ is continuous function on $(0, \infty)$, For α is optional nature, we have : $\forall t > 0$, $\int_{\overline{E}} P_t(i, dy) f(y) = P_t f(i) = \sum_{k \in E} p_k(t) f(k)$. By the monotone class theorem\(^5\), The formula for arbitrary bounded measurable function on \overline{E} is also established.

$\forall k \in E$, let $f(\cdot) = I_k(\cdot)$, substitution $U^\alpha f(i) = \sum_{k \in E} R_k(\alpha) f(k) = R_\alpha f(i)$, we get $P_t(i, \{k\}) = p_k(t)$, On both sides of the k sum, then $\sum_{k \in E} P_t(i, \{k\}) = 1$, so

$P_t(i, \overline{E} \setminus E) = 0$. \(\square\)

Note3: Let $E_R = \{ x | x \in \overline{E}, U^1(x, E) = 1 \}$, it is clear that E_R is Borel subset on \overline{E}.
Theorem 3: Let $x \in E_R$, then $\forall t > 0$, $P_t(x, E) = P_t(x, E)$, and $\forall s \geq 0, k \in E$,

$$P_{t+s}(x, \{k\}) = \sum_{m \in E} P_t(x, \{m\}) p_{mk} (s).$$

Proof: because $\forall t > 0, P_t(x, E) \leq P_t(x, E) = 1$, so

$$U^1(x, E) = \int_0^{\infty} e^{-t} P_t(x, E) dt \leq \int_0^{\infty} e^{-t} P_t(x, E) dt = 1$$

By $x \in E_R$, $1 = \int_0^{\infty} e^{-t} P_t(x, E) dt = \int_0^{\infty} e^{-t} P_t(x, \overline{E}) dt$, so $P_t(x, E) = P_t(x, E) = 1$, then $\exists (t_n)_{n=1}^\infty$, so that when $t \to 0$ and $\forall t_n$, $P_{t_n}(x, E) = 1$. For any $t > 0$, Let $t_n < t$, by The properties$^{[6]}$ of semigroup of $(P_s)_{s=0}^\infty$: $P_t(x, E) = \int_E P_{t_n}(x, dy) P_{t-t_n}(y, E)$

$$= \int_E P_{t_n}(x, dy) \rho_{t-t_n}(y, E, \sum_{k \in E} P_{t_n}(x, \{k\}) p_{k})_{t_n} k \in E,$$

$$= P_{t_n}(x, E) = 1$$

We get: $P_t(x, E) = P_t(x, \overline{E})$. $\forall t > 0, s \geq 0, k \in E$:

$$P_{t+s}(x, \{k\}) = \int_E P_t(x, dy) P_s(y, \{k\}) = \int_E P_t(x, dy) P_s(y, \{k\}) = \sum_{m \in E} P_t(x, \{m\}) p_{mk} (s)$$

$\forall x \in E_R, k \in E, t > 0, P_t(x, \{k\})$ is denoted $p_{sk}(t)$.

REFERENCES

